1
|
Ohno M, Tani H, Tohyama S. Development and application of 3D cardiac tissues derived from human pluripotent stem cells. Drug Metab Pharmacokinet 2025; 60:101049. [PMID: 39847979 DOI: 10.1016/j.dmpk.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
Recently human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate drug responses for cardiotoxicity testing and disease modeling. Moreover, three-dimensional (3D) cardiac models, such as engineered heart tissues (EHTs) developed by bioengineering approaches, and cardiac spheroids (CSs) formed by spherical aggregation of hPSC-CMs, have been established as useful tools for drug discovery and transplantation. These 3D models overcome many of the shortcomings of conventional 2D hPSC-CMs, such as immaturity of the cells. Cardiac organoids (COs), like other organs, have also been studied to reproduce structures that resemble a heart in vivo more closely and optimize various culture conditions. Heart-on-a-chip (HoC) developed by a microfluidic chip-based technology that enables real-time monitoring of contraction and electrical activity, provides multifaceted information that is essential for capturing natural tissue development in vivo. Recently, 3D experimental systems have been developed to study organ interactions in vitro. This review aims to discuss the developments and advancements of hPSC-CMs and 3D cardiac tissues.
Collapse
Affiliation(s)
- Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Prevention Center, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Yang S, Nan B, Shen H. Integrative Proteomics-Metabolomics of In Vitro Degeneration of Cardiovascular Cell Lines. Appl Biochem Biotechnol 2025; 197:216-240. [PMID: 39110328 DOI: 10.1007/s12010-024-05004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Long-term cell culture is an important biological approach but is also characterized by degeneration in cellular morphology, proliferation rate, and function. To explore this phenomenon in a systematic way, we conducted an integrative proteomics-metabolomics measurement of two cardiovascular cell lines of AC16 and HUVECs. The 18th culturing passages, i.e., G18, showed as the turning points by cell metabolism profiles, in which the metabolomic changes demonstrated the dysfunction of energy, amino acid, and ribonucleotide metabolism metabolic pathways. Although active protein networks showed mitochondria abundance AC16 and oxidative/nitrative sensitive HUVECs indicated the different degeneration patterns, the G18 and G30 proteomics evidenced the senescence by processes of signal transduction, signaling by interleukins, programmed cell death, cellular responses to stimuli, cell cycle, mRNA splicing, and translation. Some crucial proteins (RPS8, HNRNPR, SOD2, LMNB1, PSMA1, DECR1, GOT2, OGDH, PNP, CBS, ATIC, and IMPDH2) and metabolites (L-glutamic acid, guanine, citric acid, guanosine, guanosine diphosphate, glucose 6-phosphate, and adenosine) that contributed to the dysregulation of cellular homeostasis are identified by using the integrative proteomic-metabolomic analysis, which highlighted the increased cellular instability. These findings illuminate some vital molecular processes when culturing serial passages, which contribute holistic viewpoints of in vitro biology with emphasis on the replicative senescence of cardiovascular cells.
Collapse
Affiliation(s)
- Shijing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang'an Nan Road, Xiamen, 361102, People's Republic of China
| | - Bingru Nan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang'an Nan Road, Xiamen, 361102, People's Republic of China.
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.
