1
|
Sims A, Weir DJ, Cole SJ, Hutchinson E. SARS-CoV-2 cellular coinfection is limited by superinfection exclusion. J Virol 2025; 99:e0207724. [PMID: 40116503 PMCID: PMC11998510 DOI: 10.1128/jvi.02077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
The coinfection of individual cells is a requirement for exchange between two or more virus genomes, which is a major mechanism driving virus evolution. Coinfection is restricted by a mechanism known as superinfection exclusion (SIE), which prohibits the infection of a previously infected cell by a related virus after a period of time. SIE regulates coinfection for many different viruses, but its relevance to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was unknown. In this study, we investigated this using a pair of SARS-CoV-2 variant viruses encoding distinct fluorescent reporter proteins. We show for the first time that SARS-CoV-2 coinfection of individual cells is limited temporally by SIE. We defined the kinetics of the onset of SIE for SARS-CoV-2 in this system, showing that the potential for coinfection starts to diminish within the first hour of primary infection and then falls exponentially as the time between the two infection events is increased. We then asked how these kinetics would affect the potential for coinfection with viruses during a spreading infection. We used plaque assays to model the localized spread of SARS-CoV-2 observed in infected tissue and showed that the kinetics of SIE restrict coinfection-and therefore sites of possible genetic exchange-to a small interface of infected cells between spreading viral infections. This indicates that SIE, by reducing the likelihood of coinfection of cells, likely reduces the opportunities for genetic exchange between different strains of SARS-CoV-2 and therefore is an underappreciated factor in shaping SARS-CoV-2 evolution. IMPORTANCE Since SARS-CoV-2 first emerged in 2019, it has continued to evolve, occasionally generating variants of concern. One of the ways that SARS-CoV-2 can evolve is through recombination, where genetic information is swapped between different genomes. Recombination requires the coinfection of cells; therefore, factors impacting coinfection are likely to influence SARS-CoV-2 evolution. Coinfection is restricted by SIE, a phenomenon whereby a previously infected cell becomes increasingly resistant to subsequent infection. Here we report that SIE is activated following SARS-CoV-2 infection and reduces the likelihood of coinfection exponentially following primary infection. Furthermore, we show that SIE prevents coinfection of cells at the boundary between two expanding areas of infection, the scenario most likely to lead to recombination between different SARS-CoV-2 lineages. Our work suggests that SIE reduces the likelihood of recombination between SARS-CoV-2 genomes and therefore likely shapes SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Anna Sims
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Daniel J. Weir
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Sarah J. Cole
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| |
Collapse
|
2
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Burley SK. Protein data bank: From two epidemics to the global pandemic to mRNA vaccines and Paxlovid. Curr Opin Struct Biol 2025; 90:102954. [PMID: 39586184 DOI: 10.1016/j.sbi.2024.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
Structural biologists and the open-access Protein Data Bank (PDB) played decisive roles in combating the COVID-19 pandemic. Global biostructure data were turned into global knowledge, allowing scientists and engineers to understand the inner workings of coronaviruses and develop effective countermeasures. Two mRNA vaccines, initially designed with guidance from PDB structures of the SARS-CoV-1 and MERS-CoV spike proteins, prevented infections entirely or reduced the likelihood of morbidity and mortality for more than five billion individual recipients worldwide. Structure-guided drug discovery by Pfizer, Inc (facilitated by PDB structures), initiated in the 2000s in response to SARS-CoV-1 and resumed in 2020, yielded nirmatrelvir (the active ingredient of Paxlovid) -- a potent, orally-bioavailable inhibitor of the SARS-CoV-2 main protease. You've got to love the Protein Data Bank!
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA; Rutgers Artificial Intelligence and Data Science (RAD) Collaboratory, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Nguyen MH, Palfy G, Fogeron ML, Ninot Pedrosa M, Zehnder J, Rimal V, Callon M, Lecoq L, Barnes A, Meier BH, Böckmann A. Analysis of the structure and interactions of the SARS-CoV-2 ORF7b accessory protein. Proc Natl Acad Sci U S A 2024; 121:e2407731121. [PMID: 39508769 PMCID: PMC11573672 DOI: 10.1073/pnas.2407731121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
SARS-CoV-2 carries a sizeable number of proteins that are accessory to replication but may be essential for virus-host interactions and modulation of the host immune response. Here, we investigated the structure and interactions of the largely unknown ORF7b, a small membranous accessory membrane protein of SARS-CoV-2. We show that structural predictions indicate a transmembrane (TM) leucine zipper for ORF7b, and experimentally confirm the predominantly α-helical secondary structure within a phospholipid membrane mimetic by solid-state NMR. We also show that ORF7b forms heterogeneous higher-order multimers. We determined ORF7b interactions with cellular TM leucine zipper proteins using both biochemical and NMR approaches, providing evidence for ORF7b interaction with the TM domains of E-cadherin, as well as phospholamban. Our results place ORF7b as a hypothetical interferer in cellular processes that utilize leucine zipper motifs in transmembrane multimerization domains.
Collapse
Affiliation(s)
- Minh-Ha Nguyen
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Gyula Palfy
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Martí Ninot Pedrosa
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Johannes Zehnder
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Vaclav Rimal
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Alexander Barnes
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| |
Collapse
|
6
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
8
|
Gazeau S, Deng X, Brunet-Ratnasingham E, Kaufmann DE, Larochelle C, Morel PA, Heffernan JM, Davis CL, Smith AM, Jenner AL, Craig M. Using virtual patient cohorts to uncover immune response differences in cancer and immunosuppressed COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605860. [PMID: 39131351 PMCID: PMC11312602 DOI: 10.1101/2024.08.01.605860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer treatments experience worse infections and more severe COVID-19. It is difficult to conduct clinical studies in these populations, resulting in a restricted amount of data that can be used to relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of COVID-19 severity in individuals with cancer and immunosuppression, we adapted our mathematical model of the immune response during COVID-19 and generated virtual patient cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients recapitulated available longitudinal clinical data collected from patients in Montréal, Canada area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and delayed type I interferon peaks compared to those with mild COVID-19 outcomes. Additionally, our results suggest that cancer patients experience higher viral loads (however, with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and immunosuppressed virtual patients suffered a high degree of tissue damage associated with elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by infected cells were found to be elevated in severe cancer and immunosuppressed patients with respect to the COVID-19 reference group. Together, our study highlights that dysfunction in type I interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19, particularly in cancer patients and immunosuppressed individuals.
Collapse
Affiliation(s)
- Sonia Gazeau
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Xiaoyan Deng
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | | | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and Université de Lausanne, Lausanne, Switzerland
| | - Catherine Larochelle
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jane M. Heffernan
- Centre for Disease Modelling, Department of Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Courtney L. Davis
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Adrianne L. Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
10
|
Liu P, Cai J, Tian H, Li J, Lu L, Xu M, Zhu X, Fu X, Wang X, Zhong H, Jia R, Ge Y, Zhu Y, Zeng M, Xu J. Characteristics of SARS-CoV-2 Omicron BA.5 variants in Shanghai after ending the zero-COVID policy in December 2022: a clinical and genomic analysis. Front Microbiol 2024; 15:1372078. [PMID: 38605705 PMCID: PMC11007228 DOI: 10.3389/fmicb.2024.1372078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction An unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak. Methods A total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico. Results The genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins. Discussion Further in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jiehao Cai
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - He Tian
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jingjing Li
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Lijuan Lu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xunhua Zhu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaomin Fu
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiangshi Wang
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Ran Jia
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanling Ge
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanfeng Zhu
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Aydin J, Gabel A, Zielinski S, Ganskih S, Schmidt N, Hartigan C, Schenone M, Carr S, Munschauer M. SHIFTR enables the unbiased identification of proteins bound to specific RNA regions in live cells. Nucleic Acids Res 2024; 52:e26. [PMID: 38281241 PMCID: PMC10954451 DOI: 10.1093/nar/gkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
RNA-protein interactions determine the cellular fate of RNA and are central to regulating gene expression outcomes in health and disease. To date, no method exists that is able to identify proteins that interact with specific regions within endogenous RNAs in live cells. Here, we develop SHIFTR (Selective RNase H-mediated interactome framing for target RNA regions), an efficient and scalable approach to identify proteins bound to selected regions within endogenous RNAs using mass spectrometry. Compared to state-of-the-art techniques, SHIFTR is superior in accuracy, captures minimal background interactions and requires orders of magnitude lower input material. We establish SHIFTR workflows for targeting RNA classes of different length and abundance, including short and long non-coding RNAs, as well as mRNAs and demonstrate that SHIFTR is compatible with sequentially mapping interactomes for multiple target RNAs in a single experiment. Using SHIFTR, we comprehensively identify interactions of cis-regulatory elements located at the 5' and 3'-terminal regions of authentic SARS-CoV-2 RNAs in infected cells and accurately recover known and novel interactions linked to the function of these viral RNA elements. SHIFTR enables the systematic mapping of region-resolved RNA interactomes for any RNA in any cell type and has the potential to revolutionize our understanding of transcriptomes and their regulation.
