1
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Ling D, Xiang C, Guolin H, Huisheng S, Xiaohua N. Ellipticine targets FGFR3 to mediate the RAS/MAPK-P38 signalling pathway to induce apoptosis in hepatocellular carcinoma cells. 3 Biotech 2025; 15:111. [PMID: 40191451 PMCID: PMC11968639 DOI: 10.1007/s13205-025-04269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
This study aimed to investigate the toxic effects of ellipticine on liver cancer cells and predict its anti-liver cancer mechanism through network pharmacology, especially by targeting FGFR3 to regulate the RAS/MAPK-P38 signaling pathway, thereby inducing apoptosis of liver cancer cells. The inhibitory effect of ellipticine on the proliferation of HepG2, Huh-7, SMMC7721, BEL-7402, SK-HEP-1, LX-2, and MHCC97H cells was detected by CCK-8 assay, and the IC50 value was calculated. The potential targets of ellipticine were predicted by the database, and the intersection analysis with liver cancer-related targets was performed to construct a protein interaction network (PPI), (KEGG) pathway enrichment analysis, and molecular docking verification. FGFR3 in HepG2 cells was knocked down by siRNA, and the effects on cell proliferation, apoptosis, and ROS levels were observed. The expression changes of FGFR3, RAS, P38, and their phosphorylated forms after ellipticine treatment, as well as the effects of RAS agonist ML-908 and P38 inhibitor PD169316 on cell proliferation, apoptosis, and migration, were detected by Western blotting. Ellipticine has an inhibitory effect on all tested liver cancer cell lines, among which HepG2 has the strongest inhibitory effect, with an IC50 of 5.15 ± 0.25 μM. Ellipticine is predicted to have 32 potential targets, and 5 common targets among the 225 targets related to liver cancer, including PDGFRA, KIT, FGFR3, ERBB2, and STAT3. KEGG analysis showed that these targets are mainly involved in cancer pathways. Molecular docking showed that Ellipticine can bind strongly to FGFR3. FGFR3 expression is highest in HepG2 cells. After knocking down FGFR3, the proliferation ability of HepG2 cells is further weakened, and the addition of apoptosis inhibitor ZVAD can partially restore the proliferation ability. ROS levels increase after Ellipticine treatment, and ROS levels further increase after knocking down FGFR3, and ZVAD treatment can reduce ROS levels. After Ellipticine treatment, the expression levels of FGFR3, RAS, and p-P38 decrease. Ellipticine-induced cell proliferation inhibition and apoptosis were reversed by RAS agonist ML-908, whereas P38 inhibitor PD169316 exacerbated cell apoptosis and migration inhibition. Ellipticine induces apoptosis of liver cancer cells by targeting FGFR3 and inhibiting the RAS/MAPK-P38 signaling pathway. This discovery provides new mechanistic insights into Ellipticine as a liver cancer treatment and may lay the foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Deng Ling
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Chen Xiang
- Department of General Surgery, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Hu Guolin
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Song Huisheng
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| | - Niu Xiaohua
- Department of General Surgery, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Davis E, Avniel-Polak S, Abu-Kamel S, Antman I, Saadoun T, Brim C, Jumaa M, Maron Y, Maimon O, Bel-Ange A, Atlan K, Tzur T, Abu Akar F, Wald O, Izhar U, Hecht M, Grozinsky-Glasberg S, Drier Y. Enhancer landscape of lung neuroendocrine tumors reveals regulatory and developmental signatures with potential theranostic implications. Proc Natl Acad Sci U S A 2024; 121:e2405001121. [PMID: 39361648 PMCID: PMC11474083 DOI: 10.1073/pnas.2405001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Well-differentiated low-grade lung neuroendocrine tumors (lung carcinoids or LNETs) are histopathologically classified as typical and atypical LNETs, but each subtype is still heterogeneous at both the molecular level and its clinical manifestation. Here, we report genome-wide profiles of primary LNETs' cis-regulatory elements by H3K27ac ChIP-seq with matching RNA-seq profiles. Analysis of these regulatory landscapes revealed three regulatory subtypes, independent of the typical/atypical classification. We identified unique differentiation signals that delineate each subtype. The "proneuronal" subtype emerges under the influence of ASCL1, SOX4, and TCF4 transcription factors, embodying a pronounced proneuronal signature. The "luminal-like" subtype is characterized by gain of acetylation at markers of luminal cells and GATA2 activation and loss of LRP5 and OTP. The "HNF+" subtype is characterized by a robust enhancer landscape driven by HNF1A, HNF4A, and FOXA3, with notable acetylation and expression of FGF signaling genes, especially FGFR3 and FGFR4, pivotal components of the FGF pathway. Our findings not only deepen the understanding of LNETs' regulatory and developmental diversity but also spotlight the HNF+ subtype's reliance on FGFR signaling. We demonstrate that targeting this pathway with FGF inhibitors curtails tumor growth both in vitro and in xenograft models, unveiling a potential vulnerability and paving the way for targeted therapies. Overall, our work provides an important resource for studying LNETs to reveal regulatory networks, differentiation signals, and therapeutically relevant dependencies.
