1
|
Yang X, Huo D, Su J, He Z. Portable Multi-Layer Capsule-Shaped Triboelectric Generator for Human Motion Energy Harvesting. MICROMACHINES 2024; 15:852. [PMID: 39064363 PMCID: PMC11278884 DOI: 10.3390/mi15070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This paper introduces a novel portable multi-layer capsule-shaped triboelectric generator (CP-TEG), aimed at optimizing the performance of triboelectric generator technology in terms of miniaturization, modularity, and efficient energy collection. The CP-TEG utilizes a unique multi-layer, stacked structure and an elliptical cylindrical design to increase the effective frictional area and enhance power generation efficiency. Its portable design allows for flexible application in various environments and scenarios. Experimental results demonstrate that the CP-TEG can maintain stable and efficient electrical output under various motion amplitudes and frequencies, and it shows good adaptability to the direction of motion excitation. With a motion amplitude of 7 cm and a frequency of 1.94 Hz, the CP-TEG can charge a 220 μF capacitor to 1.3 V within 100 s. The power generation unit's output voltage and current are more than three times higher than that of traditional single-layer contact-separation mode triboelectric devices. Particularly, its performance in harvesting energy from human motion underscores its effectiveness as a renewable energy solution for wearable devices. Through its innovative structural design and optimized working mechanism, the CP-TEG demonstrates excellent energy collection efficiency and application potential, offering new options for sustainable energy solutions and development.
Collapse
Affiliation(s)
- Xinglin Yang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (D.H.); (J.S.); (Z.H.)
| | | | | | | |
Collapse
|
2
|
Jiao P, Wang ZL, Alavi AH. Maximizing Triboelectric Nanogenerators by Physics-Informed AI Inverse Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308505. [PMID: 38062801 DOI: 10.1002/adma.202308505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Indexed: 02/02/2024]
Abstract
Triboelectric nanogenerators offer an environmentally friendly approach to harvesting energy from mechanical excitations. This capability has made them widely sought-after as an efficient, renewable, and sustainable energy source, with the potential to decrease reliance on traditional fossil fuels. However, developing triboelectric nanogenerators with specific output remains a challenge mainly due to the uncertainties associated with their complex designs for real-life applications. Artificial intelligence-enabled inverse design is a powerful tool to realize performance-oriented triboelectric nanogenerators. This is an emerging scientific direction that can address the concerns about the design and optimization of triboelectric nanogenerators leading to a next generation nanogenerator systems. This perspective paper aims at reviewing the principal analysis of triboelectricity, summarizing the current challenges of designing and optimizing triboelectric nanogenerators, and highlighting the physics-informed inverse design strategies to develop triboelectric nanogenerators. Strategic inverse design is particularly discussed in the contexts of expanding the four-mode analytical models by physics-informed artificial intelligence, discovering new conductive and dielectric materials, and optimizing contact interfaces. Various potential development levels of artificial intelligence-enhanced triboelectric nanogenerators are delineated. Finally, the potential of physics-informed artificial intelligence inverse design to propel triboelectric nanogenerators from prototypes to multifunctional intelligent systems for real-life applications is discussed.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
3
|
Lv Q, Ma X, Zhang C, Han J, He S, Liu K, Jiang S. Nanocellulose-based nanogenerators for sensor applications: A review. Int J Biol Macromol 2024; 259:129268. [PMID: 38199536 DOI: 10.1016/j.ijbiomac.2024.129268] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
With the rapid development of the Internet of Things, nanogenerator as a green energy collection technology has attracted great attention in various fields. Specifically, the natural renewable nanocellulose as a raw material can significantly improve the environmental friendliness of the nanocellulose-based nanogenerators, which also makes the nanocellulose based nanogenerators expected to further develop in areas such as wearable devices and sensor networks. This paper mainly reports the application of nanocellulose in nanogenerator, focusing on the sensor. The types, sources and preparation methods of nanocellulose are briefly introduced. At the same time, the special structure of nanocellulose highlights the advantages of nanocellulose in nanogenerators. Then, the application of nanocellulose-based nanogenerators in sensors is introduced. Finally, the future development prospects and shortcomings of this nanogenerator are discussed.