| |
Collapse
|
3
|
Soma Y, Tohyama S, Kubo A, Yamasaki T, Kabasawa N, Haga K, Tani H, Morita-Umei Y, Umei TC, Sekine O, Nakamura M, Moriwaki T, Tanosaki S, Someya S, Kawai Y, Ohno M, Kishino Y, Kanazawa H, Fujita J, Zhang MR, Suematsu M, Fukuda K, Ieda M. Metabolic changes of human induced pluripotent stem cell-derived cardiomyocytes and teratomas after transplantation. iScience 2024; 27:111234. [PMID: 39569381 PMCID: PMC11576393 DOI: 10.1016/j.isci.2024.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Cardiac regenerative therapy using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has been applied in clinical settings. Herein, we aimed to investigate the in vivo metabolic profiles of hiPSC-CM grafts. RNA sequencing and imaging mass spectrometry were performed in the present study, which revealed that hiPSC-CM grafts matured metabolically over time after transplantation. Glycolysis, which was active in the hiPSC-CM grafts immediately after transplantation, shifted to fatty acid oxidation. Additionally, we examined the metabolic profile of teratomas that may form when non-CMs, including undifferentiated human induced pluripotent stem cells (hiPSCs), remain in transplanted cells. The upregulated gene expression of amino acid transporters and the high accumulation of amino acids, such as methionine and aromatic amino acids, were observed in the teratomas. We show that subcutaneous teratomas derived from undifferentiated hiPSCs can be detected in vivo using positron emission tomography with [18F]fluorophenylalanine ([18F]fPhe). These results provided insights into the clinical application of cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Noriko Kabasawa
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Heartseed Inc, Minato-ku, Tokyo 105-0023, Japan
| | - Kotaro Haga
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Center for Prevention Medicine, Keio University School of Medicine, Minato-ku, Tokyo 106-0041, Japan
| | - Yuika Morita-Umei
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tomohiko C Umei
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Nakamura
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taijun Moriwaki
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Someya
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiovascular Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- WPI-Bio2Q, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Central Institute for Experimental Medicine and Life Science, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Heartseed Inc, Minato-ku, Tokyo 105-0023, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Masuda A, Kurashina Y, Tani H, Soma Y, Muramatsu J, Itai S, Tohyama S, Onoe H. Maturation of Human iPSC-Derived Cardiac Microfiber with Electrical Stimulation Device. Adv Healthc Mater 2024; 13:e2303477. [PMID: 38768494 DOI: 10.1002/adhm.202303477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Here an electrical stimulation system is described for maturing microfiber-shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber-shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.
Collapse
Affiliation(s)
- Akari Masuda
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Jumpei Muramatsu
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shun Itai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, 1-1 Seiryomachi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo, 144-0041, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
5
|
Kobayashi H, Tohyama S, Ichimura H, Ohashi N, Chino S, Soma Y, Tani H, Tanaka Y, Yang X, Shiba N, Kadota S, Haga K, Moriwaki T, Morita-Umei Y, Umei TC, Sekine O, Kishino Y, Kanazawa H, Kawagishi H, Yamada M, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Regeneration of Nonhuman Primate Hearts With Human Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Circulation 2024; 150:611-621. [PMID: 38666382 DOI: 10.1161/circulationaha.123.064876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/21/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Noburo Ohashi
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Xiao Yang
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
- Kanagawa Institute of Industrial Science and Technology, Japan (Y.M.-U.)
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Takafumi Naito
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| |
Collapse
|
6
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
7
|
Tan Y, Li Y, Ren L, Fu H, Li Q, Liu S. Integrative proteome and metabolome analyses reveal molecular basis underlying growth and nutrient composition in the Pacific oyster, Crassostrea gigas. J Proteomics 2024; 290:105021. [PMID: 37838097 DOI: 10.1016/j.jprot.2023.105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
In order to comprehend the molecular basis of growth, nutrient composition, and color pigmentation in oysters, comparative proteome and metabolome analyses of two selectively bred oyster strains with contrasting growth rate and shell color were used in this study. A total of 289 proteins and 224 metabolites were identified differentially expressed between the two strains. We identified a series of specifically enriched functional clusters implicated in protein biosynthesis (RPL4, MRPS7, and CARS), fatty acid metabolism (ACSL5, PEX3, ACOXI, CPTIA, FABP6, and HSD17B12), energy metabolism (FH, PPP1R7, CLAM2, and RGN), cell proliferation (MYB, NFYC, DOHH, TOP2a, SMARCA5, and SMARCC2), material transport (ABCB1, ABCB8, VPS16, and VPS33a), and pigmentation (RDH7, RDH13, Retsat, COX15, and Cyp3a9). Integrated proteome and metabolome analyses indicate that fast-growing strain utilize energy-efficient mechanisms of ATP generation while promoting protein and polyunsaturated fatty acid synthesis, activating the cell cycle to increase cell proliferation and thus promoting their biomass increase. These results uncovered molecular mechanisms underlying growth regulation, nutrition quality, and pigmentation and provided candidate biomarkers for molecular breeding in oysters. SIGNIFICANCE: Rapid growth has always been the primary breeding objective to increase the production profits of Pacific oyster (Crassostrea gigas), while favorable nutritional quality and beautiful color add commercial value. In recent years, proteomic and metabolomic techniques have been widely used in marine organisms, although these techniques are seldom utilized to study oyster growth and development. In this study, two C. gigas strains with contrasted phenotypes in growth and shell color provided an ideal model for unraveling the molecular basis of growth and nutrient composition through a comparison of the proteome and metabolome. Since proteins and metabolites are the critical undertakers and the end products of cellular regulatory processes, identifying the differentially expressed proteins and metabolites would allow for discovering biomarkers and pathways that were implicated in cell growth, proliferation, and other critical functions. This work provides valuable resources in assistance with molecular breeding of oyster strains with superior production traits of fast-growth and high-quality nutrient value.
