1
|
Roesch A, Hiemenz C, Findley T, Goldberg I, Windisch R, Wichmann C, Kersten G, Menzen T. Stability of Jurkat cells during short-term liquid storage analyzed by flow imaging microscopy. Eur J Pharm Biopharm 2025; 211:114703. [PMID: 40154892 DOI: 10.1016/j.ejpb.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The viability of cell-based medicinal products (CBMPs) is a critical quality attribute and must be assessed throughout the product lifecycle to contribute to a safe and potent drug product. In this study, we investigated the impact of short-term liquid storage conditions, encountered during manufacturing of CBMPs, such as holding times outside cell culture conditions and medium composition, on cell viability. As a model for T cells Jurkat cells were used and stored in different storage media for up to 24 h outside a freezer and outside of cell culture conditions. The effect of storage in different storage media, i.e., cell culture medium or phosphate buffered saline (PBS), dimethyl sulfoxide (DMSO) at different storage temperatures as well as the impact of pH on the cell viability was assessed. The viability of the cells was assessed by (i) flow cytometry with an Annexin V and CalceinAM staining or (ii) machine learning tools, leveraging the morphological information of flow imaging microscopy images. Cell images obtained by flow imaging microscopy were analyzed with both the ParticleSentryAI imaging software and a convolutional neural network (CNN) for fast and semi-automated viability assessment. Throughout storage conditions similar to those during processing of CBMPs, a decrease in cell viability was observed over time for all conditions based on Annexin V and CalceinAM staining. Additionally, we observed a damaging effect of DMSO over time, whereas this effect was more pronounced at room temperature compared to refrigerated temperatures. The ParticleSentryAI software was useful to detect qualitative differences in the cell viability as a shift towards non-viable cells could be observed throughout storage based on flow imaging microscopy images without prior sample preparation. Viability determination based on the CNN underestimated cell viability when compared to the flow cytometry assays, however the same trends were determined. In summary, non-frozen storage of CBMPs should be kept to a minimum. However, standing times throughout the manufacturing of CBMPs as well as during in-use cannot be completely avoided and therefore, the optimal storage conditions have to be carefully evaluated. Additionally, further analytical development is needed to implement machine learning tools suitable for reliable viability quantification without additional sample preparation such as staining.
Collapse
Affiliation(s)
- Alexandra Roesch
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Cornelia Hiemenz
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Teresa Findley
- ViQi Inc., 315 Meigs Road, Suite A261, Santa Barbara, CA 93109, United States
| | - Ilya Goldberg
- ViQi Inc., 315 Meigs Road, Suite A261, Santa Barbara, CA 93109, United States
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Gideon Kersten
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Abraham J, D'Souza A, Bhat AK, Kalthur SG, Pandey AK, Andrade LS, Pillay M, Ankolekar VH, Prabhath S, Punja R. Comparative histologic assessment of fetal cadaveric tissue preserved using the modified saturated salt solution. Morphologie 2025; 109:100970. [PMID: 40339451 DOI: 10.1016/j.morpho.2025.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION The modified saturated salt solution is currently used for embalming to improve the limitations of the existing saturated salt solution. However, the histological characteristics of cadaveric tissue embalmed with the modified saturated salt solution are unknown. Hence, the study examined the histological characteristics of cadaveric tissue embalmed with modified saturated salt solution, formaldehyde, and saturated salt solution. METHODS A year-long experiment involved four groups of fetuses, each containing four, older than 28 weeks of gestational age. The first group was embalmed with 18-20% formaldehyde followed by immersion, the second group was embalmed with the modified saturated salt solution followed by immersion, the third group was embalmed with modified saturated salt solution and placed in a refrigerated chamber, and the fourth group was embalmed with saturated salt solution and immersed in the same solution. Fixation and staining were performed, and microscopy was followed. Experts compared the histological appearances of five tissues across four embalming groups using a checklist, and data was analysed using Kruskal-Wallis and Dunn's categorical tests. RESULTS Modified saturated salt solution showed comparable results with formaldehyde and saturated salt solution, but modified saturated salt solution immersion showed higher quality results than modified saturated salt solution cold storage for most histology criteria. Furthermore, lung tissue is the most affected by the different fixatives for all criteria. CONCLUSION Modifying saturated salt solution has improved its ability to preserve fetal tissues, with the immersion technique proving promising for maintaining histological qualities.
