1
|
Kang M, Devarasou S, Sung NJ, Kwon TY, Shin JH. EMT induction in normal breast epithelial cells by COX2-expressing fibroblasts. Cell Commun Signal 2025; 23:237. [PMID: 40405218 DOI: 10.1186/s12964-025-02227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/30/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a pivotal role in cancer progression, with cancer-associated fibroblasts (CAFs) significantly influencing tumor behavior. Especially, elevated COX2 expressing fibroblasts within the TME, notably in collagen-dense tumors like breast cancer, has been recently emphasized in the literature. However, the specific effect of COX2-expressing CAFs (COX2+ CAFs) on neighboring cells and their consequent role in cancer progression is not fully elucidated. METHODS We induced COX2+ fibroblasts by forcing the fibroblasts forming aggregates to undergo Nemosis as a proxy for COX2+ CAFs. This approach enabled us to simulate the paracrine interactions between COX2+ CAFs and normal breast epithelial cells via conditioned media from COX2+ fibroblasts. We developed an innovative in vitro platform that combines cell mechanics-based analysis and biomolecular assays to study the interactions between COX2+ fibroblasts and normal breast epithelial cells. By focusing on the mechanical characteristics of the cells and the epithelial-mesenchymal transition (EMT) marker expressions, we aimed to elucidate the paracrine mechanisms through which COX2+ CAFs influence the tumor microenvironment. RESULTS Our in vitro findings demonstrate that COX2+ fibroblasts, through conditioned media, induce significant alterations in the mechanical behavior of normal breast epithelial cells, as evidenced by monolayer expansion measurements using traction force microscopy (TFM). This transition was further corroborated by single-cell morphology and motility analyses, as well as increased expression of mesenchymal markers, including SNAI1 at the mRNA level and vimentin at the protein level. EP4 inhibition partially reversed these changes, preserving cell-cell interactions, limiting monolayer expansion, and reducing mesenchymal-like features, suggesting that PGE2-EP4 signaling plays a key role in mediating the paracrine effects of COX2+ fibroblasts. Together, our findings support a model in which PGE2-EP4 signaling contributes to EMT induction, potentially involving SNAI1 regulation, with implications for targeting stromal-epithelial interactions in breast cancer. CONCLUSION This study advances our understanding of the potential mechanisms by which COX2+ CAFs influence tumor progression within the breast tumor microenvironment (TME) through controlled in vitro investigations. By integrating cell mechanics-based analysis, biomolecular assays, and innovative in vitro cell-based modeling of COX2+ CAFs, we have delineated the contributory role of these cells in a controlled setting. These insights lay a groundwork for future studies that could explore the implications of these findings in vivo, potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Nam Ji Sung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Graduate School of Stem Cell and Regenerative Biology, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Cano Á, Yubero ML, Millá C, Puerto-Belda V, Ruz JJ, Kosaka PM, Calleja M, Malumbres M, Tamayo J. Rapid mechanical phenotyping of breast cancer cells based on stochastic intracellular fluctuations. iScience 2024; 27:110960. [PMID: 39493877 PMCID: PMC11530848 DOI: 10.1016/j.isci.2024.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024] Open
Abstract
Predicting the phenotypic impact of genetic variants and treatments is crucial in cancer genetics and precision oncology. Here, we have developed a noise decorrelation method that enables quantitative phase imaging (QPI) with the capability for label-free noninvasive mapping of intracellular dry mass fluctuations within the millisecond-to-second timescale regime, previously inaccessible due to temporal phase noise. Applied to breast cancer cells, this method revealed regions driven by thermal forces and regions of intense activity fueled by ATP hydrolysis. Intriguingly, as malignancy increases, the cells strategically expand these active regions to satisfy increasing energy demands. We propose parameters encapsulating key information about the spatiotemporal distribution of intracellular fluctuations, enabling precise phenotyping. This technique addresses the need for accurate, rapid functional screening methods in cancer medicine.
