1
|
Johny J, Diallo S, Nadachowska-Brzyska K, Moliterno AAC, Roy A, Kalinová B, Große-Wilde E, Schlyter F. Not All Bark Beetles Smell the Same: Population-Level Functional Olfactory Polymorphisms in Ips typographus Pheromone Receptor ItypOR33. Mol Ecol 2025; 34:e17693. [PMID: 39985145 DOI: 10.1111/mec.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Eurasian spruce bark beetle Ips typographus, a natural part of forest ecosystems, is a major threat to Norway spruce forests during outbreaks. Olfaction plays a crucial role in the survival and range expansion of these beetles, amid forest disturbances and climate change. As the current management strategies are suboptimal for controlling outbreaks, the reverse chemical ecology approaches based on pheromone receptors offer promising alternatives. While the search for pheromone receptors is in progress, recently found chromosomal inversions indicates signs of adaptation in this species. Our attempts to characterise one of the highly expressed odorant receptors, ItypOR33, located in an inversion, led to the discovery of polymorphic variants distributed with similar frequency across 18 European populations. Deorphanizing ItypOR33 and its variant ItypOR33a using the Drosophila empty-neuron system (DeNS) revealed ItypOR33 tuned to amitinol, a heterospecific pheromone component in Ips spp., whereas its variant tuned to (S)-(-)-ipsenol, a conspecific pheromone component of I. typographus. The in silico approaches revealed the structural basis of variations by predicting putative ligand-binding sites, tunnels and ligand-receptor interactions. However, no sex-specific differences were found in the ItypOR33 expression, and its ligand amitinol elicited behavioural and electrophysiological responses. Reporting population-level functional olfactory polymorphisms for the first time in a non-model organism-bark beetles, provides key evidence for further exploring their survival and adaptation in forests. Additionally, these findings indicate potential long-term complexities of managing bark beetles in forests.
Collapse
Affiliation(s)
- Jibin Johny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Souleymane Diallo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | | | | | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Blanka Kalinová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Ewald Große-Wilde
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Fredrik Schlyter
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
2
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
3
|
Ma Y, Si YX, Guo JM, Yang TT, Li Y, Zhang J, Dong SL, Yan Q. Functional Characterization of Odorant Receptors for Sex Pheromone (Z)-11-Hexadecenol in Orthaga achatina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18864-18871. [PMID: 39153187 DOI: 10.1021/acs.jafc.4c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Pheromone receptor (PR)-mediated transduction of sex pheromones to electrophysiological signals is the basis for sex pheromone communication. Orthaga achatina, a serious pest of the camphor tree, uses a mixture of four components (Z11-16:OAc, Z11-16:OH, Z11-16:Ald, and Z3,Z6,Z9,Z12,Z15-23:H) as its sex pheromone. In this study, we identified five PR genes (OachPR1-5) by phylogenetic analysis. Further RT-PCR and qPCR experiments showed that PR1-3 were specifically expressed in male antennae, while PR4 was significantly female-biased in expression. Functional characterization using the XOE-TEVC assay demonstrated that PR1 and PR3 both responded strongly to Z11-16:OH, while PR1 and PR3 had a weak response to Z3,Z6,Z9,Z12,Z15-23:H and Z11-16:Ald, respectively. Finally, two key amino acid residues (N78 and R331) were confirmed to be essential for binding of PR3 with Z11-16:OH by molecular docking and site-directed mutagenesis. This study helps understand the sex pheromone recognition molecular mechanism of O. achatina.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Brajon L, Comte A, Capoduro R, Meslin C, Antony B, Al-Saleh MA, Pain A, Jacquin-Joly E, Montagné N. A conserved pheromone receptor in the American and the Asian palm weevils is also activated by host plant volatiles. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100090. [PMID: 39193175 PMCID: PMC11345504 DOI: 10.1016/j.cris.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil Rhynchophorus ferrugineus. This study compared the response spectra of this receptor, RferOR1, and its ortholog in the American palm weevil R. palmarum, RpalOR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of RpalOR1 confirmed this hypothesis, as RpalOR1 and RferOR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that R. ferrugineus pheromone compounds strongly activated RpalOR1, but we did not evidence any response to the R. palmarum pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.