Collapse
Affiliation(s)
- J Abraham
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - A D'Souza
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - A K Bhat
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - S G Kalthur
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - A K Pandey
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - L S Andrade
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - M Pillay
- Department of Anatomy, Amrita School of Medicine, Kochi, Kerala, India.
| | - V H Ankolekar
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - S Prabhath
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - R Punja
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Ongwae GM, Liu Z, Feng S, Chordia MD, Sharifian Gh M, Dash R, Dalesandro BE, Guo T, Sharpless KB, Dong J, Siegrist MS, Im W, Pires MM. Click-Based Determination of Accumulation of Molecules in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.20.545103. [PMID: 40027664 PMCID: PMC11870406 DOI: 10.1101/2023.06.20.545103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Gram-negative bacterial pathogens pose a significant challenge in drug development due to their outer membranes, which impede the permeation of small molecules. The lack of widely adoptable methods to measure the cytosolic accumulation of compounds in bacterial cells has hindered drug discovery efforts. To address this challenge, we developed the CHloroalkane Azide Membrane Permeability (CHAMP) assay, specifically designed to assess molecule accumulation in the cytosol of Gram-negative bacteria. The CHAMP analysis utilizes biorthogonal epitopes anchored within HaloTag-expressing bacteria and measures the cytosolic arrival of azide-bearing test molecules through strain-promoted azide-alkyne cycloaddition. This workflow allows for robust and rapid accumulation measurements of thousands of azide-tagged small molecules. Our approach consistently yields a large number of accumulation profiles, significantly exceeding the scale of previous measurements in Escherichia coli ( E. coli ). We have validated the CHAMP assay across various chemical and biological contexts, including hyperporinated cells, membrane-permeabilized cells, and E. coli strains with impaired TolC function, a key component of the efflux pump. The CHAMP platform provides a simple, high-throughput, and accessible method that enables the analysis of over 1,000 molecules within hours. This technique addresses a critical gap in antimicrobial research, potentially accelerating the development of effective agents against Gram-negative pathogens.
Collapse
|
4
|
Carré J, Demont Y, Mouton C, Vayne C, Guéry E, Voyer A, Garçon L, Le Guyader M, Demagny J. Imaging flow cytometry as a novel approach for the diagnosis of heparin-induced thrombocytopenia. Br J Haematol 2025; 206:666-674. [PMID: 39658032 PMCID: PMC11829136 DOI: 10.1111/bjh.19945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Heparin-induced thrombocytopenia (HIT) is an adverse reaction characterized by anti-PF4-heparin antibody generation and hypercoagulability. Imaging flow cytometry (IFC) provides a detailed morphological analysis of platelets, which change upon activation. We evaluated IFC-derived morphometric features to detect platelet activation and developed a functional assay for HIT diagnosis. We analysed blood samples from 42 patients with suspected HIT and extracted platelet size, shape and texture features using IFC. The morphological features were compared with CD62P expression, light transmission aggregometry (LTA) and a serotonin release assay (SRA) in terms of their ability to predict a HIT diagnosis. Five IFC-derived morphological features (area, circularity, contrast, diameter and major axis) significantly distinguished resting from activated platelets. The major axis feature performed best for HIT diagnosis, with a sensitivity of 89.3% and a specificity of 92.9% versus functional assays (LTA/SRA); this diagnostic performance was similar to that of CD62P expression on the same platelet donors. The area and diameter had similar specificity (92.9%) and a slightly lower sensitivity (85.7%). The morphological features associated with platelet activation might be effective markers for the diagnosis of HIT, matching platelet CD62P expression assay performance. The high-throughput IFC exploration of platelet activation offers new perspectives in label-free analysis and time-saving.