Collapse
Affiliation(s)
- Álvaro Cano
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Marina L. Yubero
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Carmen Millá
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Verónica Puerto-Belda
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Jose J. Ruz
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Marcos Malumbres
- Cancer Cell Cycle Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Tamayo
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| |
Collapse
|
3
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
4
|
Zhang X, Zhang X, Li M, Jiao S, Zhang Y. Monitoring Partial EMT Dynamics through Cell Mechanics Using Scanning Ion Conductance Microscopy. Anal Chem 2024; 96:14835-14842. [PMID: 39238086 DOI: 10.1021/acs.analchem.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Tumor cells undergo an epithelial-mesenchymal transition (EMT) accompanied by a reduction in elasticity to initiate metastasis. However, in vivo, tumor cells typically exhibit partial EMT rather than fully EMT. Whether cell mechanics can accurately identify the status of partial EMT, especially the dynamic process, remains unclear. To elucidate the relationship between cell mechanics and partial EMT, we employed scanning ion conductance microscopy (SICM) to analyze the dynamic changes in cell mechanics during the TGFβ-induced partial EMT of HCT116 colon cancer cells. Cells undergoing partial EMT, characterized by increased expression of EMT transcription factors, Snai1 and Zeb1, and EMT-related genes, Fn1 and MMP9, while retaining the expression of the epithelial markers E-cadherin (E-cad) and EpCAM, did not exhibit significant changes in cell morphology, suggesting that morphological changes alone were inadequate for identifying partial EMT status. However, cell elasticity markedly decreased in partial EMT cells, and this reduction was reversed with the reversible transition of partial EMT. These findings suggest a strong correlation between cell mechanics and the dynamic process of partial EMT, indicating that cell mechanics could serve as a valuable label-free marker for identifying the status of partial EMT while preserving the physiological characteristics of tumor cells.
Collapse
Affiliation(s)
- Xufang Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Xueqia Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Mingkun Li
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Shuopei Jiao
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Yanjun Zhang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
5
|
Wang J, Zhang B, Chen X, Xin Y, Li K, Zhang C, Tang K, Tan Y. Cell mechanics regulate the migration and invasion of hepatocellular carcinoma cells via JNK signaling. Acta Biomater 2024; 176:321-333. [PMID: 38272199 DOI: 10.1016/j.actbio.2024.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Hepatocellular carcinoma (HCC) cells, especially those with metastatic competence, show reduced stiffness compared to the non-malignant counterparts. However, it is still unclear whether and how the mechanics of HCC cells influence their migration and invasion. This study reports that HCC cells with enhanced motility show reduced mechanical stiffness and cytoskeleton, suggesting the inverse correlation between cellular stiffness and motility. Through pharmacologic and genetic approaches, inhibiting actomyosin activity reduces HCC cellular stiffness but promotes their migration and invasion, while activating it increases cell stiffness but impairs cell motility. Actomyosin regulates cell motility through the influence on cellular stiffness. Mechanistically, weakening/strengthening cells inhibits/promotes c-Jun N terminal kinase (JNK) phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion. Further, HCC cancer stem cells (CSCs) exhibit higher motility but lower stiffness than control cells. Increasing CSC stiffness weakens migration and invasion through the activation of JNK signaling. In conclusion, our findings unveil a new regulatory role of actomyosin-mediated cellular mechanics in tumor cell motility and present new evidence to support that tumor cell softening may be one driving force for HCC metastasis. STATEMENT OF SIGNIFICANCE: Tumor cells progressively become softened during metastasis and low cell stiffness is associated with high metastatic potential. However, it remains unclear whether tumor cell softening is a by-product of or a driving force for tumor progression. This work reports that the stiffness of hepatocellular carcinoma cells is linked to their migration and invasion. Importantly, tumor cell softening promotes migration and invasion, while cell stiffening impairs the mobility. Weakening/strengthening cells inhibits/promotes JNK phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion ability. Further, stiffening liver cancer stem cells attenuates their motility through activating JNK signaling. In summary, our study uncovers a previously unappreciated role of tumor cell mechanics in migration and invasion and implicates the therapeutic potential of cell mechanics in the mechanotargeting of metastasis.
