1
|
Zapata-Mercado E, Rainwater RR, Özdemir E, Azarova EV, Krzyscik MA, Pasquale EB, Hristova K. Differential association of EphA2 intracellular regions in biased signaling. J Biol Chem 2025; 301:108383. [PMID: 40049409 PMCID: PMC11999613 DOI: 10.1016/j.jbc.2025.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
Biased signaling is the ability of a receptor to differentially activate certain signaling cascades in response to different ligands. Our previous work demonstrated that the monomeric ephrinA1 ligand and the widely used dimeric ephrinA1-Fc ligand induced EphA2 receptor tyrosine kinase (RTK) biased signaling. The hypothesis that RTK biased signaling is a consequence of differential interactions between receptor intracellular regions when different ligands are bound to the extracellular region has not been experimentally verified thus far, in part because of the lack of high-resolution structures of full-length RTK oligomers. Here, we compare the effects of deletion of intracellular regions in EphA2 oligomers bound to the biased ligands, monomeric ephrinA1 or ephrinA1-Fc. Our data reveal distinct differences in the intracellular organization of EphA2 oligomers bound to the two ligands, supporting the hypothesis. They also suggest that EphA2 signaling could be modulated by agents that alter interactions between oligomerized EphA2 intracellular regions by binding at sites that can be distant from the ATP-binding pocket.
Collapse
Affiliation(s)
- Elmer Zapata-Mercado
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Randall R Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evgenia V Azarova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Li X, Jiang Y, Deng M, Zhang C, Tang H. N-glycosylation of ephrin B1 modulates its function and confers therapeutic potential in B-cell lymphoma. J Biol Chem 2025; 301:108229. [PMID: 39864628 PMCID: PMC11871495 DOI: 10.1016/j.jbc.2025.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
Given the pivotal role of the Eph-Ephrin signaling pathway in tumor progression, agonists or antagonists targeting Eph-Ephrin have emerged as promising anticancer strategies. However, the implications of glycosylation modifications within Eph-Ephrin and their targeted protein therapeutics remain elusive. Here, we identify that N-glycosylation within the receptor-binding domain (RBD) of ephrin B1 (EFNB1) is indispensable for its functional repertoire. Notably, compared with wildtype EFNB1, the glycosylation-deficient N139D mutant drastically diminishes the sensitivity of tumor cells with chemotherapeutic agents, suggesting the existence of both glycosylation-dependent and -independent effects mediated by EFNB1. Transcriptomic analysis highlights immune response and oxidative phosphorylation as the primary signaling pathways modulated by glycosylation modifications. In coculture systems, the EFNB1-RBD-Fc recombinant protein, while inhibiting B-lymphoma cells, also exerts differential impacts on stromal cells depending on their glycosylation status. Furthermore, the efficacy of both glycosylated and nonglycosylated EFNB1-RBD-Fc is influenced by the endogenous EFNB1 levels within tumor cells. Taking together, this study demonstrates the complexity and multifaceted roles of glycosylation in modulating EFNB1 function. These findings underscore the need for a nuanced understanding of glycosylation patterns in Eph-Ephrin-targeted therapies to optimize their therapeutic potential.