Collapse
Affiliation(s)
- Qiqi Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kunming Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
5
|
Wu L, Xue P, Fang S, Gao M, Yan X, Jiang H, Liu Y, Wang H, Liu H, Cheng B. Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. MATERIALS HORIZONS 2024; 11:341-362. [PMID: 37901942 DOI: 10.1039/d3mh00614j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Triboelectric nanogenerators (TENGs) have been utilized in a wide range of applications, including smart wearable devices, self-powered sensors, energy harvesting, and high-voltage power sources. The surface morphology and structure of TENGs play a critical role in their output performance. In this review, we analyze the working mechanism of TENGs with the aim to improve their output performance and systematically summarize the morphological engineering and structural design strategies for TENGs. Additionally, we present the emerging applications of TENGs with specific structures and surfaces. Finally, we discuss the potential future development and industrial application of TENGs. By deeply exploring the surface and structural design strategy of high-performance TENGs, it is conducive to further promote the application of TENGs in actual production. We hope that this review provides insights and guidance for the morphological and structural design of TENGs in the future.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shangdong 252000, P. R. China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shize Fang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaojie Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hong Jiang
- Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co, Jiangxi 335500, P. R. China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huihui Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Jung Y, Jeong S, Ahn J, Lee J, Ko SH. High Efficiency Breathable Thermoelectric Skin Using Multimode Radiative Cooling/Solar Heating Assisted Large Thermal Gradient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304338. [PMID: 37649174 DOI: 10.1002/smll.202304338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Indexed: 09/01/2023]
Abstract
This study proposes a Janus structure-based stretchable and breathable thermoelectric skin with radiative cooling (RC) and solar heating (SH) functionalities for sustainable energy harvesting. The challenge of the wearable thermoelectric generator arises from the small temperature difference. Thus, this dual-sided structure maximizes the thermal gradient between the body and the surrounding environment, unlike the previous works that rather concentrate on the efficiency of the thermoelectric generator itself. The Janus structure allows the device to switch to the other mode, optimizing electricity generation from a given weather condition. For these functionalities, for the first time, boron nitride-polydimethylsiloxane (BP) and graphene nanoplatelet-polydimethylsiloxane (GP) nanofiber (NF) are developed as substrates. The BP NF generates the RC capability of ΔTcooling = 4 °C, and the high solar absorbance of the GP NF enables it to be photothermally heated. The flip-overable thermoelectric skin (FoTES) achieves a maximum power output (Pmax ) of 5.73 µW cm-2 in RC mode, surpassing SH mode by 5.55 µW cm-2 in the morning. In the afternoon, it generates a Pmax of 18.59 µW cm-2 in SH mode, outperforming RC mode by 15.56 µW cm-2 . This work contributes to the advancement of wearable electronics, offering a sustainable power source in a wearable form.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seongmin Jeong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Mao Y, Wen Y, Liu B, Sun F, Zhu Y, Wang J, Zhang R, Yu Z, Chu L, Zhou A. Flexible wearable intelligent sensing system for wheelchair sports monitoring. iScience 2023; 26:108126. [PMID: 37915601 PMCID: PMC10616312 DOI: 10.1016/j.isci.2023.108126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
The application of wearable intelligent systems toward human-computer interaction has received widespread attention. It is still desirable to conveniently promote health and monitor sports skills for disabled people. Here, a wireless intelligent sensing system (WISS) has been developed, which includes two ports of wearable flexible triboelectric nanogenerator (WF-TENG) sensing and an upper computer digital signal receiving intelligent processing. The WF-TENG sensing port is connected by the WF-TENG sensor and flexible printed circuit (FPC). Due to its flexibility, the WF-TENG sensing port can be freely adhered on the surface of human skin. The WISS can be applied to entertainment reaction training based on human-computer interaction, and to the technical judgment and analysis on wheelchair curling sport. This work provides new application opportunities for wearable devices in the fields of sports skills monitoring, sports assistive devices and health promotion for disabled people.