Collapse
Affiliation(s)
- Jens Aydin
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Alexander Gabel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Sebastian Zielinski
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Sabina Ganskih
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Nora Schmidt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | | | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mathias Munschauer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Timilsina U, Ivey EB, Duffy S, Plianchaisuk A, The Genotype to Phenotype Japan (G2P-Japan) Consortium, Ito J, Sato K, Stavrou S. SARS-CoV-2 ORF7a Mutation Found in BF.5 and BF.7 Sublineages Impacts Its Functions. Int J Mol Sci 2024; 25:2351. [PMID: 38397027 PMCID: PMC10889720 DOI: 10.3390/ijms25042351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
A feature of the SARS-CoV-2 Omicron subvariants BF.5 and BF.7 that recently circulated mainly in China and Japan was the high prevalence of the ORF7a: H47Y mutation, in which the 47th residue of ORF7a has been mutated from a histidine (H) to a tyrosine (Y). Here, we evaluated the effect of this mutation on the three main functions ascribed to the SARS-CoV-2 ORF7a protein. Our findings show that H47Y mutation impairs the ability of SARS-CoV-2 ORF7a to antagonize the type I interferon (IFN-I) response and to downregulate major histocompatibility complex I (MHC-I) cell surface levels, but had no effect in its anti-SERINC5 function. Overall, our results suggest that the H47Y mutation of ORF7a affects important functions of this protein, resulting in changes in virus pathogenesis.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| | - Emily B. Ivey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| | - Sean Duffy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan; (A.P.); (J.I.); (K.S.)
| | | | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan; (A.P.); (J.I.); (K.S.)
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan; (A.P.); (J.I.); (K.S.)
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8581, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0862, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| |
Collapse
|
13
|
Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024; 16:184. [PMID: 38399960 PMCID: PMC10893260 DOI: 10.3390/v16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Over the last three years, the pandemic of COVID-19 has had a significant impact on people's lives and the global economy. The incessant emergence of variant strains has compounded the challenges associated with the management of COVID-19. As the predominant variant from late 2021 to the present, Omicron and its sublineages, through continuous evolution, have demonstrated iterative viral fitness. The comprehensive elucidation of the biological implications that catalyzed this evolution remains incomplete. In accordance with extant research evidence, we provide a comprehensive review of subvariants of Omicron, delineating alterations in immune evasion, cellular infectivity, and the cross-species transmission potential. This review seeks to clarify the underpinnings of biology within the evolution of SARS-CoV-2, thereby providing a foundation for strategic considerations in the post-pandemic era of COVID-19.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Farias TD, Brugiapaglia S, Croci S, Magistroni P, Curcio C, Zguro K, Fallerini C, Fava F, Pettini F, Kichula KM, Pollock NR, Font-Porterias N, Palmer WH, Marin WM, Baldassarri M, Bruttini M, Hollenbach JA, Hendricks AE, Meloni I, Novelli F, Renieri A, Furini S, Norman PJ, Amoroso A. HLA-DPB1*13:01 associates with enhanced, and KIR2DS4*001 with diminished protection from developing severe COVID-19. HLA 2024; 103:e15251. [PMID: 37850268 PMCID: PMC10873037 DOI: 10.1111/tan.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.
Collapse
Affiliation(s)
- Ticiana D.J. Farias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paola Magistroni
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Francesco Pettini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - William H. Palmer
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Audrey E. Hendricks
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Mathematical and Statistical Sciences, and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin, 10126, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
15
|
Arya R, Tripathi P, Nayak K, Ganesh J, Bihani SC, Ghosh B, Prashar V, Kumar M. Insights into the evolution of mutations in SARS-CoV-2 non-spike proteins. Microb Pathog 2023; 185:106460. [PMID: 37995880 DOI: 10.1016/j.micpath.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The COVID-19 pandemic has been driven by the emergence of SARS-CoV-2 variants with mutations across all the viral proteins. Although mutations in the spike protein have received significant attention, understanding the prevalence and potential impact of mutations in other viral proteins is essential for comprehending the evolution of SARS-CoV-2. Here, we conducted a comprehensive analysis of approximately 14 million sequences of SARS-CoV-2 deposited in the GISAID database until December 2022 to identify prevalent mutations in the non-spike proteins at the global and country levels. Additionally, we evaluated the energetics of each mutation to better understand their impact on protein stability. While the consequences of many mutations remain unclear, we discuss potential structural and functional significance of some mutations. Our study highlights the ongoing evolutionary process of SARS-CoV-2 and underscores the importance of understanding changes in non-spike proteins.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Preeti Tripathi
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Karthik Nayak
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Janani Ganesh
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Biplab Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Mukesh Kumar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
16
|
Li S, Li X, Liang H, Yu K, Zhai J, Xue M, Luo Z, Zheng C, Zhang H. SARS-CoV-2 ORF7a blocked autophagy flux by intervening in the fusion between autophagosome and lysosome to promote viral infection and pathogenesis. J Med Virol 2023; 95:e29200. [PMID: 37916857 DOI: 10.1002/jmv.29200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The coronavirus disease 2019 (COVID-19) continues to pose a major threat to public health worldwide. Although many studies have clarified the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection process, the underlying mechanisms of viral invasion and immune evasion were still unclear. This study focused on SARS-CoV-2 ORF7a (open reading frame-7a), one of the essential open reading frames (ORFs) in infection and pathogenesis. First, by analyzing its physical and chemical characteristics, SARS-CoV-2 ORF7a is an unstable hydrophobic transmembrane protein. Then, the ORF7a transmembrane domain three-dimensional crystal structure model was predicted and verified. SARS-CoV-2 ORF7a localized in the endoplasmic reticulum and participated in the autophagy-lysosome pathway via interacting with p62. In addition, we elucidated the underlying molecular mechanisms by which ORF7a intercepted autophagic flux, promoted double membrane vesicle formation, and evaded host autophagy-lysosome degradation and antiviral innate immunity. This study demonstrated that ORF7a could be a therapeutic target, and Glecaprevir may be a potential drug against SARS-CoV-2 by targeting ORF7a. A comprehensive understanding of ORF7a's functions may contribute to developing novel therapies and clinical drugs against COVID-19.
Collapse
Affiliation(s)
- Shun Li
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobo Li
- Department of Respiratory, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan, China
| | - Haowei Liang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Kuike Yu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuojing Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
17
|
Shin J, Shimomura I. COVID-19, Obesity, and GRP78: Unraveling the Pathological Link. J Obes Metab Syndr 2023; 32:183-196. [PMID: 37752707 PMCID: PMC10583770 DOI: 10.7570/jomes23053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an unprecedented global surge in infections and fatalities. Notably, obesity has emerged as an important susceptibility factor for COVID-19; however, the pathological mechanisms for this remain poorly understood. Recent studies proposed a role for glucose-regulated protein 78 (GRP78), a protein implicated in both obesity and metabolic syndrome, which may function as a binding partner and/or co-receptor for SARS-CoV-2. Given its crucial involvement in diverse biological processes, GRP78 likely plays a major role in multiple facets of the viral life cycle and the pathology of COVID-19. This perspective review discusses the potential contributions of GRP78 to the dynamics of SARS-CoV-2 infection and pathology, particularly in the context of obesity. The primary objective is to facilitate a deeper understanding of the pathogenesis of COVID-19. Through this exploration, we aim to illuminate the complex interactions underpinning the nexus of COVID-19, obesity, and GRP78, ultimately paving the way for informed therapeutic strategies and preventive measures.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
19
|
Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. What do we know about the function of SARS-CoV-2 proteins? Front Immunol 2023; 14:1249607. [PMID: 37790934 PMCID: PMC10544941 DOI: 10.3389/fimmu.2023.1249607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The COVID-19 pandemic has highlighted the importance in the understanding of the biology of SARS-CoV-2. After more than two years since the first report of COVID-19, it remains crucial to continue studying how SARS-CoV-2 proteins interact with the host metabolism to cause COVID-19. In this review, we summarize the findings regarding the functions of the 16 non-structural, 6 accessory and 4 structural SARS-CoV-2 proteins. We place less emphasis on the spike protein, which has been the subject of several recent reviews. Furthermore, comprehensive reviews about COVID-19 therapeutic have been also published. Therefore, we do not delve into details on these topics; instead we direct the readers to those other reviews. To avoid confusions with what we know about proteins from other coronaviruses, we exclusively report findings that have been experimentally confirmed in SARS-CoV-2. We have identified host mechanisms that appear to be the primary targets of SARS-CoV-2 proteins, including gene expression and immune response pathways such as ribosome translation, JAK/STAT, RIG-1/MDA5 and NF-kβ pathways. Additionally, we emphasize the multiple functions exhibited by SARS-CoV-2 proteins, along with the limited information available for some of these proteins. Our aim with this review is to assist researchers and contribute to the ongoing comprehension of SARS-CoV-2's pathogenesis.