Collapse
Affiliation(s)
- Xiaoxi Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Yong Jiang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Minyao Deng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chenxiao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Singh PK, Rybak JA, Schuck RJ, Sahoo AR, Buck M, Barrera FN, Smith AW. Phosphatidylinositol 4,5-bisphosphate drives the formation of EGFR and EphA2 complexes. SCIENCE ADVANCES 2024; 10:eadl0649. [PMID: 39630914 PMCID: PMC11616708 DOI: 10.1126/sciadv.adl0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here, we use a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated heteromultimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol 4,5-bisphosphate (PIP2). We found that higher PIP2 levels increased homomultimerization of both EGFR and EphA2, as well as heteromultimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP2 can have a substantial effect on the spatial organization of RTKs.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Jennifer A. Rybak
- Genome Sciences and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan J. Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amita R. Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Adam W. Smith
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| |
Collapse
|
4
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 PMCID: PMC11967910 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Vincenzi M, Mercurio FA, La Manna S, Palumbo R, Pirone L, Marasco D, Pedone EM, Leone M. Exploring a Potential Optimization Route for Peptide Ligands of the Sam Domain from the Lipid Phosphatase Ship2. Int J Mol Sci 2024; 25:10616. [PMID: 39408946 PMCID: PMC11476629 DOI: 10.3390/ijms251910616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The Sam (Sterile alpha motif) domain of the lipid phosphatase Ship2 (Ship2-Sam) is engaged by the Sam domain of the receptor tyrosine kinase EphA2 (EphA2-Sam) and, this interaction is principally linked to procancer effects. Peptides able to hinder the formation of the EphA2-Sam/Ship2-Sam complex could possess therapeutic potential. Herein, by employing the FoldX software suite, we set up an in silico approach to improve the peptide targeting of the so-called Mid Loop interface of Ship2-Sam, representing the EphA2-Sam binding site. Starting from a formerly identified peptide antagonist of the EphA2-Sam/Ship2-Sam association, first, the most stabilizing mutations that could be inserted in each peptide position were predicted. Then, they were combined, producing a list of potentially enhanced Ship2-Sam ligands. A few of the in silico generated peptides were experimentally evaluated. Interaction assays with Ship2-Sam were performed using NMR and BLI (BioLayer Interferometry). In vitro assays were conducted as well to check for cytotoxic effects against both cancerous and healthy cells, and also to assess the capacity to regulate EphA2 degradation. This study undoubtedly enlarges our knowledge on how to properly target EphA2-Sam/Ship2-Sam associations with peptide-based tools and provides a promising strategy that can be used to target any protein-protein interaction.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
| | - Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (R.P.); (L.P.); (D.M.); (E.M.P.)
| |
Collapse
|
6
|
Tognolini M, Ferrari FR, Zappia A, Giorgio C. Ephrin receptor type-A2 (EphA2) targeting in cancer: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:1009-1018. [PMID: 39259047 DOI: 10.1080/13543776.2024.2402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION EphA2 is a tyrosine kinase receptor and is considered a promising target in cancer. Different approaches are used to target EphA2 receptor, and a lot of preclinical data demonstrate the potential exploitation of this receptor in clinical oncology for diagnosis and cancer therapy, including immunotherapy. AREAS COVERED In this review, we have summarized the recent patents involving the EphA2 targeting in cancer. For this aim, we used the patent database Patentscope covering the time period of 2018-present. Preclinical and clinical data of the inventions were considered when published on peer reviewed journals. Moreover, the clinicalTrial.gov identifiers (NCT numbers) were included when available. For an easier and more immediate reading, we classify the patents in different categories, considering the nature (aptamers, small molecules, antibodies, peptides, antigens and chimeric antigen receptors) of the inventions exploiting EphA2 in clinical oncology. EXPERT OPINION Despite the availability of a plethora of chemically diverse agents, there are no approved anticancer drugs targeting EphA2 yet. However, these intellectual properties, some of which supported by strong preclinical evidence, keep the hope that, after more than 30 years from its discovery, we will finally see the first EphA2 targeting agent approved in clinical oncology.
Collapse
Affiliation(s)
| | | | - Alfonso Zappia
- Food and Drug Department, University of Parma, Parma, Italy
| | | |
Collapse
|
7
|
Wirth D, Özdemir E, Hristova K. Probing phosphorylation events in biological membranes: The transducer function. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184362. [PMID: 38885782 PMCID: PMC11365757 DOI: 10.1016/j.bbamem.2024.184362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The extracellular environment is sensed by receptors in the plasma membrane. Some of these receptors initiate cytoplasmic signaling cascades involving phosphorylation: the addition of a phosphate group to a specific amino acid, such as tyrosine, in a protein. Receptor Tyrosine Kinases (RTKs) are one large class of membrane receptors that can directly initiate signaling cascades through their intracellular kinase domains, which both catalyze tyrosine phosphorylation and get phosphorylated. In the first step of signaling, the ligands stabilize phosphorylation-competent RTK dimers and oligomers, which leads to the phosphorylation of specific tyrosine residues in the activation loop of the kinases. Here we discuss quantitative measurements of tyrosine phosphorylation efficiencies for RTKs, described by the "transducer function". The transducer function links the phosphorylation (the response) and the binding of the activating ligand to the receptor (the stimulus). We overview a methodology that allows such measurements in direct response to ligand binding. We discuss experiments which demonstrate that EGF is a partial agonist, and that two tyrosines in the intracellular domain of EGFR, Y1068 and Y1173, are differentially phosphorylated in the EGF-bound EGFR dimers.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America.