Collapse
Affiliation(s)
- Ludvine Brajon
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Mohammed Ali Al-Saleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
- Institut universitaire de France (IUF)
| |
Collapse
|
5
|
Wang C, Cao S, Shi C, Guo M, Sun D, Liu Z, Xiu P, Wang Y, Wang G, Liu Y. The novel function of an orphan pheromone receptor reveals the sensory specializations of two potential distinct types of sex pheromones in noctuid moth. Cell Mol Life Sci 2024; 81:259. [PMID: 38878072 PMCID: PMC11335300 DOI: 10.1007/s00018-024-05303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 08/22/2024]
Abstract
Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.
Collapse
Affiliation(s)
- Chenrui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Cao S, Shi C, Wang B, Xiu P, Wang Y, Liu Y, Wang G. Evolutionary shifts in pheromone receptors contribute to speciation in four Helicoverpa species. Cell Mol Life Sci 2023; 80:199. [PMID: 37421463 PMCID: PMC11072504 DOI: 10.1007/s00018-023-04837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Male moths utilize their pheromone communication systems to distinguish potential mates from other sympatric species, which contributes to maintaining reproductive isolation and even drives speciation. The molecular mechanisms underlying the evolution of pheromone communication systems are usually studied between closely-related moth species for their similar but divergent traits associated with pheromone production, detection, and/or processing. In this study, we first identified the functional differentiation in two orthologous pheromone receptors, OR14b, and OR16, in four Helicoverpa species, Helicoverpa armigera, H. assulta, H. zea, and H. gelotopoeon. To understand the substrate response specificity of these two PRs, we performed all-atom molecular dynamics simulations of OR14b and OR16 based on AlphaFold2 structural prediction, and molecular docking, allowing us to predict a few key amino acids involved in substrate binding. These candidate residues were further tested and validated by site-directed mutagenesis and functional analysis. These results together identified two hydrophobic amino acids at positions 164 and 232 are the determinants of the response specificity of HarmOR14b and HzeaOR14b to Z9-14:Ald and Z9-16:Ald by directly interacting with the substrates. Interestingly, in OR16 orthologs, we found that position 66 alone determines the specific binding of Z11-16:OH, likely via allosteric interactions. Overall, we have developed an effective integrated method to identify the critical residues for substrate selectivity of ORs and elucidated the molecular mechanism of the diversification of pheromone recognition systems.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base On Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
7
|
Zhang Y, Han HB, Li YY, Xu LB, Hao LF, Wang H, Wang WH, Gao SJ, Lin KJ. Functional Characterization of Pheromone Receptors in the Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). INSECTS 2023; 14:584. [PMID: 37504590 PMCID: PMC10380584 DOI: 10.3390/insects14070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Lepidopteran insects mainly rely on sex pheromones to complete sexual communications. Pheromone receptors (PRs) are expressed on the olfactory receptor neurons (ORNs) of the sensilla trichodea and play an essential role in sexual communication. Despite extensive investigations into the mechanisms of peripheral recognition of sex pheromones in Lepidoptera, knowledge about these mechanisms in L. sticticalis remains limited. In this study, five candidate LstiPRs were analyzed in a phylogenetic tree with those of other Lepidopteran insects. Electroantennography (EAG) assays showed that the major sex pheromone component E11-14:OAc elicited a stronger antennal response than other compounds in male moths. Moreover, two types of neurons in sensilla trichodea were classified by single sensillum recordings, of which the "a" neuron specifically responded to E11-14:OAc. Five candidate PRs were functionally assayed by the heterologous expression system of Xenopus oocytes, and LstiPR2 responded to the major sex pheromone E11-14:OAc. Our findings suggest that LstiPR2 is a PR sensitive to L. sticticalis's major sex pheromone compound, E11-14:OAc. Furthermore, this study offers valuable insights into the sexual communication behavior of L. sticticalis, forming a foundation for further analysis of the species' central nervous system.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Hai-Bin Han