Collapse
Affiliation(s)
- Santiago Justo Arevalo
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Daniela Zapata Sifuentes
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - César J. Huallpa
- Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | |
Collapse
|
20
|
Bhattacharjee MJ, Bhattacharya A, Kashyap B, Taw MJ, Li WH, Mukherjee AK, Khan MR. Genome analysis of SARS-CoV-2 isolates from a population reveals the rapid selective sweep of a haplotype carrying many pre-existing and new mutations. Virol J 2023; 20:201. [PMID: 37658381 PMCID: PMC10474745 DOI: 10.1186/s12985-023-02139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
To understand the mechanism underlying the evolution of SARS-CoV-2 in a population, we sequenced 92 viral genomes from Assam, India. Analysis of these and database sequences revealed a complete selective sweep of a haplotype in Assam carrying 13 pre-existing variants, including a high leap in frequency of a variant on ORF8, which is involved in immune evasion. A comparative study between sequences of same lineage and similar time frames in and outside Assam showed that 10 of the 13 pre-existing variants had a frequency ranging from 96 to 99%, and the remaining 3 had a low frequency outside Assam. Using a phylogenetic approach to infer sequential occurrences of variants we found that the variant Phe120del on ORF8, which had a low frequency (1.75%) outside Assam, is at the base of the phylogenetic tree of variants and became totally fixed (100%) in Assam population. Based on this observation, we inferred that the variant on ORF8 had a selective advantage, so it carried the haplotype to reach the100% frequency. The haplotype also carried 32 pre-existing variants at a frequency from 1.00 to 80.00% outside Assam. Those of these variants that are more closely linked to the S-protein locus, which often carries advantageous mutations and is tightly linked to the ORF8 locus, retained higher frequencies, while the less tightly linked variants showed lower frequencies, likely due to recombination among co- circulating variants in Assam. The ratios of non-synonymous substitutions to synonymous substitutions suggested that some genes such as those coding for the S-protein and non-structural proteins underwent positive selection while others were subject to purifying selection during their evolution in Assam. Furthermore, we observed negative correlation of the Ct value of qRT-PCR of the patients with abundant ORF6 transcripts, suggesting that ORF6 can be used as a marker for estimating viral titer. In conclusion, our in-depth analysis of SARS-CoV-2 genomes in a regional population reveals the mechanism and dynamics of viral evolution.
Collapse
Affiliation(s)
- Maloyjo Joyraj Bhattacharjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Anupam Bhattacharya
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Bhaswati Kashyap
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Manash Jyoti Taw
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam, 781032, India
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
21
|
Mann MM, Hsieh MK, Tang JD, Hart WS, Lazzara MJ, Klauda JB, Berger BW. Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184174. [PMID: 37211321 PMCID: PMC10197439 DOI: 10.1016/j.bbamem.2023.184174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane 'accessory' proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function.
Collapse
Affiliation(s)
- Madison M Mann
- Department of Chemical Engineering, University of Virginia, United States of America
| | - Min-Kang Hsieh
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, United States of America
| | - James D Tang
- Department of Chemical Engineering, University of Virginia, United States of America
| | - William S Hart
- Department of Chemical Engineering, University of Virginia, United States of America
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, United States of America
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, United States of America; Institute for Physical Science and Technology, Biophysics Program, University of Maryland College Park, United States of America.
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, United States of America; Department of Biomedical Engineering, University of Virginia, United States of America.
| |
Collapse
|
22
|
Bykova A, Saura A, Glazko GV, Roche-Lima A, Yurchenko V, Rogozin IB. The 29-nucleotide deletion in SARS-CoV: truncated versions of ORF8 are under purifying selection. BMC Genomics 2023; 24:387. [PMID: 37430204 DOI: 10.1186/s12864-023-09482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Accessory proteins have diverse roles in coronavirus pathobiology. One of them in SARS-CoV (the causative agent of the severe acute respiratory syndrome outbreak in 2002-2003) is encoded by the open reading frame 8 (ORF8). Among the most dramatic genomic changes observed in SARS-CoV isolated from patients during the peak of the pandemic in 2003 was the acquisition of a characteristic 29-nucleotide deletion in ORF8. This deletion cause splitting of ORF8 into two smaller ORFs, namely ORF8a and ORF8b. Functional consequences of this event are not entirely clear. RESULTS Here, we performed evolutionary analyses of ORF8a and ORF8b genes and documented that in both cases the frequency of synonymous mutations was greater than that of nonsynonymous ones. These results suggest that ORF8a and ORF8b are under purifying selection, thus proteins translated from these ORFs are likely to be functionally important. Comparisons with several other SARS-CoV genes revealed that another accessory gene, ORF7a, has a similar ratio of nonsynonymous to synonymous mutations suggesting that ORF8a, ORF8b, and ORF7a are under similar selection pressure. CONCLUSIONS Our results for SARS-CoV echo the known excess of deletions in the ORF7a-ORF7b-ORF8 complex of accessory genes in SARS-CoV-2. A high frequency of deletions in this gene complex might reflect recurrent searches in "functional space" of various accessory protein combinations that may eventually produce more advantageous configurations of accessory proteins similar to the fixed deletion in the SARS-CoV ORF8 gene.
Collapse
Affiliation(s)
- Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Galina V Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities-RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic.
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
23
|
Ye C, Park JG, Chiem K, Dravid P, Allué-Guardia A, Garcia-Vilanova A, Pino Tamayo P, Shivanna V, Kapoor A, Walter MR, Kobie JJ, Plemper RK, Torrelles JB, Martinez-Sobrido L. Immunization with Recombinant Accessory Protein-Deficient SARS-CoV-2 Protects against Lethal Challenge and Viral Transmission. Microbiol Spectr 2023; 11:e0065323. [PMID: 37191507 PMCID: PMC10269623 DOI: 10.1128/spectrum.00653-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide coronavirus disease 2019 (COVID-19) pandemic. Despite the high efficacy of the authorized vaccines, there may be uncertain and unknown side effects or disadvantages associated with current vaccination approaches. Live-attenuated vaccines (LAVs) have been shown to elicit robust and long-term protection by the induction of host innate and adaptive immune responses. In this study, we sought to verify an attenuation strategy by generating 3 double open reading frame (ORF)-deficient recombinant SARS-CoV-2s (rSARS-CoV-2s) simultaneously lacking two accessory ORF proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). We report that these double ORF-deficient rSARS-CoV-2s have slower replication kinetics and reduced fitness in cultured cells compared with their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2s showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against SARS-CoV-2 and some variants of concern and activated viral component-specific T cell responses. Notably, double ORF-deficient rSARS-CoV-2s were able to protect, as determined by the inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2 in both K18 hACE2 mice and golden Syrian hamsters. Collectively, our results demonstrate the feasibility of implementing the double ORF-deficient strategy to develop safe, immunogenic, and protective LAVs to prevent SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Live-attenuated vaccines (LAVs) are able to induce robust immune responses, including both humoral and cellular immunity, representing a very promising option to provide broad and long-term immunity. To develop LAVs for SARS-CoV-2, we engineered attenuated recombinant SARS-CoV-2 (rSARS-CoV-2) that simultaneously lacks the viral open reading frame 3a (ORF3a) in combination with either ORF6, ORF7a, or ORF7b (Δ3a/Δ6, Δ3a/Δ7a, and Δ3a/Δ7b, respectively) proteins. Among them, the rSARS-CoV-2 Δ3a/Δ7b was completely attenuated and able to provide 100% protection against an otherwise lethal challenge in K18 hACE2 transgenic mice. Moreover, the rSARS-CoV-2 Δ3a/Δ7b conferred protection against viral transmission between golden Syrian hamsters.