Collapse
Affiliation(s)
- Yupeng Mao
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Yuzhang Wen
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Bing Liu
- School of Martial Arts and Dance, Shenyang Sport University, Shenyang 110102, China
| | - Fengxin Sun
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Yongsheng Zhu
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Junxiao Wang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Rui Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Zuojun Yu
- China Ice Sports College, Beijing Sport University, Beijing 100084, China
| | - Liang Chu
- Institute of Carbon Neutrality and New Energy & School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Aiguo Zhou
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
8
|
Kalaš D, Soukup R, Řeboun J, Radouchová M, Rous P, Hamáček A. Novel SMD Component and Module Interconnection and Encapsulation Technique for Textile Substrates Using 3D Printed Polymer Materials. Polymers (Basel) 2023; 15:polym15112526. [PMID: 37299324 DOI: 10.3390/polym15112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, a range of sensors and actuators can be realized directly in the structure of textile substrates using metal-plated yarns, metal-filament yarns, or functionalized yarns with nanomaterials, such as nanowires, nanoparticles, or carbon materials. However, the evaluation or control circuits still depend upon the use of semiconductor components or integrated circuits, which cannot be currently implemented directly into the textiles or substituted by functionalized yarns. This study is focused on a novel thermo-compression interconnection technique intended for the realization of the electrical interconnection of SMD components or modules with textile substrates and their encapsulation in one single production step using commonly widespread cost-effective devices, such as 3D printers and heat-press machines, intended for textile applications. The realized specimens are characterized by low resistance (median 21 mΩ), linear voltage-current characteristics, and fluid-resistant encapsulation. The contact area is comprehensively analyzed and compared with the theoretical Holm's model.
Collapse
Affiliation(s)
- David Kalaš
- Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Radek Soukup
- Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Jan Řeboun
- Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Michaela Radouchová
- Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Pavel Rous
- Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Aleš Hamáček
- Faculty of Electrical Engineering, University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| |
Collapse
|
9
|
Kim DE, Shin S, Zhang G, Choi D, Jung J. Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures. RSC Adv 2023; 13:11142-11149. [PMID: 37056967 PMCID: PMC10086674 DOI: 10.1039/d3ra01032e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Currently, major energy sources such as fossil fuels and nuclear fuels face various issues such as resource depletion, environmental pollution, and climate change. Therefore, there is increasing interest in technology that converts mechanical, heat, vibration, and solar energy discarded in nature and daily life into electrical energy. As various wearable devices have been released in recent years, wearable energy-harvesting technologies capable of self-power generation have garnered attention as next-generation technologies. Among these, triboelectric nanogenerators (TENGs), which efficiently convert mechanical energy into electrical energy, are being actively studied. Textile-based TENG (T-TENGs) are one of the most promising energy harvesters for realizing wearable devices and self-powered smart clothing. This device exhibited excellent wearability, biocompatibility, flexibility, and breathability, making it ideal for powering wearable electronic devices. Most existing T-TENGs generate energy only in the intentional vertical contact mode and exhibit poor durability against twisting or bending deformation with metals. In this study, we propose a sandwich-structured T-TENG (STENG) with stretchability and flexibility for use in wearable energy harvesting. The STENG is manufactured with a structure that can maintain elasticity and generate a maximum voltage of 361.4 V and current of 58.2 μA based on the contact between the upper and lower triboelectric charges. In addition, it exhibited a fast response time and excellent durability over 5000 cycles of repetitive pushing motions. Consequently, the STENG could operate up to 135 light-emitting diodes (with output) without an external power source, and as an energy harvester, it could successfully harvest energy for various operations. These findings provide textile-based power sources with practical applications in e-textiles and self-powered electronics.