| |
Collapse
|
8
|
Vincenzi M, Mercurio FA, Palumbo R, La Manna S, Pirone L, Marasco D, Pedone EM, Leone M. Inhibition of the EphA2-Sam/Ship2-Sam Association through Peptide Ligands: Studying the Combined Effect of Charge and Aromatic Character. J Med Chem 2024; 67:16649-16663. [PMID: 39259672 DOI: 10.1021/acs.jmedchem.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The Sam (sterile alpha motif) domain from the lipid phosphatase Ship2 binds the Sam domain from the EphA2 receptor to negatively regulate receptor endocytosis and degradation. This interaction is primarily linked to pro-oncogenic effects. We report on the design and evaluation of EphA2-Sam/Ship2-Sam peptide inhibitors provided with positive charges and different aromatic characters. Starting from the sequence of previously identified Ship2-Sam targeting peptides, an in silico approach was set up to predict higher affinity peptide ligands. A few peptides were experimentally tested through an interdisciplinary approach. Interaction studies were performed by nuclear magnetic resonance spectroscopy and biolayer interferometry. 3D models of Ship2-Sam/peptide complexes were predicted by AlphaFold2. Cell-based assays were carried out to investigate whether such peptide sequences might have an influence on EphA2 signaling. The approach led to the identification of novel Ship2-Sam ligands and shed further light on original approaches to design inhibitors of the Ship2-Sam/EphA2-Sam interaction.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Emilia M Pedone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Krzyscik MA, Karl K, Dudeja P, Krejci P, Hristova K. Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands. Cytokine Growth Factor Rev 2024; 78:77-84. [PMID: 39043538 PMCID: PMC11389727 DOI: 10.1016/j.cytogfr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Karl
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic; Institute of Animal Physiology and Genetics of the CAS, Brno 60200, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
Wirth D, Özdemir E, Wimley WC, Pasquale EB, Hristova K. Transmembrane helix interactions regulate oligomerization of the receptor tyrosine kinase EphA2. J Biol Chem 2024; 300:107441. [PMID: 38838777 PMCID: PMC11263659 DOI: 10.1016/j.jbc.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
The transmembrane helices of receptor tyrosine kinases (RTKs) have been proposed to switch between two different dimeric conformations, one associated with the inactive RTK and the other with the active RTK. Furthermore, recent work has demonstrated that some full-length RTKs are associated into oligomers that are larger than dimers, raising questions about the roles of the TM helices in the assembly and function of these oligomers. Here we probe the roles of the TM helices in the assembly of EphA2 RTK oligomers in the plasma membrane. We employ mutagenesis to evaluate the relevance of a published NMR dimeric structure of the isolated EphA2 TM helix in the context of the full-length EphA2 in the plasma membrane. We use two fluorescence methods, Förster Resonance Energy Transfer and Fluorescence Intensity Fluctuations spectrometry, which yield complementary information about the EphA2 oligomerization process. These studies reveal that the TM helix mutations affect the stability, structure, and size of EphA2 oligomers. However, the effects are multifaceted and point to a more complex role of the TM helix than the one expected from the "TM dimer switch" model.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elena B Pasquale
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Singh PK, Rybak JA, Schuck RJ, Barrera FN, Smith AW. Phosphatidylinositol (4,5)-bisphosphate drives the formation of EGFR and EphA2 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592400. [PMID: 38746348 PMCID: PMC11092790 DOI: 10.1101/2024.05.03.592400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.