Collapse
Affiliation(s)
- Junfan Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
6
|
Feng H, Xu D, Jiang C, Chen Y, Wang J, Ren Z, Li X, Zhang XD, Cang S. LINC01559 promotes lung adenocarcinoma metastasis by disrupting the ubiquitination of vimentin. Biomark Res 2024; 12:19. [PMID: 38311781 PMCID: PMC10840222 DOI: 10.1186/s40364-024-00571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Distant metastasis is the major cause of lung adenocarcinoma (LUAD)-associated mortality. However, molecular mechanisms involved in LUAD metastasis remain to be fully understood. While the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance is being increasingly appreciated, the list of dysregulated lncRNAs that contribute to LUAD pathogenesis is also rapidly expanding. METHODS Bioinformatics analysis was conducted to interrogate publicly available LUAD datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human LUAD tissues and cell lines, respectively. Wound healing as well as transwell migration and invasion assays were employed to examine LUAD cell migration and invasion in vitro. LUAD metastasis was examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were carried out to test RNA-protein associations. Cycloheximide-chase assays were performed to monitor protein turnover rates and Western blotting was employed to test protein expression. RESULTS The expression of the lncRNA LINC01559 was commonly upregulated in LUADs, in particular, in those with distant metastasis. High LINC01559 expression was associated with poor outcome of LUAD patients and was potentially an independent prognostic factor. Knockdown of LINC01559 diminished the potential of LUAD cell migration and invasion in vitro and reduced the formation of LUAD metastatic lesions in vivo. Mechanistically, LINC01559 binds to vimentin and prevents its ubiquitination and proteasomal degradation, leading to promotion of LUAD cell migration, invasion, and metastasis. CONCLUSION LINC01559 plays an important role in LUAD metastasis through stabilizing vimentin. The expression of LINC01559 is potentially an independent prognostic factor of LUAD patients, and LINC01559 targeting may represent a novel avenue for the treatment of late-stage LUAD.
Collapse
Affiliation(s)
- Hao Feng
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dengfei Xu
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Chenyang Jiang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuming Chen
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junru Wang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zirui Ren
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiang Li
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, 450003, China.
| | - Shundong Cang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
7
|
Rahman Z, Bordoloi AD, Rouhana H, Tavasso M, van der Zon G, Garbin V, Ten Dijke P, Boukany PE. Interstitial flow potentiates TGF-β/Smad-signaling activity in lung cancer spheroids in a 3D-microfluidic chip. LAB ON A CHIP 2024; 24:422-433. [PMID: 38087979 PMCID: PMC10826459 DOI: 10.1039/d3lc00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensitive pathways from biophysical forces such as interstitial flow (IF), leads to the activation of various cytokines, including transforming growth factor-β (TGF-β). TGF-β promotes in part via a Smad-dependent signaling pathway the epithelial-mesenchymal transition (EMT) in cancer cells. The latter process is linked to increased cancer cell motility and invasion. Current research models have limited ability to investigate the combined effects of biophysical forces (such as IF) and cytokines (TGF-β) in a 3D microenvironment. We used a 3D-matrix based microfluidic platform to demonstrate the potentiating effect of IF on exogenous TGF-β induced upregulation of the Smad-signaling activity and the expression of mesenchymal marker vimentin in A549 lung cancer spheroids. To monitor this, we used stably integrated fluorescent based reporters into the A549 cancer cell genome. Our results demonstrate that IF enhances exogenous TGF-β induced Smad-signaling activity in lung cancer spheroids embedded in a matrix microenvironment. In addition, we observed an increased cell motility for A549 spheroids when exposed to IF and TGF-β. Our 3D-microfluidic model integrated with real-time imaging provides a powerful tool for investigating cancer cell signaling and motility associated with invasion characteristics in a physiologically relevant TME.
