1
|
Thayil R, Parne SR, Ramana CV. 2D MoS 2 for Next-Generation Electronics and Optoelectronics: From Material Properties to Manufacturing Challenges and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412467. [PMID: 40026204 DOI: 10.1002/smll.202412467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The emergence of innovative 2D materials represents a significant evolution in materials science, heralding new opportunities for the advancement of information technologies in the era succeeding Moore's law. These materials span various categories, including semi-metallic, semiconductor, and insulating types, showcasing their versatility. The exceptional characteristics of these atomically thin and planar materials herald a new era in the miniaturization of devices. Integrating 2D materials into field-effect transistors (FETs) with sub-nanometer scale gate architectures demonstrates typical switching behaviors, confirming their applicability in integrated circuits. Concurrently, the development of wafer-level and silicon-compatible manufacturing techniques specifically designed for 2D materials and their devices underscores their significant promise in nanoelectronics and nanophotonics. Particularly, Molybdenum disulfide (MoS2) stands out for its direct bandgaps and bound excitons, offering profound implications for advancing nanoelectronics and nanophotonics. This review investigates the intrinsic structure and properties of MoS2, evaluates various methods for wafer-scale synthesis, and examines critical applications in nanoelectronics, such as 2D FETs, photodetectors, and memristors, alongside nanophotonics applications like nano-scale laser sources, exciton-plasmon interaction for advanced sensing applications, and photoluminescence manipulation. Additionally, this review addresses current challenges and future prospects for developing MoS2-based technologies in next-generation nanoelectronic and nanophotonic devices.
Collapse
Affiliation(s)
- Ruchika Thayil
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim-Goa, 403703, India
| | - Saidi Reddy Parne
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim-Goa, 403703, India
| | - C V Ramana
- Center for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W University Ave, El Paso, Texas, 79968, USA
- Department of Aerospace and Mechanical Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, Texas, 79968, USA
| |
Collapse
|
2
|
Zou Y, Liu G, Wang H, Du K, Guo J, Shang Z, Guo R, Zhou F, Liu W. Ultra-Stretchable Composite Organohydrogels Polymerized Based on MXene@Tannic Acid-Ag Autocatalytic System for Highly Sensitive Wearable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404435. [PMID: 39140644 DOI: 10.1002/smll.202404435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Conductive hydrogels have attracted widespread attention in the fields of biomedicine and health monitoring. However, their practical application is severely hindered by the lengthy and energy-intensive polymerization process and weak mechanical properties. Here, a rapid polymerization method of polyacrylic acid/gelatin double-network organohydrogel is designed by integrating tannic acid (TA) and Ag nanoparticles on conductive MXene nanosheets as catalyst in a binary solvent of water and glycerol, requiring no external energy input. The synergistic effect of TA and Ag NPs maintains the dynamic redox activity of phenol and quinone within the system, enhancing the efficiency of ammonium persulfate to generate radicals, leading to polymerization within 10 min. Also, ternary composite MXene@TA-Ag can act as conductive agents, enhanced fillers, adhesion promoters, and antibacterial agents of organohydrogels, granting them excellent multi-functionality. The organohydrogels exhibit excellent stretchability (1740%) and high tensile strength (184 kPa). The strain sensors based on the organohydrogels exhibit ultrahigh sensitivity (GF = 3.86), low detection limit (0.1%), and excellent stability (>1000 cycles, >7 days). These sensors can monitor the human limb movements, respiratory and vocal cord vibration, as well as various levels of arteries. Therefore, this organohydrogel holds potential for applications in fields such as human health monitoring and speech recognition.