Collapse
|
12
|
Wang W, Camley BA. Limits on the accuracy of contact inhibition of locomotion. Phys Rev E 2024; 109:054408. [PMID: 38907435 PMCID: PMC11193850 DOI: 10.1103/physreve.109.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/25/2024] [Indexed: 06/24/2024]
Abstract
Cells that collide with each other repolarize away from contact, in a process called contact inhibition of locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells make a micron-scale contact with a neighbor-much smaller than their size. How precisely can a cell sense cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of estimating contact position remains almost constant when the contact width changes. This happens because the cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision theory the likelihood of a false-positive CIL event in the absence of cell-cell contact, and the likelihood of a false negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely to make incorrect decisions when the contact width is very small or so large that it nears the cell's perimeter. However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct ligands.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
13
|
Abboud SA, Kodadek T. 2-Pyridone Formation: An Efficient Method for the Solid-Phase Synthesis of Homodimers. Chemistry 2024; 30:e202302937. [PMID: 37939246 PMCID: PMC10843674 DOI: 10.1002/chem.202302937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
This study presents an efficient method for on-resin dimer generation through self-condensation of 3,3-dimethoxypropionic acid-modified molecules, resulting in 2-pyridones. The approach demonstrated remarkable versatility by producing homodimers of peptides, peptoids, and non-peptidic ligands. Its ease of application, broad utility, and mild reaction conditions not only hold significance for peptide and peptoid research but also offer potential for the on-resin development of a wide range of bivalent ligands.
Collapse
Affiliation(s)
- Skander A Abboud
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
McKenzie DM, Wirth D, Pogorelov TV, Hristova K. Utility of FRET in studies of membrane protein oligomerization: The concept of the effective dissociation constant. Biophys J 2023; 122:4113-4120. [PMID: 37735871 PMCID: PMC10598290 DOI: 10.1016/j.bpj.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.
Collapse
Affiliation(s)
- Daniel M McKenzie
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, School of Chemical Sciences, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland.
| |
Collapse
|
16
|
Stoneman MR, Raicu V. Fluorescence-Based Detection of Proteins and Their Interactions in Live Cells. J Phys Chem B 2023. [PMID: 37205844 DOI: 10.1021/acs.jpcb.3c01419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in fluorescence-based microscopy techniques, such as single molecule fluorescence, Förster resonance energy transfer (FRET), fluorescence intensity fluctuations analysis, and super-resolution microscopy have expanded our ability to study proteins in greater detail within their native cellular environment and to investigate the roles that protein interactions play in biological functions, such as inter- and intracellular signaling and cargo transport. In this Perspective, we provide an up-to-date overview of the current state of the art in fluorescence-based detection of proteins and their interactions in living cells with an emphasis on recent developments that have facilitated the characterization of the spatial and temporal organization of proteins into oligomeric complexes in the presence and absence of natural and artificial ligands. Further advancements in this field will only deepen our understanding of the underlying mechanisms of biological processes and help develop new therapeutic targets.
Collapse
Affiliation(s)
- Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
17
|
Zapata-Mercado E, Biener G, McKenzie DM, Wimley WC, Pasquale EB, Raicu V, Hristova K. The efficacy of receptor tyrosine kinase EphA2 autophosphorylation increases with EphA2 oligomer size. J Biol Chem 2022; 298:102370. [PMID: 35970390 PMCID: PMC9512837 DOI: 10.1016/j.jbc.2022.102370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
The receptor tyrosine kinase (RTK) EphA2 is expressed in epithelial and endothelial cells and controls the assembly of cell-cell junctions. EphA2 has also been implicated in many diseases, including cancer. Unlike most RTKs, which signal predominantly as dimers, EphA2 readily forms high-order oligomers upon ligand binding. Here, we investigated if a correlation exists between EphA2 signaling properties and the size of the EphA2 oligomers induced by multiple ligands, including the widely used ephrinA1-Fc ligand, the soluble monomeric m-ephrinA1, and novel engineered peptide ligands. We used fluorescence intensity fluctuation (FIF) spectrometry to characterize the EphA2 oligomer populations induced by the different ligands. Interestingly, we found that different monomeric and dimeric ligands induce EphA2 oligomers with widely different size distributions. Our comparison of FIF brightness distribution parameters and EphA2 signaling parameters reveals that the efficacy of EphA2 phosphorylation on tyrosine 588, an autophosphorylation response contributing to EphA2 activation, correlates with EphA2 mean oligomer size. However, we found that other characteristics, such as the efficacy of AKT inhibition and ligand bias coefficients, appear to be independent of EphA2 oligomer size. Taken together, this work highlights the utility of FIF in RTK signaling research and demonstrates a quantitative correlation between the architecture of EphA2 signaling complexes and signaling features.
Collapse
Affiliation(s)
- Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gabriel Biener
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel M McKenzie
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - William C Wimley
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Valerica Raicu
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|