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Yan-Yan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Lin-Bo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Li-Fen Hao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Hui Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Wen-He Wang
- Forest Farm of Baichengzi of Alukeerqin Banner, Chifeng 024000, China
| | - Shu-Jing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Ke-Jian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
8
|
Li Z, Capoduro R, Bastin–Héline L, Zhang S, Sun D, Lucas P, Dabir-Moghaddam D, François MC, Liu Y, Wang G, Jacquin-Joly E, Montagné N, Meslin C. A tale of two copies: Evolutionary trajectories of moth pheromone receptors. Proc Natl Acad Sci U S A 2023; 120:e2221166120. [PMID: 37155838 PMCID: PMC10193968 DOI: 10.1073/pnas.2221166120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component of the sex pheromone blend is (Z,E)-9,11-tetradecadienyl acetate, which is lacking in other Spodoptera species. It indicates that a major shift occurred in their common ancestor. It has been shown recently in S. littoralis that this compound is detected with high specificity by an atypical pheromone receptor, named SlitOR5. Here, we studied its evolutionary history through functional characterization of receptors from different Spodoptera species. SlitOR5 orthologs in S. exigua and S. frugiperda exhibited a broad tuning to several pheromone compounds. We evidenced a duplication of OR5 in a common ancestor of S. littoralis and S. litura and found that in these two species, one duplicate is also broadly tuned while the other is specific to (Z,E)-9,11-tetradecadienyl acetate. By using ancestral gene resurrection, we confirmed that this narrow tuning evolved only in one of the two copies issued from the OR5 duplication. Finally, we identified eight amino acid positions in the binding pocket of these receptors whose evolution has been responsible for narrowing the response spectrum to a single ligand. The evolution of OR5 is a clear case of subfunctionalization that could have had a determinant impact in the speciation process in Spodoptera species.
Collapse
Affiliation(s)
- Zibo Li
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Rémi Capoduro
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Lucie Bastin–Héline
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
- Laboratoire Reproduction et Développement des plantes, UMR 5667, Ecole Normale Supérieure de Lyon, CNRS, LyonF-69364, France
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Philippe Lucas
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Diane Dabir-Moghaddam
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Marie-Christine François
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Nicolas Montagné
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Camille Meslin
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| |
Collapse
|
9
|
Zhang S, Liu F, Yang B, Liu Y, Wang GR. Functional characterization of sex pheromone receptors in Spodoptera frugiperda, S. exigua, and S. litura moths. INSECT SCIENCE 2023; 30:305-320. [PMID: 35932282 DOI: 10.1111/1744-7917.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Moths possess an extremely sensitive and diverse sex pheromone processing system, in which pheromone receptors (PRs) are essential to ensure communication between mating partners. Functional properties of some PRs are conserved among species, which is important for reproduction. However, functional differentiation has occurred in some homologous PR genes, which may drive species divergence. Here, using genome analysis, 17 PR genes were identified from Spodoptera frugiperda, S. exigua, and S. litura, which belong to 6 homologous groups (odorant receptor [OR]6, 11, 13, 16, 56, and 62); of which 6 PR genes (OR6, OR11, OR13, OR16, OR56, and OR62) were identified in S. frugiperda and S. exigua, and 5 PR genes were identified in S. litura, excluding OR62. Using heterologous expression in Xenopus oocytes, we characterized the functions of PR orthologs including OR6, OR56, and OR62, which have not been clarified in previous studies. OR6 orthologs were specifically tuned to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), and OR62 orthologs were robustly tuned to Z7-12:OAc in S. frugiperda and S. exigua. The optimal ligand for OR56 was Z7-12:OAc in S. frugiperda, but responses were minimal in S. exigua and S. litura. In addition, SfruOR6 was male antennae-specific, whereas SfruOR56 and SfruOR62 were male antennae-biased. Our study further clarified the functional properties of PRs in 3 Spodoptera moth species, providing a comprehensive understanding of the mechanisms of intraspecific communication and interspecific isolation in Spodoptera.