Collapse
Affiliation(s)
- Ester Davis
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Shani Avniel-Polak
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Shahd Abu-Kamel
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Israel Antman
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Tsipora Saadoun
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Chava Brim
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Mohammad Jumaa
- Department of Pathology, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Yariv Maron
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Ofra Maimon
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of Oncology, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Anat Bel-Ange
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Karine Atlan
- Department of Pathology, Hadassah Medical Center, Jerusalem9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Firas Abu Akar
- The Edith Wolfson Medical Center, Holon5822012, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
- Department of Thoracic Surgery, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Ori Wald
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
| | - Uzi Izhar
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
| | - Merav Hecht
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Simona Grozinsky-Glasberg
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| |
Collapse
|
4
|
Bazsó A, Szodoray P, Shoenfeld Y, Kiss E. Biomarkers reflecting the pathogenesis, clinical manifestations, and guide therapeutic approach in systemic sclerosis: a narrative review. Clin Rheumatol 2024; 43:3055-3072. [PMID: 39210206 PMCID: PMC11442557 DOI: 10.1007/s10067-024-07123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Systemic sclerosis (SSc) is a progressive autoimmune disorder that mainly affects the skin. There are other clinical manifestations as renal, pulmonary, cardiovascular, and gastrointestinal tract involvements. Based on the skin involvement there are two subtypes of SSc, as limited cutaneous SSc (lSSc) which involves the acral part of the body and diffuse cutaneous SSc (dSSc) resulting in significant skin thickening of the body. Despite of the extensive research the pathomechanism is not fully clarified, how Ssc develops, moreover identifying biomarkers to predict the clinical outcome and prognosis still remains challenging. Circulating biomarkers can be crucial to define the diagnosis, to predict the prognosis and monitor the clinical course. However, only some patients are responsive to the therapy in SSc, and there is a need to reach the ideal therapy for any individual to prevent or slow down the progression in early stages of the disease. In this narrative review, our purpose was to summarize the potential biomarkers in Ssc, describe their role in the diagnosis, pathomechanism, clinical course, organ manifestations, as well as the response to the therapy. Biomarkers assessment aids in the evaluation of disease progression, and disease outcome.
Collapse
Affiliation(s)
- Anna Bazsó
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary.
| | - Péter Szodoray
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Yehuda Shoenfeld
- Reichmann University, Herzelia, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Emese Kiss
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary
- Division of Locomotor System and Rheumatology Prevention, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Yin H, Staples SCR, Pickering JG. The fundamentals of fibroblast growth factor 9. Differentiation 2024; 139:100731. [PMID: 37783652 DOI: 10.1016/j.diff.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Biochemistry, Western University, London, Canada; Department of Medicine, Western University, London, Canada; London Health Sciences Centre, London, Canada.
| |
Collapse
|
6
|
Francalanci P, Giovannoni I, Tancredi C, Gagliardi MG, Palmieri R, Brancaccio G, Spada M, Maggiore G, Pietrobattista A, Monti L, Castellano A, Giustiniani MC, Onetti Muda A, Alaggio R. Histopathological Spectrum and Molecular Characterization of Liver Tumors in the Setting of Fontan-Associated Liver Disease. Cancers (Basel) 2024; 16:307. [PMID: 38254797 PMCID: PMC10813949 DOI: 10.3390/cancers16020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE Univentricular heart is corrected with the Fontan procedure (FP). In the long term, so-called Fontan-associated liver diseases (FALDs) can develop. The aim of this study is to analyze the molecular profile of FALDs. METHODS FALDs between January 1990 and December 2022 were reviewed for histology and immunohistochemistry, laboratory data, and images. Targeted next generation sequencing (NGS), performed on the DNA and RNA of both neoplastic and non-lesional liver tissue, was applied. RESULTS A total of 31/208 nodules > 1 cm in diameter were identified on imaging, but a liver biopsy was available for five patient demonstrating the following: one hepatocellular adenoma (HA), two hepatocellular carcinomas (HCCs), one fibrolamellar carcinoma (FLC), and one intrahepatic cholangiocarcinoma (ICC). Molecular analysis showed a copy number alteration involving FGFR3 in three cases (two HCCs and one ICC) as well as one HCC with a hotspot mutation on the CTNNB1 and NRAS genes. Tumor mutational burden ranged from low to intermediate. A variant of uncertain significance in GNAS was present in two HCCs and in one ICC. The same molecular profile was observed in a non-lesional liver. A DNAJB1-PRKACA fusion was detected only in one FLC. CONCLUSIONS Neoplastic FALDs show some unusual molecular profiles compared with non-Fontan ones. The presence of the same alterations in non-lesional cardiac cirrhosis could contribute to the development of FALD.