Collapse
Affiliation(s)
- Ying Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Moriwaki T, Tani H, Haga K, Morita-Umei Y, Soma Y, Umei TC, Sekine O, Takatsuna K, Kishino Y, Kanazawa H, Fujita J, Fukuda K, Tohyama S, Ieda M. Scalable production of homogeneous cardiac organoids derived from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100666. [PMID: 38113855 PMCID: PMC10753388 DOI: 10.1016/j.crmeth.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Three-dimensional (3D) cultures are known to more closely mimic in vivo conditions compared with 2D cultures. Cardiac spheroids (CSs) and organoids (COs) are useful for 3D tissue engineering and are advantageous for their simplicity and mass production for regenerative therapy and drug discovery. Herein, we describe a large-scale method for producing homogeneous human induced pluripotent stem cell (hiPSC)-derived CSs (hiPSC-CSs) and COs without scaffolds using a porous 3D microwell substratum with a suction system. Our method has many advantages, such as increased efficiency and improved functionality, homogeneity, and sphericity of hiPSC-CSs. Moreover, we have developed a substratum on a clinically relevant large scale for regenerative therapy and have succeeded in producing approximately 40,000 hiPSC-CSs with high sphericity at once. Furthermore, we efficiently produced a fused CO model consisting of hiPSC-derived atrial and ventricular cardiomyocytes localized on opposite sides of one organoid. This method will facilitate progress toward hiPSC-based clinical applications.
Collapse
Affiliation(s)
- Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki, Kanagawa, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kaworu Takatsuna
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
9
|
Kurashina Y, Fukada K, Itai S, Akizuki S, Sato R, Masuda A, Tani H, Fujita J, Fukuda K, Tohyama S, Onoe H. Hydrogel-Sheathed hiPSC-Derived Heart Microtissue Enables Anchor-Free Contractile Force Measurement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301831. [PMID: 37849230 PMCID: PMC10724413 DOI: 10.1002/advs.202301831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Indexed: 10/19/2023]
Abstract
In vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.
Collapse
Affiliation(s)
- Yuta Kurashina
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
- Division of Advanced Mechanical Systems EngineeringInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 NakachoKoganei‐shiTokyo184–8588Japan
| | - Keisuke Fukada
- School of Integrated Design EngineeringGraduate School of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Shun Itai
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
- Division of Medical ScienceGraduate school of Biomedical EngineeringTohoku University1‐1 Seiryomachi, Aoba‐kuSendaiMiyagi980–8574Japan
| | - Shuichi Akizuki
- Department of Mechanical and Systems Engineering, School of EngineeringChukyo University101–2 Yagoto Honmachi, Showa‐kuNagoyaAichi466–8666Japan
| | - Ryo Sato
- School of Integrated Design EngineeringGraduate School of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Akari Masuda
- School of Integrated Design EngineeringGraduate School of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Hidenori Tani
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Jun Fujita
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
- Department of Pathology & ImmunologyBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| | - Keiichi Fukuda
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Shugo Tohyama
- Department of CardiologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Hiroaki Onoe
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| |
Collapse
|
10
|
Tu WB, Christofk HR, Plath K. Nutrient regulation of development and cell fate decisions. Development 2023; 150:dev199961. [PMID: 37260407 PMCID: PMC10281554 DOI: 10.1242/dev.199961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.