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Franco FP, Xu P, Harris BJ, Yarov-Yarovoy V, Leal WS. Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors. eLife 2022; 11:e82922. [PMID: 36511779 PMCID: PMC9799979 DOI: 10.7554/elife.82922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The southern house mosquito, Culex quinquefasciatus, utilizes two odorant receptors, CquiOR10 and CquiOR2, narrowly tuned to oviposition attractants and well conserved among mosquito species. They detect skatole and indole, respectively, with reciprocal specificity. We swapped the transmembrane (TM) domains of CquiOR10 and CquiOR2 and identified TM2 as a specificity determinant. With additional mutations, we showed that CquiOR10A73L behaved like CquiOR2. Conversely, CquiOR2L74A recapitulated CquiOR10 specificity. Next, we generated structural models of CquiOR10 and CquiOR10A73L using RoseTTAFold and AlphaFold and docked skatole and indole using RosettaLigand. These modeling studies suggested space-filling constraints around A73. Consistent with this hypothesis, CquiOR10 mutants with a bulkier residue (Ile, Val) were insensitive to skatole and indole, whereas CquiOR10A73G retained the specificity to skatole and showed a more robust response than the wildtype receptor CquiOR10. On the other hand, Leu to Gly mutation of the indole receptor CquiOR2 reverted the specificity to skatole. Lastly, CquiOR10A73L, CquiOR2, and CquiOR2L74I were insensitive to 3-ethylindole, whereas CquiOR2L74A and CquiOR2L74G gained activity. Additionally, CquiOR10A73G gave more robust responses to 3-ethylindole than CquiOR10. Thus, we suggest the specificity of these receptors is mediated by a single amino acid substitution, leading to finely tuned volumetric space to accommodate specific oviposition attractants.
Collapse
Affiliation(s)
- Flavia P Franco
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Pingxi Xu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Brandon J Harris
- Department of Physiology and Membrane Biology, University of California, DavisDavisUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California, DavisDavisUnited States
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
11
|
Fan XB, Mo BT, Li GC, Huang LQ, Guo H, Gong XL, Wang CZ. Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop pest moth Helicoverpa armigera. BMC Biol 2022; 20:214. [PMID: 36175945 PMCID: PMC9524114 DOI: 10.1186/s12915-022-01411-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Odorant receptors (ORs) as odorant-gated ion channels play a crucial role in insect olfaction. They are formed by a heteromultimeric complex of the odorant receptor co-receptor (Orco) and a ligand-selective Or. Other types of olfactory receptor proteins, such as ionotropic receptors (IRs) and some gustatory receptors (GRs), are also involved in the olfactory system of insects. Orco as an obligatory subunit of ORs is highly conserved, providing an opportunity to systematically evaluate OR-dependent olfactory responses. RESULTS Herein, we successfully established a homozygous mutant (Orco-/-) of Helicoverpa armigera, a notorious crop pest, using the CRISPR/Cas9 gene editing technique. We then compared the olfactory response characteristics of wild type (WT) and Orco-/- adults and larvae. Orco-/- males were infertile, while Orco-/- females were fertile. The lifespan of Orco-/- females was longer than that of WT females. The expressions of most Ors, Irs, and other olfaction-related genes in adult antennae of Orco-/- moths were not obviously affected, but some of them were up- or down-regulated. In addition, there was no change in the neuroanatomical phenotype of Orco-/- moths at the level of the antennal lobe (including the macroglomerular complex region of the male). Using EAG and SSR techniques, we discovered that electrophysiological responses of Orco-/- moths to sex pheromone components and many host plant odorants were absent. The upwind flight behaviors toward sex pheromones of Orco-/- males were severely reduced in a wind tunnel experiment. The oviposition selectivity of Orco-/- females to the host plant (green pepper) has completely disappeared, and the chemotaxis toward green pepper was also lost in Orco-/- larvae. CONCLUSIONS Our study indicates that OR-mediated olfaction is essential for pheromone communication, oviposition selection, and larval chemotaxis of H. armigera, suggesting a strategy in which mate searching and host-seeking behaviors of moth pests could be disrupted by inhibiting or silencing Orco expression.