Collapse
Affiliation(s)
- Chengjin Ye
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jun-Gyu Park
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Kevin Chiem
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Anna Allué-Guardia
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andreu Garcia-Vilanova
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Paula Pino Tamayo
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Vinay Shivanna
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jordi B. Torrelles
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
24
|
Liu LT, Tsai JJ, Chu JJH, Chen CH, Chen LJ, Lin PC, Tsai CY, Hsu MC, Chuang WL, Hwang SJ, Chong IW. The identification and phylogenetic analysis of SARS-CoV-2 delta variants in Taiwan. Kaohsiung J Med Sci 2023; 39:624-636. [PMID: 36951529 DOI: 10.1002/kjm2.12665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 03/24/2023] Open
Abstract
In Taiwan, coronavirus disease 2019 (COVID-19) involving the delta variant occurred after that involving the alpha variant in 2021. In this study, we aimed to analyze the Delta variant. A total of 318 patients in Taiwan infected with delta variants were identified. The case fatality rate (CFR) of patients infected with delta variants was 0.94% in Taiwan compared with that of those infected with alpha variants (5.95%). The possible reasons for the low CFR might be hybrid immunity due to infection and rapid promotion of the COVID-19 vaccination program during the alpha variant outbreak. We identified three 21J delta variants. Two long gene deletions were detected in these severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates: ORF7aΔ91 in KMUH-8 and SpikeΔ30 in KMUH-9. Protein structure prediction indicates that ORF7aΔ91 results in malfunction of NS7a as an interferon antagonist and that SpikeΔ30 results in a truncated spike protein (N679-A688del), resulting in a lower infection rate compared with the delta variant without these deletions. The impact of these two deletions on SARS-CoV-2-associated pathogenesis deserves further investigation. Delta variants still exist in many regions in the omicron era, and the backbone of the delta variant genome possibly spread worldwide in the form of delta-omicron hybrids (deltacron; e.g., XBC.1 and XAY.2), which casts a potential threat to public health. Our study further highlighted the importance of more understanding of the delta variants.
Collapse
Affiliation(s)
- Li-Teh Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung-Hwa University of Medical Technology, Tainan City, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Liang-Jen Chen
- Department of Family Medicine, Pingtung Christian Hospital, Pingtung City, Taiwan
| | - Ping-Chang Lin
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Ching-Yi Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Miao-Chen Hsu
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Wan-Long Chuang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Shang-Jyh Hwang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Inn-Wen Chong
- Department of Internal Medicine and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Pulmonary Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
25
|
Tang Z, Yu P, Guo Q, Chen M, Lei Y, Zhou L, Mai W, Chen L, Deng M, Kong W, Niu C, Xiong X, Li W, Chen C, Lai C, Wang Q, Li B, Ji T. Clinical characteristics and host immunity responses of SARS-CoV-2 Omicron variant BA.2 with deletion of ORF7a, ORF7b and ORF8. Virol J 2023; 20:106. [PMID: 37248496 DOI: 10.1186/s12985-023-02066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.
Collapse
Affiliation(s)
- Zhizhong Tang
- Urology Surgery Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Qianfang Guo
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China
| | - Mingxiao Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lei Zhou
- Department Of Pathology Laboratory, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
| | - Wenrui Li
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, People's Republic of China
| | - Chunbo Chen
- Intensive Care Unit Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China.
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511495, People's Republic of China.
| |
Collapse
|
26
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci 2023; 24:8034. [PMID: 37175745 PMCID: PMC10179190 DOI: 10.3390/ijms24098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Life and Health Science, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
28
|
Zabidi NZ, Liew HL, Farouk IA, Puniyamurti A, Yip AJW, Wijesinghe VN, Low ZY, Tang JW, Chow VTK, Lal SK. Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses 2023; 15:v15040944. [PMID: 37112923 PMCID: PMC10145020 DOI: 10.3390/v15040944] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is associated with a lower fatality rate than its SARS and MERS counterparts. However, the rapid evolution of SARS-CoV-2 has given rise to multiple variants with varying pathogenicity and transmissibility, such as the Delta and Omicron variants. Individuals with advanced age or underlying comorbidities, including hypertension, diabetes and cardiovascular diseases, are at a higher risk of increased disease severity. Hence, this has resulted in an urgent need for the development of better therapeutic and preventive approaches. This review describes the origin and evolution of human coronaviruses, particularly SARS-CoV-2 and its variants as well as sub-variants. Risk factors that contribute to disease severity and the implications of co-infections are also considered. In addition, various antiviral strategies against COVID-19, including novel and repurposed antiviral drugs targeting viral and host proteins, as well as immunotherapeutic strategies, are discussed. We critically evaluate strategies of current and emerging vaccines against SARS-CoV-2 and their efficacy, including immune evasion by new variants and sub-variants. The impact of SARS-CoV-2 evolution on COVID-19 diagnostic testing is also examined. Collectively, global research and public health authorities, along with all sectors of society, need to better prepare against upcoming variants and future coronavirus outbreaks.
Collapse
Affiliation(s)
- Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Hern Liang Liew
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Isra Ahmad Farouk
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | | | - Zheng Yao Low
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Julian W Tang
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Vincent T K Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Sunil K Lal
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
29
|
Simas MCDC, Costa SM, Gomes PDSFC, Cruz NVGD, Corrêa IA, de Souza MRM, Dornelas-Ribeiro M, Nogueira TLS, Santos CGMD, Hoffmann L, Tanuri A, Moura-Neto RSD, Damaso CR, Costa LJD, Silva R. Evaluation of SARS-CoV-2 ORF7a Deletions from COVID-19-Positive Individuals and Its Impact on Virus Spread in Cell Culture. Viruses 2023; 15:v15030801. [PMID: 36992509 PMCID: PMC10051148 DOI: 10.3390/v15030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the COVID-19 outbreak, posed a primary concern of public health worldwide. The most common changes in SARS-CoV-2 are single nucleotide substitutions, also reported insertions and deletions. This work investigates the presence of SARS-CoV-2 ORF7a deletions identified in COVID-19-positive individuals. Sequencing of SARS-CoV-2 complete genomes showed three different ORF7a size deletions (190-nt, 339-nt and 365-nt). Deletions were confirmed through Sanger sequencing. The ORF7a∆190 was detected in a group of five relatives with mild symptoms of COVID-19, and the ORF7a∆339 and ORF7a∆365 in a couple of co-workers. These deletions did not affect subgenomic RNAs (sgRNA) production downstream of ORF7a. Still, fragments associated with sgRNA of genes upstream of ORF7a showed a decrease in size when corresponding to samples with deletions. In silico analysis suggests that the deletions impair protein proper function; however, isolated viruses with partial deletion of ORF7a can replicate in culture cells similarly to wild-type viruses at 24 hpi, but with less infectious particles after 48 hpi. These findings on deleted ORF7a accessory protein gene, contribute to understanding SARS-CoV-2 phenotypes such as replication, immune evasion and evolutionary fitness as well insights into the role of SARS-CoV-2_ORF7a in the mechanism of virus-host interactions.
Collapse
Affiliation(s)
- Maria Clara da Costa Simas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sara Mesquita Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Priscila da Silva Figueiredo Celestino Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Physics Department, Auburn University, Auburn, AL 36849, USA
| | | | - Isadora Alonso Corrêa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Marcos Dornelas-Ribeiro
- Laboratório de Biodefesa, Instituto de Biologia do Exército, Rio de Janeiro 20911-270, Brazil
| | | | | | - Luísa Hoffmann
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil
| | - Amilcar Tanuri
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luciana Jesus da Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
30
|
New Monoclonal Antibodies Specific for Different Epitopes of the Spike Protein of SARS-CoV-2 and Its Major Variants: Additional Tools for a More Specific COVID-19 Diagnosis. Biomedicines 2023; 11:biomedicines11020610. [PMID: 36831149 PMCID: PMC9953266 DOI: 10.3390/biomedicines11020610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The emergence of the new pathogen SARS-CoV-2 determined a rapid need for monoclonal antibodies (mAbs) to detect the virus in biological fluids as a rapid tool to identify infected individuals to be treated or quarantined. The majority of commercially available antigenic tests for SARS-CoV-2 rely on the detection of N antigen in biologic fluid using anti-N antibodies, and their capacity to specifically identify subjects infected by SARS-CoV-2 is questionable due to several structural analogies among the N proteins of different coronaviruses. In order to produce new specific antibodies, BALB/c mice were immunized three times at 20-day intervals with a recombinant spike (S) protein. The procedure used was highly efficient, and 40 different specific mAbs were isolated, purified and characterized, with 13 ultimately being selected for their specificity and lack of cross reactivity with other human coronaviruses. The specific epitopes recognized by the selected mAbs were identified through a peptide library and/or by recombinant fragments of the S protein. In particular, the selected mAbs recognized different linear epitopes along the S1, excluding the receptor binding domain, and along the S2 subunits of the S protein of SARS-CoV-2 and its major variants of concern. We identified combinations of anti-S mAbs suitable for use in ELISA or rapid diagnostic tests, with the highest sensitivity and specificity coming from proof-of-concept tests using recombinant antigens, SARS-CoV-2 or biological fluids from infected individuals, that represent important additional tools for the diagnosis of COVID-19.