Collapse
Affiliation(s)
- William B. Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Sun N, Zhang Y, Dong J, Liu G, Liu Z, Wang J, Qiao Z, Zhang J, Duan K, Nian X, Ma Z, Yang X. Metabolomics profiling reveals differences in proliferation between tumorigenic and non-tumorigenic Madin-Darby canine kidney (MDCK) cells. PeerJ 2023; 11:e16077. [PMID: 37744241 PMCID: PMC10517658 DOI: 10.7717/peerj.16077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background Madin-Darby canine kidney (MDCK) cells are a cellular matrix in the production of influenza vaccines. The proliferation rate of MDCK cells is one of the critical factors that determine the vaccine production cycle. It is yet to be determined if there is a correlation between cell proliferation and alterations in metabolic levels. This study aimed to explore the metabolic differences between MDCK cells with varying proliferative capabilities through the use of both untargeted and targeted metabolomics. Methods To investigate the metabolic discrepancies between adherent cell groups (MDCK-M60 and MDCK-CL23) and suspension cell groups (MDCK-XF04 and MDCK-XF06), untargeted and targeted metabolomics were used. Utilizing RT-qPCR analysis, the mRNA expressions of key metabolites enzymes were identified. Results An untargeted metabolomics study demonstrated the presence of 81 metabolites between MDCK-M60 and MDCK-CL23 cells, which were mainly affected by six pathways. An analysis of MDCK-XF04 and MDCK-XF06 cells revealed a total of 113 potential metabolites, the majority of which were impacted by ten pathways. Targeted metabolomics revealed a decrease in the levels of choline, tryptophan, and tyrosine in MDCK-CL23 cells, which was in accordance with the results of untargeted metabolomics. Additionally, MDCK-XF06 cells experienced a decrease in 5'-methylthioadenosine and tryptophan, while S-adenosylhomocysteine, kynurenine, 11Z-eicosenoic acid, 3-phosphoglycerate, glucose 6-phosphate, and phosphoenolpyruvic acid concentrations were increased. The mRNA levels of MAT1A, MAT2B, IDO1, and IDO2 in the two cell groups were all increased, suggesting that S-adenosylmethionine and tryptophan may have a significant role in cell metabolism. Conclusions This research examines the effect of metabolite fluctuations on cell proliferation, thus offering a potential way to improve the rate of MDCK cell growth.
Collapse
Affiliation(s)
- Na Sun
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
| | - Yuchuan Zhang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jian Dong
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Geng Liu
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhenbin Liu
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
| | - Jiamin Wang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Zilin Qiao
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Jiayou Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Xuanxuan Nian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Zhongren Ma
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- China National Biotech Group Company Limited, Beijing, China
| |
Collapse
|
12
|
Mannarino MR, Bianconi V, Scalisi G, Franceschini L, Manni G, Cucci A, Bagaglia F, Mencarelli G, Giglioni F, Ricciuti D, Figorilli F, Pieroni B, Cosentini E, Padiglioni E, Colangelo C, Fuchs D, Puccetti P, Follenzi A, Pirro M, Gargaro M, Fallarino F. A tryptophan metabolite prevents depletion of circulating endothelial progenitor cells in systemic low-grade inflammation. Front Immunol 2023; 14:964660. [PMID: 37081894 PMCID: PMC10110845 DOI: 10.3389/fimmu.2023.964660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundChronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated.MethodsIn this study, circulating EPCs were examined in mice treated with low doses of lipopolysaccharide (LPS) to mimic low-grade inflammation. Moreover, the association between IDO1 activity and circulating EPCs was studied in a cohort of 277 patients with variable systemic low-grade inflammation.ResultsRepeated low doses of LPS caused a decrease in circulating EPCs and l-kyn supplementation, mimicking IDO1 activation, significantly increased EPC numbers under homeostatic conditions preventing EPC decline in low-grade endotoxemia. Accordingly, in patients with variable systemic low-grade inflammation, there was a significant interaction between IDO1 activity and high-sensitivity C-reactive protein (hs-CRP) in predicting circulating EPCs, with high hs-CRP associated with significantly lower EPCs at low IDO1 activity but not at high IDO1 activity.InterpretationOverall, these findings demonstrate that systemic low-grade inflammation reduces circulating EPCs. However, high IDO1 activity and l-kyn supplementation limit circulating EPC loss in low-grade inflammation.
Collapse
Affiliation(s)
| | - Vanessa Bianconi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Franceschini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco Bagaglia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Giglioni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Figorilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Benedetta Pieroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cosentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cecilia Colangelo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Matteo Pirro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| |
Collapse
|
13
|
Kishino Y, Tohyama S, Morita Y, Soma Y, Tani H, Okada M, Kanazawa H, Fukuda K. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. J Card Fail 2023; 29:503-513. [PMID: 37059512 DOI: 10.1016/j.cardfail.2022.10.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 04/16/2023]
Abstract
Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.