Collapse
Affiliation(s)
- Da Eun Kim
- AI Healthcare Research Center, Department of IT Fusion Technology, Chosun University Chosundaegil 146 (Seo-seok-dong), Dong-gu Gwangju 61452 South Korea
| | - Siho Shin
- AI Healthcare Research Center, Department of IT Fusion Technology, Chosun University Chosundaegil 146 (Seo-seok-dong), Dong-gu Gwangju 61452 South Korea
| | - Gengjia Zhang
- AI Healthcare Research Center, Department of IT Fusion Technology, Chosun University Chosundaegil 146 (Seo-seok-dong), Dong-gu Gwangju 61452 South Korea
| | - Daegil Choi
- AI Healthcare Research Center, Department of IT Fusion Technology, Chosun University Chosundaegil 146 (Seo-seok-dong), Dong-gu Gwangju 61452 South Korea
| | - Jaehyo Jung
- AI Healthcare Research Center, Department of IT Fusion Technology, Chosun University Chosundaegil 146 (Seo-seok-dong), Dong-gu Gwangju 61452 South Korea
| |
Collapse
|
10
|
Ma Z, Cao X, Wang N. Biophysical Sensors Based on Triboelectric Nanogenerators. BIOSENSORS 2023; 13:bios13040423. [PMID: 37185498 PMCID: PMC10136238 DOI: 10.3390/bios13040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Triboelectric nanogenerators (TENGs) can not only collect mechanical energy around or inside the human body and convert it into electricity but also help monitor our body and the world by providing interpretable electrical signals during energy conversion, thus emerging as an innovative medical solution for both daily health monitoring and clinical treatment and bringing great convenience. This review tries to introduce the latest technological progress of TENGs for applications in biophysical sensors, where a TENG functions as a either a sensor or a power source, and in some cases, as both parts of a self-powered sensor system. From this perspective, this review begins from the fundamental working principles and then concisely illustrates the recent progress of TENGs given structural design, surface modification, and materials selection toward output enhancement and medical application flexibility. After this, the medical applications of TENGs in respiratory status, cardiovascular disease, and human rehabilitation are covered in detail, in the form of either textile or implantable parts for pacemakers, nerve stimulators, and nerve prostheses. In addition, the application of TENGs in driving third-party medical treatment systems is introduced. Finally, shortcomings and challenges in TENG-based biophysical sensors are highlighted, aiming to provide deeper insight into TENG-based medical solutions for the development of TENG-based self-powered electronics with higher performance for practical applications.
Collapse
Affiliation(s)
- Zimeng Ma
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
11
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
12
|
Chen Y, Ling Y, Yin R. Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:9716. [PMID: 36560085 PMCID: PMC9781987 DOI: 10.3390/s22249716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
With the demand of a sustainable, wearable, environmentally friendly energy source, triboelectric nanogenerators (TENGs) were developed. TENG is a promising method to convert mechanical energy from motion into electrical energy. The combination of textile and TENG successfully enables wearable, self-driving electronics and sensor systems. As the primary unit of textiles, fiber and yarn become the focus of research in designing of textile-TENGs. In this review, we introduced the preparation, structure, and design strategy of fiber/yarn TENGs in recent research. We discussed the structure design and material selection of fiber/yarn TENGs according to the different functions it realizes. The fabrication strategy of fiber/yarn TENGs into textile-TENG are provided. Finally, we summarize the main applications of existing textile TENGs and give forward prospects for their subsequent development.
Collapse
Affiliation(s)
| | | | - Rong Yin
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Walden R, Kumar C, Mulvihill DM, Pillai SC. Opportunities and Challenges in Triboelectric Nanogenerator (TENG) based Sustainable Energy Generation Technologies: A Mini-Review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Zhang Y, Li Y, Cheng R, Shen S, Yi J, Peng X, Ning C, Dong K, Wang ZL. Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators. Research (Wash D C) 2022; 2022:9809406. [PMID: 35211679 PMCID: PMC8837904 DOI: 10.34133/2022/9809406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The importance of ocean exploration and underwater monitoring is becoming vital, due to the abundant biological, mineral, energy, and other resources in the ocean. Here, a self-powered underwater cable-based triboelectric nanogenerator (TENG) is demonstrated for underwater monitoring of mechanical motion/triggering, as well as searching and rescuing in the sea. Using a novel double-layer winding method combined with ferroelectric polarization, a self-powered cable-structured sensor with a stable electrical output has been manufactured, which can accurately respond to a variety of external mechanical stimuli. A self-powered cable sensing network woven using smart cables can comprehensively transmit information, such as the plane position and dive depth of a submersible. More precisely, it can analyze its direction of movement, speed, and path, along with transmitting information such as the submersible's size and momentum. The developed self-powered sensor based on the cable-based TENG not only has low cost and simple structure but also exhibits working accuracy and stability. Finally, the proposed work provides new ideas for future seabed exploration and ocean monitoring.