Collapse
|
31
|
Foster CSP, Bull RA, Tedla N, Santiago F, Agapiou D, Adhikari A, Walker GJ, Shrestha LB, Van Hal SJ, Kim KW, Rawlinson WD. Persistence of a Frameshifting Deletion in SARS-CoV-2 ORF7a for the Duration of a Major Outbreak. Viruses 2023; 15:522. [PMID: 36851735 PMCID: PMC9966144 DOI: 10.3390/v15020522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Australia experienced widespread COVID-19 outbreaks from infection with the SARS-CoV-2 Delta variant between June 2021 and February 2022. A 17-nucleotide frameshift-inducing deletion in ORF7a rapidly became represented at the consensus level (Delta-ORF7aΔ17del) in most Australian outbreak cases. Studies from early in the COVID-19 pandemic suggest that frameshift-inducing deletions in ORF7a do not persist for long in the population; therefore, Delta-ORF7aΔ17del genomes should have disappeared early in the Australian outbreak. In this study, we conducted a retrospective analysis of global Delta genomes to characterise the dynamics of Delta-ORF7aΔ17del over time, determined the frequency of all ORF7a deletions worldwide, and compared global trends with those of the Australian Delta outbreak. We downloaded all GISAID clade GK Delta genomes and scanned them for deletions in ORF7a. For each deletion we identified, we characterised its frequency, the number of countries it was found in, and how long it persisted. Of the 4,018,216 Delta genomes identified globally, 134,751 (~3.35%) possessed an ORF7a deletion, and ORF7aΔ17del was the most common. ORF7aΔ17del was the sole deletion in 28,014 genomes, of which 27,912 (~99.6%) originated from the Australian outbreak. During the outbreak, ~87% of genomes were Delta-ORF7aΔ17del, and genomes with this deletion were sampled until the outbreak's end. These data demonstrate that, contrary to suggestions early in the COVID-19 pandemic, genomes with frameshifting deletions in ORF7a can persist over long time periods. We suggest that the proliferation of Delta-ORF7aΔ17del genomes was likely a chance founder effect. Nonetheless, the frequency of ORF7a deletions in SARS-CoV-2 genomes worldwide suggests they might have some benefit for virus transmission.
Collapse
Affiliation(s)
- Charles S. P. Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rowena A. Bull
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fernando Santiago
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - David Agapiou
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anurag Adhikari
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur 44700, Province Bagmati, Nepal
| | - Gregory J. Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lok Bahadur Shrestha
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
- The Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sebastiaan J. Van Hal
- Department of Infectious Diseases and Microbiology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- School of Women’s and Children’s Health, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - William D. Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
- School of Women’s and Children’s Health, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Arshad N, Laurent-Rolle M, Ahmed WS, Hsu JCC, Mitchell SM, Pawlak J, Sengupta D, Biswas KH, Cresswell P. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proc Natl Acad Sci U S A 2023; 120:e2208525120. [PMID: 36574644 PMCID: PMC9910621 DOI: 10.1073/pnas.2208525120] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein β2-microglobulin (β2m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8+ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that down-regulate MHC-I expression to avoid CD8+ T cell recognition. Here, we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, down-regulate MHC-I expression using distinct mechanisms. First, ORF3a, a viroporin, reduces the global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of β2m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a specific mechanism that allows immune evasion by SARS-CoV-2.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Maudry Laurent-Rolle
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT06520
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
| | - Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Susan M. Mitchell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Joanna Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT06520
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
33
|
Panzera Y, Cortinas MN, Marandino A, Calleros L, Bormida V, Goñi N, Techera C, Grecco S, Williman J, Ramas V, Coppola L, Mogdasy C, Chiparelli H, Pérez R. Emergence and spreading of the largest SARS-CoV-2 deletion in the Delta AY.20 lineage from Uruguay. GENE REPORTS 2022; 29:101703. [PMID: 36338321 PMCID: PMC9617655 DOI: 10.1016/j.genrep.2022.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The genetic variability of SARS-CoV-2 (genus Betacoronavirus, family Coronaviridae) has been scrutinized since its first detection in December 2019. Although the role of structural variants, particularly deletions, in virus evolution is little explored, these genome changes are extremely frequent. They are associated with relevant processes, including immune escape and attenuation. Deletions commonly occur in accessory ORFs and might even lead to the complete loss of one or more ORFs. This scenario poses an interesting question about the origin and spreading of extreme structural rearrangements that persist without compromising virus viability. Here, we analyze the genome of SARS-CoV-2 in late 2021 in Uruguay and identify a Delta lineage (AY.20) that experienced a large deletion (872 nucleotides according to the reference Wuhan strain) that removes the 7a, 7b, and 8 ORFs. Deleted viruses coexist with wild-type (without deletion) AY.20 and AY.43 strains. The Uruguayan deletion is like those identified in Delta strains from Poland and Japan but occurs in a different Delta clade. Besides providing proof of the circulation of this large deletion in America, we infer that the 872-deletion arises by the consecutive occurrence of a 6-nucleotide deletion, characteristic of delta strains, and an 866-nucleotide deletion that arose independently in the AY.20 Uruguayan lineage. The largest deletion occurs adjacent to transcription regulatory sequences needed to synthesize the nested set of subgenomic mRNAs that serve as templates for transcription. Our findings support the role of transcription sequences as a hotspot for copy-choice recombination and highlight the remarkable dynamic of SARS-CoV-2 genomes.
Collapse
Affiliation(s)
- Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - María Noel Cortinas
- Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Lucía Calleros
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Victoria Bormida
- Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Natalia Goñi
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Claudia Techera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Joaquín Williman
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Viviana Ramas
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Leticia Coppola
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Cristina Mogdasy
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Héctor Chiparelli
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
34
|
García-García T, Fernández-Rodríguez R, Redondo N, de Lucas-Rius A, Zaldívar-López S, López-Ayllón BD, Suárez-Cárdenas JM, Jiménez-Marín Á, Montoya M, Garrido JJ. Impairment of antiviral immune response and disruption of cellular functions by SARS-CoV-2 ORF7a and ORF7b. iScience 2022; 25:105444. [PMID: 36310646 PMCID: PMC9597514 DOI: 10.1016/j.isci.2022.105444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
SARS-CoV-2, the causative agent of the present COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome, and some have been implicated in facilitating infection and pathogenesis through their interaction with cellular components. Among these proteins, accessory protein ORF7a and ORF7b functions are poorly understood. In this study, A549 cells were transduced to express ORF7a and ORF7b, respectively, to explore more in depth the role of each accessory protein in the pathological manifestation leading to COVID-19. Bioinformatic analysis and integration of transcriptome results identified defined canonical pathways and functional groupings revealing that after expression of ORF7a or ORF7b, the lung cells are potentially altered to create conditions more favorable for SARS-CoV-2, by inhibiting the IFN-I response, increasing proinflammatory cytokines release, and altering cell metabolic activity and adhesion. Based on these results, it is plausible to suggest that ORF7a or ORF7b could be used as biomarkers of progression in this pandemic.
Collapse
Affiliation(s)
- Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Blanca Dies López-Ayllón
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - José M. Suárez-Cárdenas
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
- Corresponding author
| | - Juan J. Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
- Corresponding author
| |
Collapse
|
35
|
Chen D, Zheng Z, Han Z. Expression and Purification of Recombinant SARS-CoV-2 Accessory Protein ORF7a and Functional Analysis of Its Role in Up-Regulating Cytokine Production. COVID 2022; 2:1449-1459. [DOI: 10.3390/covid2100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The severity of coronavirus disease 2019 is closely linked to dysregulated immune responses. The search for viral proteins associated with immune regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to reveal the pathogenicity of the virus. In this study, accessory proteins ORF7a (referred to as ORF7a-1 and ORF7a-2, respectively) from two SARS-related coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, were produced through the denaturing and refolding of inclusion body proteins. The recombinant protein was incubated with alveolar epithelial cells, and the transcription and expression levels of major cytokines were determined by reverse transcription-quantitative PCR and enzyme-linked immunosorbent assay. SARS-related coronavirus ORF7a can up-regulate the transcription and expression of interleukin-6, C-C motif chemokine ligand 8, interferon α, and interferon β. The results also indicated that the two highly conserved ORF7a had certain differences in promoting the transcription and expression of cytokines. The study showed that ORF7a is a virus-encoded immune regulator by alveolar epithelial cells that plays an important role in the pathogenicity of SARS-related coronaviruses.