Collapse
Affiliation(s)
- Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Tryptophan Hydroxylase-2-Mediated Serotonin Biosynthesis Suppresses Cell Reprogramming into Pluripotent State. Int J Mol Sci 2023; 24:ijms24054862. [PMID: 36902295 PMCID: PMC10003565 DOI: 10.3390/ijms24054862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.
Collapse
|
15
|
Kobayashi H, Tohyama S, Kanazawa H, Ichimura H, Chino S, Tanaka Y, Suzuki Y, Zhao J, Shiba N, Kadota S, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: Inefficient procedure for cardiac regeneration. J Mol Cell Cardiol 2023; 174:77-87. [PMID: 36403760 DOI: 10.1016/j.yjmcc.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Advances in stem cell biology have facilitated cardiac regeneration, and many animal studies and several initial clinical trials have been conducted using human pluripotent stem cell-derived cardiomyocytes (PSC-CMs). Most preclinical and clinical studies have typically transplanted PSC-CMs via the following two distinct approaches: direct intramyocardial injection or epicardial delivery of engineered heart tissue. Both approaches present common disadvantages, including a mandatory thoracotomy and poor engraftment. Furthermore, a standard transplantation approach has yet to be established. In this study, we tested the feasibility of performing intracoronary administration of PSC-CMs based on a commonly used method of transplanting somatic stem cells. Six male cynomolgus monkeys underwent intracoronary administration of dispersed human PSC-CMs or PSC-CM aggregates, which are called cardiac spheroids, with multiple cell dosages. The recipient animals were sacrificed at 4 weeks post-transplantation for histological analysis. Intracoronary administration of dispersed human PSC-CMs in the cynomolgus monkeys did not lead to coronary embolism or graft survival. Although the transplanted cardiac spheroids became partially engrafted, they also induced scar formation due to cardiac ischemic injury. Cardiac engraftment and scar formation were reasonably consistent with the spheroid size or cell dosage. These findings indicate that intracoronary transplantation of PSC-CMs is an inefficient therapeutic approach.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Yota Suzuki
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takafumi Naito
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan.
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Kwon HN, Kurtzeborn K, Iaroshenko V, Jin X, Loh A, Escande-Beillard N, Reversade B, Park S, Kuure S. Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism. Development 2022; 149:276992. [PMID: 36189831 PMCID: PMC9641663 DOI: 10.1242/dev.200986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency. Liquid chromatography/mass spectrometry-based metabolomics profiling identified 42 reduced metabolites, of which 26 were supported by in vivo transcriptional changes in MAPK/ERK-deficient nephron progenitors. Among these, mitochondria, ribosome and amino acid metabolism, together with diminished pyruvate and proline metabolism, were the most affected pathways. In vitro cultures of mouse kidneys demonstrated a dosage-specific function for pyruvate in controlling the shape of the ureteric bud tip, a regulatory niche for nephron progenitors. In vivo disruption of proline metabolism caused premature nephron progenitor exhaustion through their accelerated differentiation in pyrroline-5-carboxylate reductases 1 (Pycr1) and 2 (Pycr2) double-knockout kidneys. Pycr1/Pycr2-deficient progenitors showed normal cell survival, indicating no changes in cellular stress. Our results suggest that MAPK/ERK-dependent metabolism functionally participates in nephron progenitor maintenance by monitoring pyruvate and proline biogenesis in developing kidneys.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Vladislav Iaroshenko
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xing Jin
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Abigail Loh
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore
| | - Nathalie Escande-Beillard
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Bruno Reversade
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Medical Genetics Department, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland,GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Author for correspondence ()
| |
Collapse
|
17
|
Tanosaki S, Akiyama T, Kanaami S, Fujita J, Ko MSH, Fukuda K, Tohyama S. Purification of cardiomyocytes and neurons derived from human pluripotent stem cells by inhibition of de novo fatty acid synthesis. STAR Protoc 2022; 3:101360. [PMID: 35516845 PMCID: PMC9065422 DOI: 10.1016/j.xpro.2022.101360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Here we describe a protocol to obtain highly pure cardiomyocytes and neurons from human induced pluripotent stem cells (hiPSCs) via metabolic selection processes. Compared to conventional purification protocols, this approach is easier to perform and scale up and more cost-efficient. The protocol can be applied to hiPSCs and human embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Tohyama et al. (2016) and Tanosaki et al. (2020).
