1
|
Li X, Tan J, Xiong W, Feng Y, Zhang Z. Silica-induced ferroptosis activates retinoic acid signaling in dendritic cells to drive inflammation and fibrosis in silicosis. Int Immunopharmacol 2025; 149:114244. [PMID: 39938311 DOI: 10.1016/j.intimp.2025.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Silicosis, a chronic lung disease caused by inhalation of silica (SiO2) particles from environmental contamination or industrial exposure, is characterized by persistent inflammation and fibrosis. This study elucidates a novel mechanism where SiO2 exposure triggers ferroptosis, a lipid peroxidation-dependent form of cell death, in dendritic cells (DCs), thereby activating retinoic acid (RA) signaling. The RA response amplifies inflammatory pathways, including cGAS-STING-IFN-I and IL-1β signaling, exacerbating lung inflammation and fibrosis. The study uses murine models to demonstrate that ferroptosis inhibitors, such as ferrostatin-1, mitigate SiO2-induced inflammation and collagen deposition. Furthermore, systemic administration of the synthetic retinoid AM80 reduces pulmonary damage by modulating immune cell distribution and promoting lymphocyte homing. These findings reveal the interplay between ferroptosis and RA signaling as a pivotal driver of silicosis pathology and suggest therapeutic avenues targeting ferroptosis and RA modulation for disease management.
Collapse
Affiliation(s)
- Xingjie Li
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, Sichuan 628000, China
| | - Jinzhuo Tan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Clinical Laboratory, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Wenyan Xiong
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingna Feng
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics (Basel) 2024; 13:794. [PMID: 39334969 PMCID: PMC11429172 DOI: 10.3390/antibiotics13090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of drug resistance genes and the detrimental health effects caused by the overuse of antibiotics are increasingly prominent problems. There is an urgent need for effective strategies to antibiotics or antimicrobial resistance in the fields of biomedicine and therapeutics. The pathogen-killing ability of antimicrobial peptides (AMPs) is linked to their structure and physicochemical properties, including their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs are a form of innate immune protection found in all life forms. A key aspect of the application of AMPs involves their potential to combat emerging antibiotic resistance; certain AMPs are effective against resistant microbial strains and can be modified through peptide engineering. This review summarizes the various strategies used to tackle antibiotic resistance, with a particular focus on the role of AMPs as effective antibiotic agents that enhance the host's immunological functions. Most of the recent studies on the properties and impregnation methods of AMPs, along with their biomedical applications, are discussed. This review provides researchers with insights into the latest advancements in AMP research, highlighting compelling evidence for the effectiveness of AMPs as antimicrobial agents.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Smulders T, Van Der Schee MP, Maitland-Van Der Zee AH, Dikkers FG, Van Drunen CM. Influence of the gut and airway microbiome on asthma development and disease. Pediatr Allergy Immunol 2024; 35:e14095. [PMID: 38451070 DOI: 10.1111/pai.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
There are ample data to suggest that early-life dysbiosis of both the gut and/or airway microbiome can predispose a child to develop along a trajectory toward asthma. Although individual studies show clear associations between dysbiosis and asthma development, it is less clear what (collection of) bacterial species is mechanistically responsible for the observed effects. This is partly due to issues related to the asthma diagnosis and the broad spectrum of anatomical sites, sample techniques, and analysis protocols that are used in different studies. Moreover, there is limited attention for potential differences in the genetics of individuals that would affect the outcome of the interaction between the environment and that individual. Despite these challenges, the first bacterial components were identified that are able to affect the transcriptional state of human cells, ergo the immune system. Such molecules could in the future be the basis for intervention studies that are now (necessarily) restricted to a limited number of bacterial species. For this transition, it might be prudent to develop an ex vivo human model of a local mucosal immune system to better and safer explore the impact of such molecules. With this approach, we might move beyond association toward understanding of causality.