Collapse
Affiliation(s)
- Dan Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenggang Han
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
36
|
Feng Y, Zhao X, Luo T, Chen Z, Yang H, Chen N, Ma X, Li M, Zhang W, Jia S, Yuan X, Pan M, Zhou L. Emergence of a SARS-CoV-2 Omicron Subvariant BA.2.2 with a 454-Nucleotide Genomic Deletion - Sichuan Province, China, May 10, 2022. China CDC Wkly 2022; 4:904-906. [PMID: 36285323 PMCID: PMC9579981 DOI: 10.46234/ccdcw2022.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuliang Feng
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu City, Sichuan Province, China
| | - Zhixiao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huiping Yang
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China
| | - Na Chen
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China
| | - Xiaozhen Ma
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China
| | - Mingyuan Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu City, Sichuan Province, China
| | - Weihua Zhang
- College of Computer Science, Sichuan University, Chengdu City, Sichuan Province, China
| | - Sikai Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xun Yuan
- Guang’an Center for Disease Control and Prevention, Guang’an City, Sichuan Province, China
| | - Ming Pan
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China,Ming Pan,
| | - Linlin Zhou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu City, Sichuan Province, China,Linlin Zhou,
| |
Collapse
|
37
|
Umair M, Ikram A, Rehman Z, Haider SA, Ammar M, Badar N, Ali Q, Rana MS, Salman M. Genomic diversity of SARS-CoV-2 in Pakistan during the fourth wave of pandemic. J Med Virol 2022; 94:4869-4877. [PMID: 35754094 PMCID: PMC9349642 DOI: 10.1002/jmv.27957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The emergence of different variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in upsurges of coronavirus disease 2019 (COVID-19) cases around the globe. Pakistan faced the fourth wave of COVID-19 from July to August 2021 with 314,786 cases. To understand the genomic diversity of circulating SARS-CoV-2 strains during the fourth wave of the pandemic in Pakistan, this study was conducted. The samples from 140 COVID-19-positive patients were subjected to whole-genome sequencing using the iSeq Sequencer by Illumina. The results showed that 97% (n = 136) of isolates belonged to the delta variant while three isolates belonged to alpha and only one isolate belonged to the beta variant. Among delta variant cases, 20.5% (n = 28) isolates were showing B.1.617.2 while 23.5% (n = 25), 17.59% (n = 19), 14.81% (n = 16), and 13.89% (n = 15) of isolates were showing AY.108, AY.43 AY.127, and AY.125 lineages, respectively. Islamabad was found to be the most affected city with 65% (n = 89) of delta variant cases, followed by Karachi (17%, n = 23), and Rawalpindi (10%, n = 14). Apart from the characteristic spike mutations (T19R, L452R, T478K, P681R, and D950N) of the delta variant, the sublineages exhibited other spike mutations as E156del, G142D, T95I, A222V, G446V, K529N, N532S, Q613H, and V483A. The phylogenetic analysis revealed the introductions from Singapore, the United Kingdom, and Germany. This study highlights the circulation of delta variants (B.1.617.2 and sublineages) during the fourth wave of pandemic in Pakistan.
Collapse
Affiliation(s)
- Massab Umair
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Aamer Ikram
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Zaira Rehman
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Syed A. Haider
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Muhammad Ammar
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Nazish Badar
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Qasim Ali
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Muhammad S. Rana
- Department of VirologyNational Institute of HealthIslamabadPakistan
| | - Muhammad Salman
- Department of VirologyNational Institute of HealthIslamabadPakistan
| |
Collapse
|
38
|
Wang M, Zhao Y, Liu J, Li T. SARS-CoV-2 modulation of RIG-I-MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. MEDCOMM - FUTURE MEDICINE 2022; 1:e29. [PMID: 37521851 PMCID: PMC9878249 DOI: 10.1002/mef2.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 05/27/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is a global infectious disease aroused by RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients may suffer from severe respiratory failure or even die, posing a huge challenge to global public health. Retinoic acid-inducible gene I (RIG-I) is one of the major pattern recognition receptors, function to recognize RNA viruses and mediate the innate immune response. RIG-1 and melanoma differentiation-associated gene 5 contain an N-terminal caspase recruitment domain that is activated upon detection of viral RNA in the cytoplasm of virus-infected cells. Activated RIG-I and mitochondrial antiviral signaling (MAVS) protein trigger a series of corresponding immune responses such as the production of type I interferon against viral infection. In this review, we are summarizing the role of the structural, nonstructural, and accessory proteins from SARS-CoV-2 on the RIG-I-MAVS pathway, and exploring the potential mechanism how SARS-CoV-2 could evade the host antiviral response. We then proposed that modulation of the RIG-I-MAVS signaling pathway might be a novel and effective therapeutic strategy to against COVID-19 as well as the constantly mutating coronavirus.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Department of Clinical Immunology, Institute of Clinical Laboratory MedicineGuangdong Medical UniversityDongguanChina
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| |
Collapse
|
39
|
Shin J, Toyoda S, Fukuhara A, Shimomura I. GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines 2022; 10:biomedicines10081995. [PMID: 36009544 PMCID: PMC9406123 DOI: 10.3390/biomedicines10081995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
The outbreak of coronavirus disease 19 (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in an unprecedented amount of infection cases and deaths, leading to the global health crisis. Despite many research efforts, our understanding of COVID-19 remains elusive. Recent studies have suggested that cell surface glucose-regulated protein 78 (GRP78) acts as a host co-receptor for SARS-CoV-2 infection and is related to COVID-19 risks, such as older age, obesity, and diabetes. Given its significance in a wide range of biological processes, such as protein homeostasis and cellular signaling, GRP78 might also play an important role in various stages of the viral life cycle and pathology of SARS-CoV-2. In this perspective, we explore the emerging and potential roles of GRP78 in SARS-CoV-2 infection. Additionally, we discuss the association with COVID-19 risks and symptoms. We hope this review article will be helpful to understand COVID-19 pathology and promote attention and study of GRP78 from many clinical and basic research fields.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Kazmierski J, Friedmann K, Postmus D, Emanuel J, Fischer C, Jansen J, Richter A, Bosquillon de Jarcy L, Schüler C, Sohn M, Sauer S, Drosten C, Saliba A, Sander LE, Müller MA, Niemeyer D, Goffinet C. Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses. Mol Syst Biol 2022; 18:e10961. [PMID: 35975552 PMCID: PMC9382356 DOI: 10.15252/msb.202210961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.
Collapse
Affiliation(s)
- Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Kirstin Friedmann
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Jackson Emanuel
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Cornelius Fischer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Laure Bosquillon de Jarcy
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Christiane Schüler
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Madlen Sohn
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Sascha Sauer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Antoine‐Emmanuel Saliba
- Helmholtz Institute for RNA‐based Infection Research (HIRI)Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Marcel A Müller
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
41
|
Preliminary Genomic Analysis of the Omicron Variants of SARS-CoV-2 in Central India During the third wave of the COVID-19 Pandemic. Arch Med Res 2022; 53:574-584. [PMID: 36123226 PMCID: PMC9395282 DOI: 10.1016/j.arcmed.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Background Omicron was detected in South Africa for the first time at the month of November 2021, from then it expanded swiftly over the world, outcompeting other SARS-CoV-2 variants such as Delta. The toxicity, resistance to antiviral medicines, transmissibility, and vaccine-induced immunity of newly developed SARS-CoV-2 variants are major worldwide health concerns. Aim of study This study investigates the comprehensive explanation of all mutations and their evolutionary linkages between the Omicron variant and recently discovered SARS‐CoV‐2 variants. Method On Illumina MiniSeq Machine, 31 RNA isolates from clinical specimens were sequenced utilizing next-generation sequencing technique. Different bioinformatics tools have been used to analyze the mutations in omicron variant. A phylogenetic tree was constructed to determine Omicron's evolutionary relationships with other variants. Results In our investigation, we discovered 79 distinct types of mutations in 31 fully vaccinated COVID-19 positive samples. Mostly mutations were found in non-spike region. According to the NJ approach of phylogenetic tree revels, the nearest variants were in the order listed, based on sequence identity: Omicron, Gamma, Alpha, Delta, Mu and Beta. On the other hand as per UPGMA approach, the Omicron variation creates a novel monophyletic clade that is distinct from previous SARS-CoV-2 variants. Conclusion Despite the fact that some of the mutations are prevalent in Omicron and other VOCs, there are several unique mutations that have been connected to the virus's transmissibility and immune evasion, indicating a substantial shift in SARS-CoV-2 evolution.