Collapse
Affiliation(s)
- Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Sayaka Kanaami
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan.,Heartseed Inc., Shinjuku, Tokyo 160-0015, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
18
|
Kameda K, Someya S, Fujita J, Fukuda K, Tohyama S. Protocol for enhanced proliferation of human pluripotent stem cells in tryptophan-fortified media. STAR Protoc 2022; 3:101341. [PMID: 35496810 PMCID: PMC9048135 DOI: 10.1016/j.xpro.2022.101341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We describe a protocol for the efficient culture of human pluripotent stem cells (hPSCs) by supplementing conventional culture medium with L-tryptophan (TRP). TRP is an essential amino acid that is widely available at an affordable cost, thereby allowing cost-effective proliferation of hPSCs compared to using a conventional medium alone. Here, we describe the steps for enhanced proliferation of hPSCs from dermal fibroblasts or peripheral blood cells, but the protocol can be applied to any hPSCs. For complete details on the use and execution of this protocol, please refer to Someya et al. (2021). Preparation for TRP-fortified medium from conventional hPSC maintenance medium Replacement of conventional hPSC maintenance medium by TRP-fortified medium Evaluation for proliferation and pluripotency of hPSCs cultured in TRP-fortified medium
Collapse
Affiliation(s)
- Kotaro Kameda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shota Someya
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Diamante L, Martello G. Metabolic regulation in pluripotent stem cells. Curr Opin Genet Dev 2022; 75:101923. [PMID: 35691147 DOI: 10.1016/j.gde.2022.101923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Pluripotent stem cells (PSCs) have the capacity to give rise to all cell types of the adult body and to expand rapidly while retaining genome integrity, representing a perfect tool for regenerative medicine. PSCs are obtained from preimplantation embryos as embryonic stem cells (ESCs), or by reprogramming of somatic cells as induced pluripotent stem cells (iPSCs). Understanding the metabolic requirements of PSCs is instrumental for their efficient generation, expansion and differentiation. PSCs reshape their metabolic profile during developmental progression. Fatty acid oxidation is strictly required for energy production in naive PSCs, but becomes dispensable in more advanced, or primed, PSCs. Other metabolites directly affect proliferation, differentiation or the epigenetic profile of PSCs, showing how metabolism plays an instructive role on PSC behaviour. Developmental progression of pluripotent cells can be paused, both in vitro and in vivo, in response to hormonal and metabolic alterations. Such reversible pausing has been recently linked to mammalian target of rapamycin activity, lipid metabolism and mitochondrial activity. Finally, metabolism is not simply regulated by exogenous stimuli or nutrient availability in PSCs, as key pluripotency regulators, such as Oct4, Stat3 and Tfcp2l1, actively shape the metabolic profile of PSCs.
Collapse
Affiliation(s)
- Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | | |
Collapse
|
20
|
Morita Y, Kishino Y, Fukuda K, Tohyama S. Scalable manufacturing of clinical-grade differentiated cardiomyocytes derived from human-induced pluripotent stem cells for regenerative therapy. Cell Prolif 2022; 55:e13248. [PMID: 35534945 PMCID: PMC9357358 DOI: 10.1111/cpr.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Basic research on human pluripotent stem cell (hPSC)‐derived cardiomyocytes (CMs) for cardiac regenerative therapy is one of the most active and complex fields to achieve this alternative to heart transplantation and requires the integration of medicine, science, and engineering. Mortality in patients with heart failure remains high worldwide. Although heart transplantation is the sole strategy for treating severe heart failure, the number of donors is limited. Therefore, hPSC‐derived CM (hPSC‐CM) transplantation is expected to replace heart transplantation. To achieve this goal, for basic research, various issues should be considered, including how to induce hPSC proliferation efficiently for cardiac differentiation, induce hPSC‐CMs, eliminate residual undifferentiated hPSCs and non‐CMs, and assess for the presence of residual undifferentiated hPSCs in vitro and in vivo. In this review, we discuss the current stage of resolving these issues and future directions for realizing hPSC‐based cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Tani H, Tohyama S. Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Front Cell Dev Biol 2022; 10:855763. [PMID: 35433691 PMCID: PMC9008275 DOI: 10.3389/fcell.2022.855763] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama,
| |
Collapse
|
22