Collapse
Affiliation(s)
- Julie Carré
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieAmiensFrance
| | - Yohann Demont
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieAmiensFrance
| | - Christine Mouton
- Laboratoire d'HématologieHôpital Haut‐Lévêque, CHU BordeauxBordeauxFrance
| | - Caroline Vayne
- Service d'Hématologie‐HémostaseCHRU ToursToursFrance
- INSERM UMR1327 Ischemia, Université de ToursToursFrance
| | | | - Annelise Voyer
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieAmiensFrance
| | - Loïc Garçon
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieAmiensFrance
- HEMATIM UR666, Jules Verne University of PicardieAmiensFrance
| | | | - Julien Demagny
- Service d'Hématologie BiologiqueCHU Amiens‐PicardieAmiensFrance
- HEMATIM UR666, Jules Verne University of PicardieAmiensFrance
| |
Collapse
|
5
|
Kenry. Machine-learning-guided quantitative delineation of cell morphological features and responses to nanomaterials. NANOSCALE 2024; 16:19656-19668. [PMID: 39373030 DOI: 10.1039/d4nr02466d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Delineation of cell morphological features is essential to decipher cell responses to external stimuli like theranostic nanomaterials. Conventional methods rely on labeled approaches, such as fluorescence imaging and flow cytometry, to assess cell responses. Besides potentially perturbing cell structure and morphology, these approaches are relatively complex, time-consuming, expensive, and may not be compatible with downstream analysis involving live cells. Herein, leveraging label-free phase-contrast or brightfield microscopy imaging and machine learning, the delineation of different cell types, phenotypes, and states for monitoring live cell responses is reported. Notably, pixel classification based on a supervised random forest classifier is used to distinguish between cells and backgrounds from the microscopy images, followed by cell segmentation and morphological feature extraction. Quantitative analysis shows that most of the compared cell groups have distinguishable size and shape features. Principal component analysis and unsupervised k-means clustering of morphological features reveal the possible existence of heterogenous cell subpopulations and treatment responses among the seemingly homogenous cell groups. This shows the merit of the reported approach in complementing conventional techniques for cell analysis. It is anticipated that the demonstrated method will further aid the implementation of machine learning to streamline the analysis of cell morphology and responses for early disease diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Kenry
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Dubey AK, Sardana D, Verma T, Alam P, Chattopadhyay A, Nandini SS, Khamari B, Bulagonda EP, Sen S, Nandi D. Quantifying Membrane Alterations with Tailored Fluorescent Dyes: A Rapid Antibiotic Resistance Profiling Methodology. ACS Infect Dis 2024; 10:2836-2859. [PMID: 39024306 DOI: 10.1021/acsinfecdis.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.
Collapse
Affiliation(s)
- Ashim Kumar Dubey
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Deepika Sardana
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taru Verma
- Centre for BioSystems, Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
7
|
Swain N, Sharma S, Maitra R, Saxena D, Kautu A, Singh R, Kesharwani K, Chopra S, Joshi KB. Antimicrobial peptide mimetic minimalistic approach leads to very short peptide amphiphiles-gold nanostructures for potent antibacterial activity. ChemMedChem 2024; 19:e202300576. [PMID: 38301146 DOI: 10.1002/cmdc.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.
Collapse
Affiliation(s)
- Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rahul Maitra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
- Current address: Colorado State University USA
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
8
|
Zhang C, Manley S. Super-Resolution Microscopy of the Bacterial Cell Wall Labeled by Fluorescent D-Amino Acids. Methods Mol Biol 2024; 2727:83-94. [PMID: 37815710 DOI: 10.1007/978-1-0716-3491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Fluorescent D-amino acids (FDAAs) enable in situ visualization of bacterial cell wall synthesis via their incorporation into peptidoglycan (PG) crosslinks. When combined with super-resolution microscopy, FDAAs allow the details of cell wall synthesis to be resolved beyond the diffraction limit of visible light. Here, we describe using the super-resolution method of single-molecule localization microscopy (SMLM) in conjunction with two newly synthesized FDAAs (sCy5DA and sCy5DL_amide) to resolve bacterial PG at the nanoscale in a variety of species, including Gram-negative, Gram-positive, and mycobacteria.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suliana Manley
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Roller BRK, Hellerschmied C, Wu Y, Miettinen TP, Gomez AL, Manalis SR, Polz MF. Single-cell mass distributions reveal simple rules for achieving steady-state growth. mBio 2023; 14:e0158523. [PMID: 37671861 PMCID: PMC10653891 DOI: 10.1128/mbio.01585-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Microbiologists have watched clear liquid turn cloudy for over 100 years. While the cloudiness of a culture is proportional to its total biomass, growth rates from optical density measurements are challenging to interpret when cells change size. Many bacteria adjust their size at different steady-state growth rates, but also when shifting between starvation and growth. Optical density cannot disentangle how mass is distributed among cells. Here, we use single-cell mass measurements to demonstrate that a population of cells in batch culture achieves a stable mass distribution for only a short period of time. Achieving steady-state growth in rich medium requires low initial biomass concentrations and enough time for individual cell mass accumulation and cell number increase via cell division to balance out. Steady-state growth is important for reliable cell mass distributions and experimental reproducibility. We discuss how mass variation outside of steady-state can impact physiology, ecology, and evolution experiments.