Collapse
|
42
|
Mahmanzar M, Houseini ST, Rahimian K, Namini AM, Gholamzad A, Tokhanbigli S, Sisakht MM, Farhadi A, Kuehu DL, Deng Y. The First Geographic Identification by Country of Sustainable Mutations of SARS-COV2 Sequence Samples: Worldwide Natural Selection Trends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.18.500565. [PMID: 35898341 PMCID: PMC9327626 DOI: 10.1101/2022.07.18.500565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The high mutation rates of RNA viruses, coupled with short generation times and large population sizes, allow viruses to evolve rapidly and adapt to the host environment. The rapidity of viral mutation also causes problems in developing successful vaccines and antiviral drugs. With the spread of SARS-CoV-2 worldwide, thousands of mutations have been identified, some of which have relatively high incidences, but their potential impacts on virus characteristics remain unknown. The present study analyzed mutation patterns, SARS-CoV-2 AASs retrieved from the GISAID database containing 10,500,000 samples. Python 3.8.0 programming language was utilized to pre-process FASTA data, align to the reference sequence, and analyze the sequences. Upon completion, all mutations discovered were categorized based on geographical regions and dates. The most stable mutations were found in nsp1(8% S135R), nsp12(99.3% P323L), nsp16 (1.2% R216C), envelope (30.6% T9I), spike (97.6% D614G), and Orf8 (3.5% S24L), and were identified in the United States on April 3, 2020, and England, Gibraltar, and, New Zealand, on January 1, 2020, respectively. The study of mutations is the key to improving understanding of the function of the SARS-CoV-2, and recent information on mutations helps provide strategic planning for the prevention and treatment of this disease. Viral mutation studies could improve the development of vaccines, antiviral drugs, and diagnostic assays designed with high accuracy, specifically useful during pandemics. This knowledge helps to be one step ahead of new emergence variants.
Collapse
Affiliation(s)
- Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Seyed Taleb Houseini
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
| | - Karim Rahimian
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics. Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsham Mikaeili Namini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amir Gholamzad
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Samaneh Tokhanbigli
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Amin Farhadi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
43
|
Jelley L, Douglas J, Ren X, Winter D, McNeill A, Huang S, French N, Welch D, Hadfield J, de Ligt J, Geoghegan JL. Genomic epidemiology of Delta SARS-CoV-2 during transition from elimination to suppression in Aotearoa New Zealand. Nat Commun 2022; 13:4035. [PMID: 35821124 PMCID: PMC9274967 DOI: 10.1038/s41467-022-31784-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
New Zealand's COVID-19 elimination strategy heavily relied on the use of genomics to inform contact tracing, linking cases to the border and to clusters during community outbreaks. In August 2021, New Zealand entered its second nationwide lockdown after the detection of a single community case with no immediately apparent epidemiological link to the border. This incursion resulted in the largest outbreak seen in New Zealand caused by the Delta Variant of Concern. Here we generated 3806 high quality SARS-CoV-2 genomes from cases reported in New Zealand between 17 August and 1 December 2021, representing 43% of reported cases. We detected wide geographical spread coupled with undetected community transmission, characterised by the apparent extinction and reappearance of genomically linked clusters. We also identified the emergence, and near replacement, of genomes possessing a 10-nucleotide frameshift deletion that caused the likely truncation of accessory protein ORF7a. By early October, New Zealand moved from an elimination strategy to a suppression strategy and the role of genomics changed markedly from being used to track and trace, towards population-level surveillance.
Collapse
Affiliation(s)
- Lauren Jelley
- Institute of Environmental Science and Research, Wellington, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jordan Douglas
- Centre for Computational Evolution, School of Computer Science, University of Auckland, Auckland, New Zealand
| | - Xiaoyun Ren
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - David Winter
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Andrea McNeill
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Nigel French
- Tāwharau Ora/School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David Welch
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James Hadfield
- Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | - Joep de Ligt
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jemma L Geoghegan
- Institute of Environmental Science and Research, Wellington, New Zealand.
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
44
|
Whole-genome analysis and mutation pattern of SARS-CoV-2 during first and second wave outbreak in Gwangju, Republic of Korea. Sci Rep 2022; 12:11354. [PMID: 35790838 PMCID: PMC9255444 DOI: 10.1038/s41598-022-14989-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
To investigate the specific genomic features and mutation pattern, whole and near-complete SARS-CoV-2 genome sequences were analyzed. Clinical samples were collected from 18 COVID-19–positive patients and subjected to nucleic acid purification. Cell culture was performed to extract various SARS-CoV-2 isolates. Whole-genome analysis was performed using next-generation sequencing, and phylogenetic analyses were conducted to determine genetic diversity of the various SARS-CoV-2 isolates. The next-generation sequencing data identified 8 protein-coding regions with 17 mutated proteins. We identified 51 missense point mutations and deletions in 5′ and 3′ untranslated regions. The phylogenetic analysis revealed that V and GH are the dominant clades of SARS-CoV-2 circulating in the Gwangju region of South Korea. Moreover, statistical analysis confirmed a significant difference between viral load (P < 0.001) and number of mutations (P < 0.0001) in 2 mutually exclusive SARS-CoV-2 clades which indicates frequent genomic alterations in SARS-CoV-2 in patients with high viral load. Our results provide an in-depth analysis of SARS-COV-2 whole genome which we believe, can shed light in the understanding of SARS-COV-2 pathogenesis and mutation pattern which can aid in the development of prevention methods as well as future research into the pathogenesis of SARS-CoV-2 and therapeutic development.
Collapse
|
45
|
Quaglia F, Salladini E, Carraro M, Minervini G, Tosatto SCE, Le Mercier P. SARS-CoV-2 variants preferentially emerge at intrinsically disordered protein sites helping immune evasion. FEBS J 2022; 289:4240-4250. [PMID: 35108439 PMCID: PMC9542094 DOI: 10.1111/febs.16379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
The SARS‐CoV‐2 pandemic is maintained by the emergence of successive variants, highlighting the flexibility of the protein sequences of the virus. We show that experimentally determined intrinsically disordered regions (IDRs) are abundant in the SARS‐CoV‐2 viral proteins, making up to 28% of disorder content for the S1 subunit of spike and up to 51% for the nucleoprotein, with the vast majority of mutations occurring in the 13 major variants mapped to these IDRs. Strikingly, antigenic sites are enriched in IDRs, in the receptor‐binding domain (RBD) and in the N‐terminal domain (NTD), suggesting a key role of structural flexibility in the antigenicity of the SARS‐CoV‐2 protein surface. Mutations occurring in the S1 subunit and nucleoprotein (N) IDRs are critical for immune evasion and antibody escape, suggesting potential additional implications for vaccines and monoclonal therapeutic strategies. Overall, this suggests the presence of variable regions on S1 and N protein surfaces, which confer sequence and antigenic flexibility to the virus without altering its protein functions.
Collapse
Affiliation(s)
- Federica Quaglia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy.,Department of Biomedical Sciences, University of Padova, Italy
| | | | - Marco Carraro
- Department of Biomedical Sciences, University of Padova, Italy
| | | | | | - Philippe Le Mercier
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
46
|
Eskandarzade N, Ghorbani A, Samarfard S, Diaz J, Guzzi PH, Fariborzi N, Tahmasebi A, Izadpanah K. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Comput Biol Med 2022; 146:105575. [PMID: 35533462 PMCID: PMC9055686 DOI: 10.1016/j.compbiomed.2022.105575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2, the causal agent of COVID-19, is primarily a pulmonary virus that can directly or indirectly infect several organs. Despite many studies carried out during the current COVID-19 pandemic, some pathological features of SARS-CoV-2 have remained unclear. It has been recently attempted to address the current knowledge gaps on the viral pathogenicity and pathological mechanisms via cellular-level tropism of SARS-CoV-2 using human proteomics, visualization of virus-host protein-protein interactions (PPIs), and enrichment analysis of experimental results. The synergistic use of models and methods that rely on graph theory has enabled the visualization and analysis of the molecular context of virus/host PPIs. We review current knowledge on the SARS-COV-2/host interactome cascade involved in the viral pathogenicity through the graph theory concept and highlight the hub proteins in the intra-viral network that create a subnet with a small number of host central proteins, leading to cell disintegration and infectivity. Then we discuss the putative principle of the "gene-for-gene and "network for network" concepts as platforms for future directions toward designing efficient anti-viral therapies.