Collapse
Affiliation(s)
- Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Ankur Deep Bordoloi
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Haifa Rouhana
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Margherita Tavasso
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Gerard van der Zon
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
8
|
Bao L, Kong H, Ja Y, Wang C, Qin L, Sun H, Dai S. The relationship between cancer and biomechanics. Front Oncol 2023; 13:1273154. [PMID: 37901315 PMCID: PMC10602664 DOI: 10.3389/fonc.2023.1273154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
The onset, development, diagnosis, and treatment of cancer involve intricate interactions among various factors, spanning the realms of mechanics, physics, chemistry, and biology. Within our bodies, cells are subject to a variety of forces such as gravity, magnetism, tension, compression, shear stress, and biological static force/hydrostatic pressure. These forces are perceived by mechanoreceptors as mechanical signals, which are then transmitted to cells through a process known as mechanical transduction. During tumor development, invasion and metastasis, there are significant biomechanical influences on various aspects such as tumor angiogenesis, interactions between tumor cells and the extracellular matrix (ECM), interactions between tumor cells and other cells, and interactions between tumor cells and the circulatory system and vasculature. The tumor microenvironment comprises a complex interplay of cells, ECM and vasculature, with the ECM, comprising collagen, fibronectins, integrins, laminins and matrix metalloproteinases, acting as a critical mediator of mechanical properties and a key component within the mechanical signaling pathway. The vasculature exerts appropriate shear forces on tumor cells, enabling their escape from immune surveillance, facilitating their dissemination in the bloodstream, dictating the trajectory of circulating tumor cells (CTCs) and playing a pivotal role in regulating adhesion to the vessel wall. Tumor biomechanics plays a critical role in tumor progression and metastasis, as alterations in biomechanical properties throughout the malignant transformation process trigger a cascade of changes in cellular behavior and the tumor microenvironment, ultimately culminating in the malignant biological behavior of the tumor.
Collapse
Affiliation(s)
- Liqi Bao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Millán M, Villarreal L, D'Aiuto N, Bologna-Molina R, Sotelo-Silveira J, Benech JC, Hochmann J, Arocena M. Mechanical profile of human keratinocytes expressing HPV-18 oncogenes. Biochem Biophys Res Commun 2023; 657:86-91. [PMID: 36996545 DOI: 10.1016/j.bbrc.2023.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
During tumorigenesis, the mechanical properties of cancer cells change markedly, with decreased stiffness often accompanying a more invasive phenotype. Less is known about the changes in mechanical parameters at intermediate stages in the process of malignant transformation. We have recently developed a pre-tumoral cell model by stably transducing the immortalized but non-tumorigenic human keratinocyte cell line HaCaT with the E5, E6 and E7 oncogenes from HPV-18, one of the leading causes of cervical cancer and other types of cancer worldwide. We have used atomic force microscopy (AFM) to measure cell stiffness and to obtain mechanical maps of parental HaCaT and HaCaT E5/E6/E7-18 cell lines. We observed a significant decrease in Young's modulus in HaCaT E5/E6/E7-18 cells measured by nanoindentation in the central region, as well as decreased cell rigidity in regions of cell-cell contact measured by Peakforce Quantitative Nanomechanical Mapping (PF-QNM). As a morphological correlate, HaCaT E5/E6/E7-18 cells displayed a significantly rounder cell shape than parental HaCaT cells. Our results therefore show that decreased stiffness with concomitant perturbations in cell shape are early mechanical and morphological changes during the process of malignant transformation.