Collapse
Affiliation(s)
- Paola Francalanci
- O.U. Pathology, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (I.G.); (C.T.); (A.O.M.); (R.A.)
| | - Isabella Giovannoni
- O.U. Pathology, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (I.G.); (C.T.); (A.O.M.); (R.A.)
| | - Chantal Tancredi
- O.U. Pathology, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (I.G.); (C.T.); (A.O.M.); (R.A.)
| | - Maria Giulia Gagliardi
- DPCCS Adult Congenital Cardiology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.G.G.); (R.P.); (G.B.)
| | - Rosalinda Palmieri
- DPCCS Adult Congenital Cardiology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.G.G.); (R.P.); (G.B.)
| | - Gianluca Brancaccio
- DPCCS Adult Congenital Cardiology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.G.G.); (R.P.); (G.B.)
| | - Marco Spada
- Hepatobiliary and Transplant Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Giuseppe Maggiore
- Hepatology, Gastroenterology, Nutrition, Digestive Endoscopy and Liver Transplantation Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.P.)
| | - Andrea Pietrobattista
- Hepatology, Gastroenterology, Nutrition, Digestive Endoscopy and Liver Transplantation Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.P.)
| | - Lidia Monti
- O.U: Radiology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Aurora Castellano
- Pediatric Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | | | - Andrea Onetti Muda
- O.U. Pathology, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (I.G.); (C.T.); (A.O.M.); (R.A.)
| | - Rita Alaggio
- O.U. Pathology, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (I.G.); (C.T.); (A.O.M.); (R.A.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 00185 Rome, Italy
| |
Collapse
|
7
|
Mun SJ, Hong YH, Shin Y, Lee J, Cho HS, Kim DS, Chung KS, Son MJ. Efficient and reproducible generation of human induced pluripotent stem cell-derived expandable liver organoids for disease modeling. Sci Rep 2023; 13:22935. [PMID: 38129682 PMCID: PMC10739970 DOI: 10.1038/s41598-023-50250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
Genetic liver disease modeling is difficult because it is challenging to access patient tissue samples and to develop practical and relevant model systems. Previously, we developed novel proliferative and functional liver organoids from pluripotent stem cells; however, the protocol requires improvement for standardization and reproducible mass production. Here, we improved the method such that it is suitable for scalable expansion and relatively homogenous production, resulting in an efficient and reproducible process. Moreover, three medium components critical for long-term expansion were defined. Detailed transcriptome analysis revealed that fibroblast growth factor signaling, the essential pathway for hepatocyte proliferation during liver regeneration, was mainly enriched in proliferative liver organoids. Short hairpin RNA-mediated knockdown of FGFR4 impaired the generation and proliferation of organoids. Finally, glycogen storage disease type Ia (GSD1a) patient-specific liver organoids were efficiently and reproducibly generated using the new protocol. They well maintained disease-specific phenotypes such as higher lipid and glycogen accumulation in the liver organoids and lactate secretion into the medium consistent with the main pathologic characteristics of patients with GSD1a. Therefore, our newly established liver organoid platform can provide scalable and practical personalized disease models and help to find new therapies for incurable liver diseases including genetic liver diseases.
Collapse
Affiliation(s)
- Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Yeon-Hwa Hong
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Yongbo Shin
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jaeseo Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Dae-Soo Kim
- Department of Bioinformatics, UST, 217 Gajungro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- Department of Digital Biotech Innovation Center, KRIBB, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
- Biomedical Translational Research Center, KRIBB, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|