Collapse
Affiliation(s)
- Yuxin Zou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hanxin Wang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kang Du
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jinglun Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenling Shang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruisheng Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Feng Zhou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
3
|
Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida HV, Barquinha P, Fortunato E, Martins R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402014. [PMID: 38551106 DOI: 10.1002/adma.202402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser-induced graphene, and their mixtures. By accessing a wide range of material types, DLW-based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next-generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Collapse
Affiliation(s)
- Tomás Pinheiro
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Maria Morais
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Sara Silvestre
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Emanuel Carlos
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - João Coelho
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Henrique V Almeida
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Pedro Barquinha
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| |
Collapse
|
4
|
Wang X, Zhang J, Liu P, Wei D, Tian D, Liu S, Chen Q, Cao J, Wang Z, Huang X. Metal chalcogenide nanorings for temperature-strain dual-mode sensing. NANOSCALE 2024; 16:3484-3491. [PMID: 38269423 DOI: 10.1039/d3nr05561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Most metal chalcogenides exhibit layered structures and anisotropic morphologies such as nanosheets, nanoplates, and nanotubes, as well as nanosheet-assembled nanoflowers. Unconventional morphologies such as nanorings may bring appealing properties to functional materials, but they have not been realized with metal chalcogenides. Herein, we report that Sn0.2Mo0.8S2 nanorings with a mixed 1T/2H phase were synthesized by etching SnS2 cores from Sn1-xMoxS2/SnS2 lateral heterostructures. Flexible electronic sensors based on these Sn0.2Mo0.8S2 nanorings exhibited excellent temperature and strain sensing performance, with a negative temperature coefficient of resistance of -0.013 °C-1 and a minimum detectable strain of 0.09%. In addition, the dual-functional flexible electronic sensors with easy fabrication and good wearability showed great promise for tracking human activities and monitoring inapparent health-related signals.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jinhao Zhang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Peiyuan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Danlin Wei
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Daobo Tian
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Shipeng Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Zhiwei Wang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
5
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
6
|
Wang H, Xu M, Ji H, He T, Li W, Zheng L, Wang X. Laser-assisted synthesis of two-dimensional transition metal dichalcogenides: a mini review. Front Chem 2023; 11:1195640. [PMID: 37179783 PMCID: PMC10167011 DOI: 10.3389/fchem.2023.1195640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
The atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted the researcher's interest in the field of flexible electronics due to their high mobility, tunable bandgaps, and mechanical flexibility. As an emerging technique, laser-assisted direct writing has been used for the synthesis of TMDCs due to its extremely high preparation accuracy, rich light-matter interaction mechanism, dynamic properties, fast preparation speed, and minimal thermal effects. Currently, this technology has been focused on the synthesis of 2D graphene, while there are few literatures that summarize the progress in direct laser writing technology in the synthesis of 2D TMDCs. Therefore, in this mini-review, the synthetic strategies of applying laser to the fabrication of 2D TMDCs have been briefly summarized and discussed, which are divided into top-down and bottom-up methods. The detailed fabrication steps, main characteristics, and mechanism of both methods are discussed. Finally, prospects and further opportunities in the booming field of laser-assisted synthesis of 2D TMDCs are addressed.
Collapse
Affiliation(s)
- Hanxin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
| | - Tong He
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, China
| |
Collapse
|
7
|
Li W, Xu M, Gao J, Zhang X, Huang H, Zhao R, Zhu X, Yang Y, Luo L, Chen M, Ji H, Zheng L, Wang X, Huang W. Large-Scale Ultra-Robust MoS 2 Patterns Directly Synthesized on Polymer Substrate for Flexible Sensing Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207447. [PMID: 36353895 DOI: 10.1002/adma.202207447] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of large-area patterned MoS2 is considered the principle base for realizing high-performance MoS2 -based flexible electronic devices. Patterning and transferring MoS2 films to target flexible substrates, however, require conventional multi-step photolithography patterning and transferring process, despite tremendous progress in the facilitation of practical applications. Herein, an approach to directly synthesize large-scale MoS2 patterns that combines inkjet printing and thermal annealing is reported. An optimal precursor ink is prepared that can deposit arbitrary patterns on polyimide films. By introducing a gas atmosphere of argon/hydrogen (Ar/H2 ), thermal treatment at 350 °C enables an in situ decomposition and crystallization in the patterned precursors and, consequently, results in the formation of MoS2 . Without complicated processes, patterned MoS2 is obtained directly on polymer substrate, exhibiting superior mechanical flexibility and durability (≈2% variation in resistance over 10,000 bending cycles), as well as excellent chemical stability, which is attributed to the generated continuous and thin microstructures, as well as their strong adhesion with the substrate. As a step further, this approach is employed to manufacture various flexible sensing devices that are insensitive to body motions and moisture, including temperature sensors and biopotential sensing systems for real-time, continuously monitoring skin temperature, electrocardiography, and electromyography signals.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaoshan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - He Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xigang Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yabao Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Mengdi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
8
|