Collapse
Affiliation(s)
- Xiao-Bin Fan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bao-Tong Mo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guo-Cheng Li
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ling-Qiao Huang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China
| | - Hao Guo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin-Lin Gong
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chen-Zhu Wang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Cao S, Liu Y, Wang G. Protocol to identify ligands of odorant receptors using two-electrode voltage clamp combined with the Xenopus oocytes heterologous expression system. STAR Protoc 2022; 3:101249. [PMID: 35310077 PMCID: PMC8931473 DOI: 10.1016/j.xpro.2022.101249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Two-electrode voltage clamp (TEVC) combined with the Xenopus laevis oocytes heterologous expression system is a powerful electrophysiological tool widely used to study the properties of many transmembrane proteins. Here, we describe a protocol using this combined approach to identify the ligands of odorant receptors that form ligand-gated ion channels. We detail the procedures for site-directed mutagenesis, oocyte microinjection, and TEVC recording. This protocol can also be used to identify the key residues and illustrate the structure-function relationships of these proteins. For complete details on the use and execution of this protocol, please refer to Cao et al. (2021).
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
13
|
Guo H, Huang LQ, Gong XL, Wang CZ. Comparison of functions of pheromone receptor repertoires in Helicoverpa armigera and Helicoverpa assulta using a Drosophila expression system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103702. [PMID: 34942332 DOI: 10.1016/j.ibmb.2021.103702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera and H. assulta are sympatric closely related species sharing two sex pheromone components, (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) but in opposite ratios, 97:3 and 3:97 respectively. This feature makes them a feasible model for studying the evolution of pheromone coding mechanisms of lepidopteran insects. Despite a decade-long study to deorphanize the pheromone receptor (PR) repertoires of the two species, the comparison of the function of all PR orthologs between the two species is incomplete. Moreover, the ligands of OR14 and OR15 have so far not been found, likely due to the missing of the active ligand(s) in the compound panel and/or incompatibility of heterologous expression systems used. In the present study, we expressed the PR repertoires of both Helicoverpa species in Drosophila T1 neurons to comparatively study the function of PRs. Among those PRs, OR13, OR6, and OR14 of both species are functionally conserved and narrowly tuned, and the T1 neurons expressing each of them respond to Z11-16:Ald, (Z)-9-hexadecenol (Z9-16:OH), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), respectively. While HarmOR16-expressing neurons respond strongly to (Z)-9-tetradecenal (Z9-14:Ald) and (Z)-11-hexadecenol (Z11-16:OH), the neurons expressing HassOR16 mainly respond to Z9-14:Ald and also weakly respond to (Z)-9-tetradecenol (Z9-14:OH). Moreover, HarmOR14b-expressing neurons are activated by Z9-14:Ald, whereas HassOR14b-expressing neurons are sensitive to Z9-16:Ald, Z9-14:Ald, and (Z)-9-hexadecenol (Z9-16:OH). In addition, HarmOR15-expressing neurons are selectively responsive to Z9-14:Ald. However, the Drosophila T1 neurons expressing either HarmOR11 or HassOR11 are silent to all of the compounds tested. In summary, except for OR11, we have deorphanized all the PRs of these two Helicoverpa species using a Drosophila expression system and a large panel of pheromone compounds, thereby providing a valuable reference for parsing the code of peripheral coding of pheromones.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|