Collapse
Affiliation(s)
- Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran,Corresponding author
| | - Samira Samarfard
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT, 0828, Australia
| | - Jose Diaz
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Pietro H. Guzzi
- Department of Medical and Surgical Sciences, Laboratory of Bioinformatics Unit, Italy
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
47
|
Yang Y, Dufault-Thompson K, Salgado Fontenele R, Jiang X. Putative Host-Derived Insertions in the Genomes of Circulating SARS-CoV-2 Variants. mSystems 2022; 7:e0017922. [PMID: 35582907 PMCID: PMC9239191 DOI: 10.1128/msystems.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data from SARS-CoV-2-infected cells, we show that viral-host chimeric RNAs are formed through what are likely stochastic RNA-dependent RNA polymerase template-switching events. Through an analysis of the publicly available GISAID SARS-CoV-2 genome collection, we identified two genomic insertions in circulating SARS-CoV-2 variants that are identical to regions of the human 18S and 28S rRNAs. These results provide direct evidence of the formation of viral-host chimeric sequences and the integration of host genetic material into the SARS-CoV-2 genome, highlighting the potential importance of host-derived insertions in viral evolution. IMPORTANCE Throughout the COVID-19 pandemic, the sequencing of SARS-CoV-2 genomes has revealed the presence of insertions in multiple globally circulating lineages of SARS-CoV-2, including the Omicron variant. The human genome has been suggested to be the source of some of the larger insertions, but evidence for this kind of event occurring is still lacking. Here, we leverage direct RNA sequencing data and SARS-CoV-2 genomes to show that host-viral chimeric RNAs are generated in infected cells and two large genomic insertions have likely been formed through the incorporation of host rRNA fragments into the SARS-CoV-2 genome. These host-derived insertions may increase the genetic diversity of SARS-CoV-2 and expand its strategies to acquire genetic material, potentially enhancing its adaptability, virulence, and spread.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Abdullaev A, Abdurakhimov A, Mirakbarova Z, Ibragimova S, Tsoy V, Nuriddinov S, Dalimova D, Turdikulova S, Abdurakhmonov I. Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan. PLoS One 2022; 17:e0270314. [PMID: 35759503 PMCID: PMC9236271 DOI: 10.1371/journal.pone.0270314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Tracking temporal and spatial genomic changes and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are among the most urgent research topics worldwide, which help to elucidate the coronavirus disease 2019 (COVID-19) pathogenesis and the effect of deleterious variants. Our current study concentrates genetic diversity of SARS-CoV-2 variants in Uzbekistan and their associations with COVID-19 severity. Thirty-nine whole genome sequences (WGS) of SARS-CoV-2 isolated from PCR-positive patients from Tashkent, Uzbekistan for the period of July-August 2021, were generated and further subjected to further genomic analysis. Genome-wide annotations of clinical isolates from our study have revealed a total of 223 nucleotide-level variations including SNPs and 34 deletions at different positions throughout the entire genome of SARS-CoV-2. These changes included two novel mutations at the Nonstructural protein (Nsp) 13: A85P and Nsp12: Y479N, which were unreported previously. There were two groups of co-occurred substitution patterns: the missense mutations in the Spike (S): D614G, Open Reading Frame (ORF) 1b: P314L, Nsp3: F924, 5`UTR:C241T; Nsp3:P2046L and Nsp3:P2287S, and the synonymous mutations in the Nsp4:D2907 (C8986T), Nsp6:T3646A and Nsp14:A1918V regions, respectively. The "Nextstrain" clustered the largest number of SARS-CoV-2 strains into the Delta clade (n = 32; 82%), followed by two Alpha-originated (n = 4; 10,3%) and 20A (n = 3; 7,7%) clades. Geographically the Delta clade sample sequences were grouped into several clusters with the SARS-CoV genotypes from Russia, Denmark, USA, Egypt and Bangladesh. Phylogenetically, the Delta isolates in our study belong to the two main subclades 21A (56%) and 21J (44%). We found that females were more affected by 21A, whereas males by 21J variant (χ2 = 4.57; p ≤ 0.05, n = 32). The amino acid substitution ORF7a:P45L in the Delta isolates found to be significantly associated with disease severity. In conclusion, this study evidenced that Identified novel substitutions Nsp13: A85P and Nsp12: Y479N, have a destabilizing effect, while missense substitution ORF7a: P45L significantly associated with disease severity.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Tsoy
- Center for Advanced Technologies, Tashkent, Uzbekistan
| | | | | | | | - Ibrokhim Abdurakhmonov
- Center for Advanced Technologies, Tashkent, Uzbekistan
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Qibray Region, Tashkent, Republic of Uzbekistan
| |
Collapse
|
49
|
Brinkac L, Diepold S, Mitchell S, Sarnese S, Kolakowski LF, Nelson WM, Jennings K. SARS-CoV-2 Delta variant isolates from vaccinated individuals. BMC Genomics 2022; 23:417. [PMID: 35658876 PMCID: PMC9166184 DOI: 10.1186/s12864-022-08652-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The SARS-CoV-2 Delta variant was first identified in the U.S. in March 2021 and has rapidly become the predominant lineage across the U.S. due to increased transmissibility, immune evasion and vaccine breakthrough. The aim of this study was to better understand the genetic diversity and the potential impact of mutations observed in SARS-CoV-2 viruses circulating in the U.S. in vaccinated individuals. RESULTS Whole genome sequencing was performed on thirty-four SARS-CoV-2 positive samples using the Oxford Nanopore MinION. Evolutionary genomic analysis revealed two novel mutations, ORF1b:V2354F and a premature stop codon, ORF7a:Q94*, identified in a cluster of SARS-CoV-2 Delta isolates collected from vaccinated individuals in Colorado. The ORF1b:V2354F mutation, corresponding to NSP15:V303F, may induce a conformational change and result in a disruption to a flanking beta-sheet structure. The premature stop codon, ORF7a:Q94*, truncates the transmembrane protein and cytosolic tail used to mediate protein transport. This may affect protein localization to the ER-Golgi. In addition to these novel mutations, the cluster of vaccinated isolates contain an additional mutation in the spike protein, at position 112, compared to the Delta variant defining mutations. This mutation, S112L, exists in isolates previously obtained in the U.S. The S112L mutation substitutes a bulky hydrophobic side chain for a polar side chain, which results in a non-conservative substitution within the protein that may affect antibody-binding affinity. Additionally, the vaccinated cluster of isolates contains non-synonymous mutations within ORF8 and NSPs which further distinguish this cluster from the respective ancestral Delta variant. CONCLUSIONS These results show there is an emerging sub-lineage of the ancestral Delta variant circulating in the U.S. As mutations emerge in constellations, those with a potentially beneficial advantage to the virus may continue to circulate while others will cease.
Collapse
|
50
|
Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022; 145:105436. [PMID: 35366472 PMCID: PMC8942883 DOI: 10.1016/j.compbiomed.2022.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
The causative agent of the COVID-19 pandemic, the SARS-CoV-2 virus has yielded multiple relevant mutations, many of which have branched into major variants. The Omicron variant has a huge similarity with the original viral strain (first COVID-19 strain from Wuhan). Among different genes, the highly variable orf8 gene is responsible for crucial host interactions and has undergone multiple mutations and indels. The sequence of the orf8 gene of the Omicron variant is, however, identical with the gene sequence of the wild type. orf8 modulates the host immunity making it easier for the virus to conceal itself and remain undetected. Variants seem to be deleting this gene without affecting the viral replication. While analyzing, we came across the conserved orf7a gene in the viral genome which exhibits a partial sequence homology as well as functional similarity with the SARS-CoV-2 orf8. Hence, we have proposed here in our hypothesis that, orf7a might be an alternative reserve of orf8 present in the virus which was compensating for the lost gene. A computational approach was adopted where we screened various miRNAs targeted against the orf8 gene. These miRNAs were then docked onto the orf8 mRNA sequences. The same set of miRNAs was then used to check for their binding affinity with the orf7a reference mRNA. Results showed that miRNAs targeting the orf8 had favorable shape complementarity and successfully docked with the orf7a gene as well. These findings provide a basis for developing new therapeutic approaches where both orf8 and orf7a can be targeted simultaneously.
Collapse
Affiliation(s)
| | | | | | - Kousalya Lavudi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sriram Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swati Sharma
- School of Biotechnology, KIIT University, Bhubaneswar, India,Dept. of Skill Buildings Shri Ramasamy Memorial University, Sikkim, Gangtok, 737102, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India,Corresponding author. School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|