Collapse
Affiliation(s)
- Yihan Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Li
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Shen
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jia Yi
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiao Peng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.,CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, China.,School of Material Science and Engineering, Georgia Institute of Technology Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Gunawardhana KR, Wanasekara ND, Wijayantha KG, Dharmasena RDI. Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:678-688. [PMID: 35573892 PMCID: PMC9097478 DOI: 10.1021/acsaelm.1c01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
Triboelectric nanogenerators (TENGs) are foreseen as a leading candidate to harvest mechanical energy from ambient sources such as human body movements. However, wearable TENGs, which are used for this purpose, require adequate wearability for long durations, in addition to sufficient electrical outputs. So far, it has been difficult to achieve this through the predominantly plastic-based wearable TENGs constructed using conventional nanogenerator fabrication methods. This Article evaluates the use of textile materials and scalable fabrication techniques to develop TENGs targeting balanced electrical and wearable properties. The fabrication process is conducted using yarn-coating, dip-coating, and screen-printing techniques, which are common textile manufacturing methods, and converted into fabrics using flat-bed knitting, resulting in TENGs with improved wearable and electrical performances. The electrical properties (open circuit voltage (V oc), short circuit current (I sc), and short circuit charge (Q sc)) and wearable properties (air permeability, stretch and recovery, and moisture management) of these structures are evaluated, during which the yarn-coated TENG resulted in maximum electrical outputs recording V oc ≈ 35 V, I sc ≈ 60 nA, and Q sc ≈ 12 nC, under mild excitations. In terms of wearability, the yarn-coated TENG again performed exceptionally during the majority of tests providing the best moisture management, air permeability (101 cm3/cm2/s), and stretch (∼75%), thus proving its suitability for wearable TENG applications.
Collapse
Affiliation(s)
- K. R.
Sanjaya Gunawardhana
- Department
of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
| | - Nandula D. Wanasekara
- Department
of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
| | - Kahagala Gamage Wijayantha
- Energy
Research Laboratory, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - R. D. Ishara Dharmasena
- Department
of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
- Wolfson
School of Mechanical Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
16
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|
17
|
Zheng Y, Omar R, Hu Z, Duong T, Wang J, Haick H. Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications. ACS Biomater Sci Eng 2021; 9:2087-2102. [PMID: 34961316 DOI: 10.1021/acsbiomaterials.1c01106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sustainable operation of wearable sensors plays an important role in continuous and longtime health monitoring. Conventional batteries, which are bulky and rigid, do not satisfy these requirements and, rather, cause additional economic burdens and environmental problems by regular replacement of power sources. This article provides a review on an alternative solution in the form of self-powered devices that can harvest energy from the surrounding environment to support the operation of the wearable sensor. The Review starts with an introduction of the self-powered triboelectric nanosensors (TENSs) and its two independent modules: the energy harvester and the sensing module. The Review continues with the TENS-related bioinspired designs for wearable applications, while providing a bird's-eye view of their characteristics and applications. The ongoing challenges and prospects for providing personal healthcare with self-powered TENS are presented and discussed.
Collapse
Affiliation(s)
- Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhipeng Hu
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tuan Duong
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.,School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an 710126, P. R. China
| |
Collapse
|
18
|
Xiao X, Xiao X, Nashalian A, Libanori A, Fang Y, Li X, Chen J. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv Healthc Mater 2021; 10:e2100975. [PMID: 34263555 DOI: 10.1002/adhm.202100975] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Wound healing, one of the most complex processes in the human body, involves the spatial and temporal synchronization of a variety of cell types with distinct roles. Slow or nonhealing skin wounds have potentially life-threatening consequences, ranging from infection to scar, clot, and hemorrhage. Recently, the advent of triboelectric nanogenerators (TENGs) has brought about a plethora of self-powered wound healing opportunities, owing to their pertinent features, including wide range choices of constitutive biocompatible materials, simple fabrication, portable size, high output power, and low cost. Herein, a comprehensive review of TENGs as an emerging biotechnology for wound healing applications is presented and covered from three unique aspects: electrical stimulation, antibacterial activity, and drug delivery. To provide a broader context of TENGs applicable to wound healing applications, state-of-the-art designs are presented and discussed in each section. Although some challenges remain, TENGs are proving to be a promising platform for human-centric therapeutics in the era of Internet of Things. Consequently, TENGs for wound healing are expected to provide a new solution in wound management and play an essential role in the future of point-of-care interventions.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Xiao Xiao
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Ardo Nashalian
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Alberto Libanori
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Yunsheng Fang
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Xiyao Li
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Jun Chen
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| |
Collapse
|
19
|
Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology. MICROSYSTEMS & NANOENGINEERING 2021; 7:25. [PMID: 34567739 PMCID: PMC8433392 DOI: 10.1038/s41378-021-00248-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.