Liu S, Wang J, Shao J, Ouyang D, Zhang W, Liu S, Li Y, Zhai T. Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200734. [PMID: 35501143 DOI: 10.1002/adma.202200734] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the reduction of feature size and increase of integration density, traditional 3D semiconductors are unable to meet the future requirements of chip integration. The current semiconductor fabrication technologies are approaching their physical limits based on Moore's law. 2D materials such as graphene, transitional metal dichalcogenides, etc., are of great promise for future memory, logic, and photonic devices due to their unique and excellent properties. To prompt 2D materials and devices from the laboratory research stage to the industrial integrated circuit-level, it is necessary to develop advanced nanopatterning methods to obtain high-quality, wafer-scale, and patterned 2D products. Herein, the recent development of nanopatterning technologies, particularly toward realizing large-scale practical application of 2D materials is reviewed. Based on the technological progress, the unique requirement and advances of the 2D integration process for logic, memory, and optoelectronic devices are further summarized. Finally, the opportunities and challenges of nanopatterning technologies of 2D materials for future integrated chip devices are prospected.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiefan Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Zhao D, Nie B, Qi G, Li S, Zhu Q, Qiu J, Hsu Y, Zhang Y, Wang W, Zhang Q, Wei Z. A flexible metal nano-mesh strain sensor with the characteristic of spontaneous functional recovery after fracture damage. NANOSCALE 2022; 14:12409-12417. [PMID: 35971990 DOI: 10.1039/d2nr02493d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing flexible sensors with high sensitivity, a wide sensing range, and good stability is a challenge. By replicating the anodic aluminum oxide (AAO) hole structure, we proposed new strain sensors with Pt nano-mesh films embedded in polydimethylsiloxane (PDMS) films. The nano-mesh strain sensor exhibited high sensitivity (a gauge factor of 4500) and a sensing range as high as 90%. The resistance remained almost completely unchanged after 1500 loading/unloading cycles of 15% strain, demonstrating the high repeatability and stability of the sensor. In addition, even if the nano-mesh experienced an open circuit by overstraining, the sensor can still measure strain within 45% after recovery. The capability of spontaneous functional recovery after fractural damage considerably extends its service life. Finally, the nano-mesh strain sensors were worn on the wrist and neck to monitor wrist movement and throat vibration, respectively. Signals corresponding to swallowing, throat clearing, and letter pronunciation were clearly distinguished from the peak value and signal patterns. These results indicate that the metal nano-mesh strain sensors have great potential for applications in wearable devices, electronic skin, and flexible robotics.
Collapse
Affiliation(s)
- Dongyang Zhao
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Bangbang Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Guochen Qi
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijiao Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Qichen Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Jingjiang Qiu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
| | - Yenya Hsu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yudong Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wen Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zonhan Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
- School of Cyber Science and Engineering & Hanwei Institute of Internet of Things, Zhengzhou 450001, China
| |
Collapse
|
10
|
Liu F, Shi J, Xu J, Han N, Cheng Y, Huang W. Site-selective growth of two-dimensional materials: strategies and applications. NANOSCALE 2022; 14:9946-9962. [PMID: 35802071 DOI: 10.1039/d2nr02093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the years, there have been major advances in two-dimensional (2D) materials on account of their excellent and unique properties. Among the various strategies for 2D material fabrication, chemical vapor deposition (CVD) is considered as the most promising method to achieve large-area and high-quality 2D film growth. Furthermore, to realize the potential applications of 2D materials in different fields, the integration of 2D materials into functional devices is essential. However, the materials made by common CVD are randomly distributed on substrates, which is disadvantageous for fabricating arrays of devices. To solve this problem, a site-selective growth method was developed to meet the requirement of batch production for practical applications because it achieves control over the locations of products and benefits the subsequent direct integration. Herein, state-of-the-art methods for site-selective synthesis, including seeded growth and patterned growth, are reviewed. Then, the electronic and optoelectronic applications of the as-grown 2D materials are also reviewed. Finally, the remaining challenges and future prospects regarding site-selective methods and applications are discussed.
Collapse
Affiliation(s)
- Fan Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jian Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jinpeng Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yingchun Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
11
|
Zhong Y, Liang J, Zhang B, Wang F, Huang W, Cai G, Zhang C, Xin Y, Chen B, He X. Highly stable, stretchable, and versatile electrodes by coupling of NiCoS nanosheets with metallic networks for flexible electronics. NANOSCALE 2022; 14:8172-8182. [PMID: 35621128 DOI: 10.1039/d2nr01890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of portable electronics has contributed to an urgent demand for versatile and flexible electrodes of wearable energy storage devices and pressure sensors. We fabricate a stretchable electrode by coupling the nickel-cobalt sulfide (NiCoS) nanosheet layer with Ag@NiCo nanowire (NW) networks. NiCoS wrinkled nanostructure, highly conductive networks, and intense interactions between substrate/networks and active materials/networks endow the electrodes with excellent energy storage capacity, superior electrochemical/mechanical stability, and good conductivity. A high-performance asymmetric supercapacitor is developed using the composite electrode. It operates in a wide potential window of 1.4 V and achieves a maximum energy density of 40.0 W h kg-1 at a power density of 1.1 kW kg-1; it also exhibits excellent mechanical flexibility and good waterproof performance. Moreover, a sandwiched capacitive pressure sensor constructed using the same electrodes has a wide sensing range (up to 260 kPa), low detection limit (∼47 mN), fast response (∼66 ms), and excellent mechanical stability (10 000 cycles). This study demonstrates that the appropriate design of the functional electrode facilitates the construction of various high-performance devices, denoting the versatility of our electrodes in the development of wearable electronics.
Collapse
Affiliation(s)
- Yu Zhong
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Jionghong Liang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Bolun Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Fengming Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Weiqing Huang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Guofa Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, PR China
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Bohua Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|