Collapse
Affiliation(s)
- Benjamin R. K. Roller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Cathrine Hellerschmied
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Yanqi Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Annika L. Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Martin F. Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Auria E, Hunault L, England P, Monot M, Pipoli Da Fonseca J, Matondo M, Duchateau M, Tremblay YDN, Dupuy B. The cell wall lipoprotein CD1687 acts as a DNA binding protein during deoxycholate-induced biofilm formation in Clostridioides difficile. NPJ Biofilms Microbiomes 2023; 9:24. [PMID: 37169797 PMCID: PMC10175255 DOI: 10.1038/s41522-023-00393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
The ability of bacterial pathogens to establish recurrent and persistent infections is frequently associated with their ability to form biofilms. Clostridioides difficile infections have a high rate of recurrence and relapses and it is hypothesized that biofilms are involved in its pathogenicity and persistence. Biofilm formation by C. difficile is still poorly understood. It has been shown that specific molecules such as deoxycholate (DCA) or metronidazole induce biofilm formation, but the mechanisms involved remain elusive. In this study, we describe the role of the C. difficile lipoprotein CD1687 during DCA-induced biofilm formation. We showed that the expression of CD1687, which is part of an operon within the CD1685-CD1689 gene cluster, is controlled by multiple transcription starting sites and some are induced in response to DCA. Only CD1687 is required for biofilm formation and the overexpression of CD1687 is sufficient to induce biofilm formation. Using RNAseq analysis, we showed that CD1687 affects the expression of transporters and metabolic pathways and we identified several potential binding partners by pull-down assay, including transport-associated extracellular proteins. We then demonstrated that CD1687 is surface exposed in C. difficile, and that this localization is required for DCA-induced biofilm formation. Given this localization and the fact that C. difficile forms eDNA-rich biofilms, we confirmed that CD1687 binds DNA in a non-specific manner. We thus hypothesize that CD1687 is a component of the downstream response to DCA leading to biofilm formation by promoting interaction between the cells and the biofilm matrix by binding eDNA.
Collapse
Affiliation(s)
- Emile Auria
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Lise Hunault
- Institut Pasteur, Université Paris-Cité, INSERM UMR1222, Unit of Antibodies in Therapy and Pathology, Paris, France
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Marc Monot
- Plateforme Technologique Biomics, Institut Pasteur, Paris, France
| | | | | | | | - Yannick D N Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France.
| |
Collapse
|
12
|
Nazareth SC, Rao S, Cheng LW, Wang PC, Chen SC. Nocardia seriolae cell wall lipids: An effective protective mechanism in resistance and virulence. JOURNAL OF FISH DISEASES 2023; 46:405-416. [PMID: 36628981 DOI: 10.1111/jfd.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Piscine nocardiosis, caused by Nocardia seriolae, is a refractory granulomatous disease in South-East Asian aquaculture. This study investigates the virulence of nocardial lipids essential for pathogenesis among Actinomycetes. Petroleum ether (PE) was used to selectively delipidate two groups of N. seriolae, namely, live cell (LC) and killed cell (KC); resulting in delipidated live cell (DLC) and delipidated killed cell (DKC), respectively. Changes post-delipidation on genus characteristics, such as loss in acid-fast nature and resistance to lysozyme were observed. Transmission electron microscopy revealed notable changes in the lipid layer. Additionally, Lates calcarifer, Asian seabass intraperitoneally injected with LC and DLC had mortality rates of 90% and 50%, respectively, with the latter exhibiting a delay in mortality. Reverse-transcription quantitative PCR (RT-qPCR) analysis of host cytokines from the spleen and head kidney showed delipidation contributed to the induction of an immune response with increased transcriptional levels of interferon-γ (ifn-γ). Histopathological samples collected on day 7 post-inoculation displayed a varied granulomatous response between the treatment groups and scored for pathological changes. These findings affirm that the virulence of the lipids remains independent of the living state of the cell, significantly altering the immune and granulomatous responses in L. calcarifer to N. seriolae.