Collapse
Affiliation(s)
- Chen Xu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Song
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Haixia Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, China
| |
Collapse
|
20
|
Huang P, Wen DL, Qiu Y, Yang MH, Tu C, Zhong HS, Zhang XS. Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems. MICROMACHINES 2021; 12:158. [PMID: 33562717 PMCID: PMC7915559 DOI: 10.3390/mi12020158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/16/2023]
Abstract
In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong-Sheng Zhong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (P.H.); (D.-L.W.); (Y.Q.); (M.-H.Y.); (C.T.)
| | - Xiao-Sheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (P.H.); (D.-L.W.); (Y.Q.); (M.-H.Y.); (C.T.)
| |
Collapse
|
21
|
He T, Guo X, Lee C. Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. iScience 2021; 24:101934. [PMID: 33392482 PMCID: PMC7773596 DOI: 10.1016/j.isci.2020.101934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Body sensor network (bodyNET) offers possibilities for future disease diagnosis, preventive health care, rehabilitation, and treatment. However, the eventual realization demands reliable and sustainable power sources. The flourishing energy harvesters (EHs) have provided prominent techniques for practically addressing the concurrent energy issue. Targeting for a specific energy source, wearable EHs with a sole conversion mechanism are well investigated. Hybrid EHs integrating different effects for a single source or multi-sources are attaining growing attention, for they provide another degree of freedom concerning a higher-level energy utility. Merging EHs with other functional electronics, diversified functional self-sustainable systems are developed, paving the way for the accomplishment of bodyNET. This review introduces the evolution of wearable EHs from a single effect to hybridized mechanisms for multiple energy sources and wearable to implantable self-sustainable systems. Last, we provide our perspectives on the future development of hybrid EHs to be more competitive with conventional batteries.
Collapse
Affiliation(s)
- Tianyiyi He
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Xinge Guo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
22
|
Tsikriteas ZM, Roscow JI, Bowen CR, Khanbareh H. Flexible ferroelectric wearable devices for medical applications. iScience 2021; 24:101987. [PMID: 33490897 PMCID: PMC7811144 DOI: 10.1016/j.isci.2020.101987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.
Collapse
Affiliation(s)
- Zois Michail Tsikriteas
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - James I. Roscow
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris R. Bowen
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Hamideh Khanbareh
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
23
|
Shen S, Xiao X, Xiao X, Chen J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun (Camb) 2021; 57:5871-5879. [DOI: 10.1039/d1cc02091a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triboelectric nanogenerator emerges as a cost-effective biotechnology that could convert the subtle skin deformation caused by arterial pressure fluctuation into high voltage output, creating electrical signals with an extremely high signal-to-noise ratio for high-fidelity continuous pulse waveform monitoring.
Collapse
Affiliation(s)
- Sophia Shen
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| | - Xiao Xiao
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| | - Xiao Xiao
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| | - Jun Chen
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| |
Collapse
|
24
|
Pan M, Yuan C, Liang X, Zou J, Zhang Y, Bowen C. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. iScience 2020; 23:101682. [PMID: 33163937 PMCID: PMC7607424 DOI: 10.1016/j.isci.2020.101682] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The triboelectric nanogenerator (TENG) and piezoelectric nanogenerator (PENG) are two recently developed technologies for effective harvesting of ambient mechanical energy for the creation of self-powered systems. The advantages of TENGs and PENGs which include large open-circuit output voltage, low cost, ease of fabrication, and high conversion efficiency enable their application as new flexible sensors, wearable devices, soft robotics, and machines. This perspective provides an overview of the current state of the art in triboelectric and piezoelectric devices that are used as self-powered sensors and energy harvesters for soft robots and machines; hybrid approaches that combine the advantages of both mechanisms are also discussed. To improve system performance and efficiency, the potential of providing self-powered soft systems with a degree of multifunctionality is investigated. This includes optical sensing, transparency, self-healing, water resistance, photo-luminescence, or an ability to operate in hostile environments such as low temperature, high humidity, or high strain/stretch. Finally, areas for future research directions are identified.
Collapse
Affiliation(s)
- Min Pan
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
| | - Chenggang Yuan
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
| | - Xianrong Liang
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
- National Engineering Research Centre of Novel Equipment for Polymer Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Yan Zhang
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 China
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
| |
Collapse
|