Collapse
Affiliation(s)
- Magdalena Millán
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay
| | - Lihuén Villarreal
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay; Plataforma de Microscopía de Fuerza Atómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay
| | - Natali D'Aiuto
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay; Cátedra de Bioquímica y Biofísica, Facultad de Odontología, Universidad de la República, Uruguay
| | - Ronell Bologna-Molina
- Departamento de Patología Molecular, Facultad de Odontología, Universidad de la República, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay; Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Juan C Benech
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay; Plataforma de Microscopía de Fuerza Atómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay
| | - Jimena Hochmann
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay; Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay.
| | - Miguel Arocena
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Uruguay; Cátedra de Bioquímica y Biofísica, Facultad de Odontología, Universidad de la República, Uruguay.
| |
Collapse
|
10
|
Subhadarshini S, Markus J, Sahoo S, Jolly MK. Dynamics of Epithelial-Mesenchymal Plasticity: What Have Single-Cell Investigations Elucidated So Far? ACS OMEGA 2023; 8:11665-11673. [PMID: 37033874 PMCID: PMC10077445 DOI: 10.1021/acsomega.2c07989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a key driver of cancer metastasis and therapeutic resistance, through which cancer cells can reversibly and dynamically alter their molecular and functional traits along the epithelial-mesenchymal spectrum. While cells in the epithelial phenotype are usually tightly adherent, less metastatic, and drug-sensitive, those in the hybrid epithelial/mesenchymal and/or mesenchymal state are more invasive, migratory, drug-resistant, and immune-evasive. Single-cell studies have emerged as a powerful tool in gaining new insights into the dynamics of EMP across various cancer types. Here, we review many recent studies that employ single-cell analysis techniques to better understand the dynamics of EMP in cancer both in vitro and in vivo. These single-cell studies have underlined the plurality of trajectories cells can traverse during EMP and the consequent heterogeneity of hybrid epithelial/mesenchymal phenotypes seen at both preclinical and clinical levels. They also demonstrate how diverse EMP trajectories may exhibit hysteretic behavior and how the rate of such cell-state transitions depends on the genetic/epigenetic background of recipient cells, as well as the dose and/or duration of EMP-inducing growth factors. Finally, we discuss the relationship between EMP and patient survival across many cancer types. We also present a next set of questions related to EMP that could benefit much from single-cell observations and pave the way to better tackle phenotypic switching and heterogeneity in clinic.
Collapse
Affiliation(s)
| | - Joel Markus
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sarthak Sahoo
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Yang Z, Zhou Z, Si T, Zhou Z, Zhou L, Chin YR, Zhang L, Guan X, Yang M. High Throughput Confined Migration Microfluidic Device for Drug Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207194. [PMID: 36634971 DOI: 10.1002/smll.202207194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Cancer metastasis is the major cause of cancer-related death. Excessive extracellular matrix deposition and increased stiffness are typical features of solid tumors, creating confined spaces for tumor cell migration and metastasis. Confined migration is involved in all metastasis steps. However, confined and unconfined migration inhibitors are different and drugs available to inhibit confined migration are rare. The main challenges are the modeling of confined migration, the suffering of low throughput, and others. Microfluidic device has the advantage to reduce reagent consumption and enhance throughput. Here, a microfluidic chip that can achieve multi-function drug screening against the collective migration of cancer cells under confined environment is designed. This device is applied to screen out effective drugs on confined migration among a novel mechanoreceptors compound library (166 compounds) in hepatocellular carcinoma, non-small lung cancer, breast cancer, and pancreatic ductal adenocarcinoma cells. Three compounds that can significantly inhibit confined migration in pan-cancer: mitochonic acid 5 (MA-5), SB-705498, and diphenyleneiodonium chloride are found. Finally, it is elucidated that these drugs targeted mitochondria, actin polymerization, and cell viability, respectively. In sum, a high-throughput microfluidic platform for screening drugs targeting confined migration is established and three novel inhibitors of confined migration in multiple cancer types are identified.