Collapse
Affiliation(s)
- Tamar Smulders
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Marc P Van Der Schee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-Van Der Zee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Frederik G Dikkers
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis M Van Drunen
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Lyu Z, Yang P, Lei J, Zhao J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics (Basel) 2023; 12:1037. [PMID: 37370356 DOI: 10.3390/antibiotics12061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of drug-resistant genes and concerns about food safety caused by the overuse of antibiotics are becoming increasingly prominent. There is an urgent need for effective alternatives to antibiotics in the fields of livestock production and human medicine. Antimicrobial peptides can effectively replace antibiotics to kill pathogens and enhance the immune functions of the host, and pathogens cannot easily produce genes that are resistant to them. The ability of antimicrobial peptides (AMPs) to kill pathogens is associated with their structure and physicochemical properties, such as their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs regulate the activity of immunological cells and stimulate the secretion of inflammatory cytokines via the activation of the NF-κB and MAPK signaling pathways. However, there are still some limitations to the application of AMPs in the fields of livestock production and human medicine, including a restricted source base, high costs of purification and expression, and the instability of the intestines of animals and humans. This review summarizes the information on AMPs as effective antibiotic substitutes to improve the immunological functions of the host through suppressing pathogens and regulating inflammatory responses. Potential challenges for the commercial application of AMPs in animal husbandry and human medicine are discussed.
Collapse
Affiliation(s)
- Zhiqian Lyu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Lei
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- Qingyuan Haibei BIO-TECH Co., Ltd., Qingyuan 511853, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhao Z, Peng Y, Shi X, Zhao K. Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway. Int J Pharm 2023; 636:122847. [PMID: 36933583 DOI: 10.1016/j.ijpharm.2023.122847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Chitosan and its derivatives are widely used in vaccine adjuvants and delivery systems. Vaccine antigens encapsulated in or conjugated onto N-2-hydroxypropyl trimethyl ammonium chloride chitosan/N,O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) induce strong cellular, humoral, and mucosal immune responses, but the mechanism of action is not fully understood. Therefore, the purpose of this study was to explore the molecular mechanism of composite NPs by upregulating the cGAS-STING signalling pathway to enhance the cellular immune response. We showed that the N-2-HACC/CMCS NPs could be taken up by RAW264.7 cells and produced high levels of IL-6, IL-12p40, and TNF-α. The N-2-HACC/CMCS NPs activated BMDCs, promoted Th1 responses, and enhanced the expression of cGAS, TBK1, IRF3, and STING, as further demonstrated by qRT-PCR and western blotting. Moreover, the NP-induced expression of I-IFNs, IL-1β, IL-6, IL-10 and TNF-α in macrophages was closely related to cGAS-STING. These findings provide a reference for chitosan derivative nanomaterials as vaccine adjuvants and delivery systems and demonstrate that N-2-HACC/CMCS NPs can engage the STING-cGAS pathway to trigger the innate immune response.
Collapse
Affiliation(s)
- Zhi Zhao
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Yue Peng
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Xueao Shi
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| |
Collapse
|
6
|
Wu R, Yuan X, Li X, Ma N, Jiang H, Tang H, Xu G, Liu Z, Zhang Z. The bile acid-activated retinoic acid response in dendritic cells is involved in food allergen sensitization. Allergy 2022; 77:483-498. [PMID: 34365653 DOI: 10.1111/all.15039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/13/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alteration of commensal microbiota is highly correlated with the prevalence of allergic reactions to food in the gastrointestinal tract. The mechanisms by which microbiota modulate food allergen sensitization in the mucosal site are not fully understood. METHODS We generate DCs specific knockout of retinoic acid receptor α (Rara) gene mice (DC KO Rara) to evaluate food sensitization. The bile acid-activated retinoic acid response was evaluated by flow cytometry, real-time RT-PCR and Illumina transcriptome sequencing. The global effect of Abx treatment on BA profiles in the mucosal lymph tissue mLN in mice was examined by UPLC-MS analysis. RESULTS In this study, we demonstrate that depletion of commensal gut bacteria leads to enhanced retinoic acid (RA) signaling in mucosal dendritic cells (DCs). RA signaling in DCs is required for the production of food allergen-specific IgE and IgG1. Antibiotics induced an enlarged bile acid (BA) pool, and dysregulated BA profiles contributed to enhanced RA signaling in mucosal DCs. BA-activated RA signaling promoted DC upregulation of interferon I signature, RA signature, OX40L, and PDL2, which may lead to T helper 2 differentiation of CD4+ T cells. BA-activated RA signaling involved the farnesoid X receptor and RA receptor α (RARa) interaction. Depletion of bile acid reduces food allergen specific IgE and IgG1 levels in mice. CONCLUSION Our research unveils a mechanism of food sensitization modulated by BA-RA signaling in DCs, which suggests a potential new approach for the intervention of food allergic reactions.