Collapse
Affiliation(s)
- Sandra Celenia Nazareth
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shreesha Rao
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Wu Cheng
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Danusso R, Rosati R, Possenti L, Lombardini E, Gigli F, Costantino ML, Ferrazzi E, Casagrande G, Lattuada D. Human umbilical cord blood cells suffer major modification by fixatives and anticoagulants. Front Physiol 2023; 14:1070474. [PMID: 37008002 PMCID: PMC10050555 DOI: 10.3389/fphys.2023.1070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Developing techniques for the tagless isolation of homogeneous cell populations in physiological-like conditions is of great interest in medical research. A particular case is Gravitational Field-Flow Fractionation (GrFFF), which can be run avoiding cell fixation, and that was already used to separate viable cells. Cell dimensions have a key role in this process. However, their dimensions under physiological-like conditions are not easily known since the most diffused measurement techniques are performed on fixed cells, and the fixation used to preserve tissues can alter the cell size. This work aims to obtain and compare cell size data under physiological-like conditions and in the presence of a fixative.Methods: We developed a new protocol that allows the analysis of blood cells in different conditions. Then, we applied it to obtain a dataset of human cord blood cell dimensions from 32 subjects, comparing two tubes with anticoagulants (EDTA and Citrate) and two tubes with different preservatives (CellRescue and CellSave). We analyzed a total of 2071 cells by using confocal microscopy via bio-imaging to assess dimensions (cellular and nuclear) and morphology.Results: Cell diameter measured does not differ when using the different anticoagulants, except for the increase reported for monocyte in the presence of citrate. Instead, cell dimensions differ when comparing anticoagulants and cell preservative tubes, with a few exceptions. Cells characterized by high cytoplasm content show a reduction in their size, while morphology appears always preserved. In a subgroup of cells, 3D reconstruction was performed. Cell and nucleus volumes were estimated using different methods (specific 3D tool or reconstruction from 2D projection).Discussion: We found that some cell types benefit from a complete 3D analysis because they contain non-spherical structures (mainly for cells characterized by poly-lobated nucleus). Overall, we showed the effect of the preservatives mixture on cell dimensions. Such an effect must be considered when dealing with problems highly dependent on cell size, such as GrFFF. Additionally, such information is crucial in computational models increasingly being employed to simulate biological events.
Collapse
Affiliation(s)
- Roberta Danusso
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Riccardo Rosati
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Possenti
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Elena Lombardini
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Gigli
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Laura Costantino
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Enrico Ferrazzi
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giustina Casagrande
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Debora Lattuada
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- *Correspondence: Debora Lattuada,
| |
Collapse
|
14
|
Abstract
Expansion microscopy enables super-resolved visualization of specimen without the need of highly sophisticated and expensive optical instruments. Instead, the method is executed with conventional chemicals and lab equipment. Imaging of bacteria is performed using standard fluorescence microscopy. This chapter describes a protocol for the expansion microscopy of Bacillus subtilis expressing DivIVA-GFP. In addition, the cell wall was labeled by wheat germ agglutinin. Here, we place emphasis on the challenges of selecting the protein and organism of interest.
Collapse
Affiliation(s)
- Viola Middelhauve
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
16
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
17
|
Fornasaro S, Esposito A, Florian F, Pallavicini A, De Leo L, Not T, Lagatolla C, Mezzarobba M, Di Silvestre A, Sergo V, Bonifacio A. Spectroscopic investigation of faeces with surface-enhanced Raman scattering: a case study with coeliac patients on gluten-free diet. Anal Bioanal Chem 2022; 414:3517-3527. [PMID: 35258650 PMCID: PMC9018641 DOI: 10.1007/s00216-022-03975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectra of faecal samples can be obtained by adding AuNP to their methanol extracts according to the reported protocol, and display bands that are due to bilirubin-like species but also to xanthine and hypoxanthine, two metabolic products secreted by gut bacteria. A total of 27 faecal samples from three different groups, i.e. coeliac patients (n = 9), coeliac patients on gluten-free diet (n = 10) and a control group (n = 8), were characterized with both SERS spectroscopy and 16S rRNA sequencing analysis. Significant differences are present between SERS spectra of coeliac patients and those on gluten-free diet, with a marked increase in the relative intensity of both xanthine and hypoxanthine for the latter. Interestingly, these differences do not correlate with bacterial composition as derived from 16S rRNA sequencing.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alessandro Esposito
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Luigina De Leo
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Tarcisio Not
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Marica Mezzarobba
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alessia Di Silvestre
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Valter Sergo
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alois Bonifacio
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy.
| |
Collapse
|
18
|
Behrmann MS, Trakselis MA. In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli. Methods Enzymol 2022; 672:125-142. [DOI: 10.1016/bs.mie.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|