|
Kawai Y, Tohyama S, Arai K, Tamura T, Soma Y, Fukuda K, Shimizu H, Nakayama K, Kobayashi E. Scaffold-Free Tubular Engineered Heart Tissue From Human Induced Pluripotent Stem Cells Using Bio-3D Printing Technology in vivo. Front Cardiovasc Med 2022; 8:806215. [PMID: 35127867 PMCID: PMC8811174 DOI: 10.3389/fcvm.2021.806215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023] Open
Abstract
Engineered heart tissues (EHTs) that are fabricated using human induced pluripotent stem cells (hiPSCs) have been considered as potential cardiac tissue substitutes in case of heart failure. In the present study, we have created hiPSC-derived cardiac organoids (hiPSC-COs) comprised of hiPSC-derived cardiomyocytes, human umbilical vein endothelial cells, and human fibroblasts. To produce a beating conduit for patients suffering from congenital heart diseases, we constructed scaffold-free tubular EHTs (T-EHTs) using hiPSC-COs and bio-3D printing with needle arrays. The bio-3D printed T-EHTs were cut open and transplanted around the abdominal aorta as well as the inferior vena cava (IVC) of NOG mice. The transplanted T-EHTs were covered with the omentum, and the abdomen was closed after completion of the procedure. Additionally, to compare the functionality of hiPSC-COs with that of T-EHTs, we transplanted the former around the aorta and IVC as well as injecting them into the subcutaneous tissue on the back of the mice. After 1 m of the transplantation procedures, we observed the beating of the T-EHTs in the mice. In histological analysis, the T-EHTs showed clear striation of the myocardium and vascularization compared to hiPSC-COs transplanted around the aorta or in subcutaneous tissue. Based on these results, bio-3D-printed T-EHTs exhibited a better maturation in vivo as compared to the hiPSC-COs. Therefore, these beating T-EHTs may form conduits for congenital heart disease patients, and T-EHT transplantation can form a treatment option in such cases.
Collapse
Affiliation(s)
- Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama
| | - Kenichi Arai
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, Japan
| | - Tadashi Tamura
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Shimizu
- Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, Japan
- Koichi Nakayama
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Metabolism in Human Pluripotent Stem Cells and Cardiomyocytes for Regenerative Therapy. Keio J Med 2022; 71:55-61. [DOI: 10.2302/kjm.2021-0015-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Soma Y, Morita Y, Kishino Y, Kanazawa H, Fukuda K, Tohyama S. The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Front Cardiovasc Med 2021; 8:774389. [PMID: 34957258 PMCID: PMC8692665 DOI: 10.3389/fcvm.2021.774389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Tani H, Tohyama S, Kishino Y, Kanazawa H, Fukuda K. Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. J Mol Cell Cardiol 2021; 164:83-91. [PMID: 34822838 DOI: 10.1016/j.yjmcc.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022]
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) has revealed the potential for curing end-stage heart failure. Indeed, transplantation of hiPSC-derived cardiomyocytes (hiPSC-CMs) may have applications as a replacement for heart transplantation and conventional regenerative therapies. However, there are several challenges that still must be overcome for clinical applications, including large-scale production of hiPSCs and hiPSC-CMs, elimination of residual hiPSCs, purification of hiPSC-CMs, maturation of hiPSC-CMs, efficient engraftment of transplanted hiPSC-CMs, development of an injection device, and avoidance of post-transplant arrhythmia and immunological rejection. Thus, we developed several technologies based on understanding of the metabolic profiles of hiPSCs and hiPSC derivatives. In this review, we outline how to overcome these hurdles to realize the transplantation of hiPSC-CMs in patients with heart failure and introduce cutting-edge findings and perspectives for future regenerative therapy.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
26
|
Sahoo DP, Van Winkle LJ, Díaz de la Garza RI, Dubrovsky JG. Interkingdom Comparison of Threonine Metabolism for Stem Cell Maintenance in Plants and Animals. Front Cell Dev Biol 2021; 9:672545. [PMID: 34557481 PMCID: PMC8454773 DOI: 10.3389/fcell.2021.672545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 01/12/2023] Open
Abstract
In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.
Collapse
Affiliation(s)
- Debee Prasad Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lon J. Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL, United States
- Department of Medical Humanities, Rocky Vista University, Parker, CO, United States
| | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|