Collapse
Affiliation(s)
- Zihan Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, 518000, P. R. China
| | - Zhihang Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Tongxu Si
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, 518000, P. R. China
| | - Zhengdong Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, 518000, P. R. China
| | - Li Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Y Rebecca Chin
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Liang Zhang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, the University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, 518000, P. R. China
| |
Collapse
|
12
|
Multi-Parameter Analysis of Disseminated Tumor Cells (DTCs) in Early Breast Cancer Patients with Hormone-Receptor-Positive Tumors. Cancers (Basel) 2023; 15:cancers15030568. [PMID: 36765527 PMCID: PMC9913363 DOI: 10.3390/cancers15030568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Patients with hormone-receptor-positive (HR+) breast cancer are at increased risk for late recurrence. One reason might be disseminated tumor cells (DTCs), which split off in the early stages of the disease and metastasize into the bone marrow (BM). METHODS We developed a novel multi-parameter immunofluorescence staining protocol using releasable and bleachable antibody-fluorochrome-conjugates. This sequential procedure enabled us to analyze six distinct phenotypical and therapy-related markers on the same DTC. We characterized BM aspirates from 29 patients with a HR+ tumor and a known positive DTC status-based on the standardized detection of epithelial cells in BM. RESULTS Using the immunofluorescence staining, a total of 153 DTCs were detected. Luminal A patients revealed a higher DTC count compared with luminal B. The majority of the detected DTCs were CK-positive (128/153). However, in 16 of 17 luminal A patients we found HER2-positive DTCs. We detected CK-negative DTCs (25/153) in 12 of 29 patients. Of those cells, 76% were Ki67-positive and 68% were HER2-positive. Moreover, we detected DTC clusters consisting of mixed characteristics in 6 of 29 patients. CONCLUSIONS Using sequential multi-parameter imaging made it possible to identify distinct DTC profiles not solely based on epithelial features. Our findings indicate that characterization rather than quantification of DTCs might be relevant for treatment decisions.
Collapse
|
13
|
Epithelial-mesenchymal transition in cancer stemness and heterogeneity: updated. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:193. [PMID: 36071302 DOI: 10.1007/s12032-022-01801-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 10/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) as a trans-differentiation program and a key process in tumor progression is linked positively with increased expansion of cancer stem cells and cells with stem-like properties. This is mediated through modulation of critical tumorigenic events and is positively correlated with hypoxic conditions in tumor microenvironment. The presence of cells eliciting diverse phenotypical states inside tumor is representative of heterogeneity and higher tumor resistance to therapy. In this review, we aimed to discuss about the current understanding toward EMT, stemness, and heterogeneity in tumors of solid organs, their contribution to the key tumorigenic events along with major signaling pathway involved, and, finally, to suggest some strategies to target these critical events.
Collapse
|
14
|
Biomechanics of cancer stem cells. Essays Biochem 2022; 66:359-369. [PMID: 35942932 DOI: 10.1042/ebc20220014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs) have been believed to be one driving force for tumor progression and drug resistance. Despite the significance of biochemical signaling in malignancy, highly malignant tumor cells or CSCs exhibit lower cellular stiffness than weakly malignant cells or non-CSCs, which are softer than their healthy counterparts, suggesting the inverse correlation between cell stiffness and malignancy. Recent years have witnessed the rapid accumulation of evidence illustrating the reciprocity between cell cytoskeleton/mechanics and CSC functions and the potential of cellular stiffness for specific targeting of CSCs. However, a systematic understanding of tumor cell mechanics and their role in CSCs and tumor progression is still lacking. The present review summarizes the recent progress in the alterations of tumor cell cytoskeleton and stiffness at different stages of tumor progression and recapitulates the relationship between cellular stiffness and CSC functions. The altered cell mechanics may mediate the mechanoadaptive responses that possibly empower CSCs to survive and thrive during metastasis. Furthermore, we highlight the possible impact of tumor cell mechanics on CSC malignancy, which may potentiate low cell stiffness as a mechanical marker for CSC targeting.
Collapse
|