Collapse
Affiliation(s)
- Renlan Wu
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- Model Animal Research Center Nanjing University Nanjing China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- The School of Basic Medical Sciences Southwest Medical University Sichuan China
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Hongyu Jiang
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- The School of Basic Medical Sciences Southwest Medical University Sichuan China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen University School of Medicine Shenzhen China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- The School of Basic Medical Sciences Southwest Medical University Sichuan China
- Model Animal Research Center Nanjing University Nanjing China
| |
Collapse
|
7
|
Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27:7247-7270. [PMID: 34876787 PMCID: PMC8611211 DOI: 10.3748/wjg.v27.i42.7247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
Collapse
Affiliation(s)
- Garance Coquant
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Sandrine Pham
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Nathan Grellier
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- Department of Gastroenterology and Nutrition, Saint-Antoine Hospital, APHP, Paris 75012, France
| |
Collapse
|
8
|
Yuan X, Tang H, Wu R, Li X, Jiang H, Liu Z, Zhang Z. Short-Chain Fatty Acids Calibrate RARα Activity Regulating Food Sensitization. Front Immunol 2021; 12:737658. [PMID: 34721398 PMCID: PMC8551578 DOI: 10.3389/fimmu.2021.737658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Gut-microbiota dysbiosis links to allergic diseases. The mechanism of the exacerbation of food allergy caused by gut-microbiota dysbiosis remains unknown. Regulation of retinoic acid receptor alpha (RARα) signaling is critical for gut immune homeostasis. Here we clarified that RARα in dendritic cells (DCs) promotes Th2 cell differentiation. Antibiotics treatment stimulates retinoic acid signaling in mucosal DCs. We found microbiota metabolites short-chain fatty acids (SCFAs) maintain IGF-1 levels in serum and mesenteric lymph nodes. The IGF-1/Akt pathway is essential for regulating the transcription of genes targeted by RARα. And RARα in DCs affects type I interferon (IFN-I) responses through regulating transcription of IFN-α. Our study identifies SCFAs crosstalk with RARα in dendritic cells as a critical modulator that plays a core role in promoting Th2 cells differentiation at a state of modified/disturbed microbiome.
Collapse
Affiliation(s)
- Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Renlan Wu
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hongyu Jiang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Retinoids in hematology: a timely revival? Blood 2021; 137:2429-2437. [PMID: 33651885 DOI: 10.1182/blood.2020010100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
The retinoic acid receptors (RARA, RARB, and RARG) are ligand-regulated nuclear receptors that act as transcriptional switches. These master genes drew significant interest in the 1990s because of their key roles in embryogenesis and involvement in a rare malignancy, acute promyelocytic leukemia (APL), in which the RARA (and very rarely, RARG or RARB) genes are rearranged, underscoring the central role of deregulated retinoid signaling in leukemogenesis. Several recent provocative observations have revived interest in the roles of retinoids in non-APL acute myeloid leukemia (AML), as well as in normal hematopoietic differentiation. We review the role of retinoids in hematopoiesis, as well as in the treatment of non-APL AMLs. From this perspective, broader uses of retinoids in the management of hematopoietic tumors are discussed.
Collapse
|