1
|
Ji S, Liu B, Han J, Kong N, Yang Y, Zhang J, Wang Y, Liu Z. Bacillus-derived consortium enhances Ginkgo biloba's health and resistance to Alternaria tenuissima. PEST MANAGEMENT SCIENCE 2024; 80:4110-4124. [PMID: 38578650 DOI: 10.1002/ps.8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Bacillus, as a plant-growth-promoting rhizobacteria, can enhance the resistance of plants to phytopathogens. In our study, Bacillus strains showing excellent biocontrol were screened and used to control ginkgo leaf blight (Alternaria tenuissima). RESULTS Four biocontrol Bacillus strains-Bsa537, Bam337, Bso544, and Bsu503-were selected from 286 isolates based on their capacity to inhibit pathogens and promote plant growth. The four Bacillus strains significantly improved the resistance of ginkgo to leaf blight. This was especially the case when the four strains were used as a mixture, which contributed to a decrease in lesion area of >40%. Hence, a mixture of Bacillus strains was used to control ginkgo leaf blight in the field. Treatment efficiency varied from 30% to 100% (average 81.5%) and was higher than that of the control (-2% to -18%, average - 8.5%); the antioxidant capacity of the treated ginkgo was also stronger. In addition, ginkgo biomass increased as a result of treatment with the Bacillus mixture, including leaf weight, area, thickness, number of lateral roots and root weight. Furthermore, the Bacillus mixture improved the ginkgo rhizosphere soil by boosting the number of beneficial microorganisms, lowering the number of pathogens and hastening soil catabolism. CONCLUSION The Bacillus mixture improved the health status of ginkgo by protecting it from pathogen attack, promoting its growth and improving the microorganism community in the rhizosphere. This work closes a technological gap in the biological control of ginkgo leaf blight, investigates application methods for compound Bacillus biofertilizers and establishes a framework for the popularity and commercialization of these products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shida Ji
- College of Forestry, ShenYang Agricultural University, Shenyang, China
- College of Horticulture, ShenYang Agricultural University, Shenyang, China
| | - Bin Liu
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Jing Han
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Ning Kong
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Yongfeng Yang
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Jianxia Zhang
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Yucheng Wang
- College of Forestry, ShenYang Agricultural University, Shenyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhihua Liu
- College of Forestry, ShenYang Agricultural University, Shenyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Nishisaka CS, Ventura JP, Bais HP, Mendes R. Role of Bacillus subtilis exopolymeric genes in modulating rhizosphere microbiome assembly. ENVIRONMENTAL MICROBIOME 2024; 19:33. [PMID: 38745256 DOI: 10.1186/s40793-024-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022eps-TasA, which is defective in exopolysaccharide (EPS) and TasA protein production. RESULTS qPCR revealed that the B. subtilis UD1022eps-TasA- strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial β-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis. CONCLUSION This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.
Collapse
Affiliation(s)
- Caroline Sayuri Nishisaka
- Embrapa Environment, Jaguariúna, SP, Brazil
- Graduate Program in Agricultural Microbiology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - João Paulo Ventura
- Embrapa Environment, Jaguariúna, SP, Brazil
- Graduate Program in Agricultural Microbiology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center (BPI), Newark, DE, USA
| | | |
Collapse
|
3
|
Vandermaesen J, Daly AJ, Mawarda PC, Baetens JM, De Baets B, Boon N, Springael D. Cooperative interactions between invader and resident microbial community members weaken the negative diversity-invasion relationship. Ecol Lett 2024; 27:e14433. [PMID: 38712704 DOI: 10.1111/ele.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.
Collapse
Affiliation(s)
| | - Aisling J Daly
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, Indonesia
| | - Jan M Baetens
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Bernard De Baets
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| |
Collapse
|
4
|
Liu X, Salles JF. Lose-lose consequences of bacterial community-driven invasions in soil. MICROBIOME 2024; 12:57. [PMID: 38494494 PMCID: PMC10946201 DOI: 10.1186/s40168-024-01763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Community-driven invasion, also known as community coalescence, occurs widely in natural ecosystems. Despite that, our knowledge about the process and mechanisms controlling community-driven invasion in soil ecosystems is lacking. Here, we performed a set of coalescence experiments in soil microcosms and assessed impacts up to 60 days after coalescence by quantifying multiple traits (compositional, functional, and metabolic) of the invasive and coalescent communities. RESULTS Our results showed that coalescences significantly triggered changes in the resident community's succession trajectory and functionality (carbohydrate metabolism), even when the size of the invasive community is small (~ 5% of the resident density) and 99% of the invaders failed to survive. The invasion impact was mainly due to the high suppression of constant residents (65% on average), leading to a lose-lose situation where both invaders and residents suffered with coalescence. Our results showed that surviving residents could benefit from the coalescence, which supports the theory of "competition-driven niche segregation" at the microbial community level. Furthermore, the result showed that both short- and long-term coalescence effects were predicted by similarity and unevenness indexes of compositional, functional, and metabolic traits of invasive communities. This indicates the power of multi-level traits in monitoring microbial community succession. In contrast, the varied importance of different levels of traits suggests that competitive processes depend on the composition of the invasive community. CONCLUSIONS Our results shed light on the process and consequence of community coalescences and highlight that resource competition between invaders and residents plays a critical role in soil microbial community coalescences. These findings provide valuable insights for understanding and predicting soil microbial community succession in frequently disturbed natural and agroecosystems. Video Abstract.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Liu X, Salles JF. Bridging ecological assembly process and community stability upon bacterial invasions. THE ISME JOURNAL 2024; 18:wrae066. [PMID: 38662575 PMCID: PMC11159528 DOI: 10.1093/ismejo/wrae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Understanding the link between microbial community stability and assembly processes is crucial in microbial ecology. Here, we investigated whether the impact of biotic disturbances would depend on the processes controlling community assembly. For that, we performed an experiment using soil microcosms in which microbial communities assembled through different processes were invaded by Escherichia coli. We show that the ecological assembly process of the resident community plays a significant role in invader-resident competition, invader survival, and compositional stability of the resident community. Specifically, the resident communities primarily assembled through stochastic processes were more susceptible to invader survival. Besides, E. coli invasion acts as a biotic selection pressure, leading to competition between the invader and resident taxa, suppressing the stochasticity in the resident community. Taken together, this study provides empirical evidence for the interpretation of microbial community assemblage on their (potential) ecosystem functions and services, such as the prevention of pathogen establishment and the pathogenic states of soil microbiomes.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Liu X, Salles JF. Drivers and consequences of microbial community coalescence. THE ISME JOURNAL 2024; 18:wrae179. [PMID: 39288091 PMCID: PMC11447283 DOI: 10.1093/ismejo/wrae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Microbial communities are undergoing unprecedented dispersion and amalgamation across diverse ecosystems, thereby exerting profound and pervasive influences on microbial assemblages and ecosystem dynamics. This review delves into the phenomenon of community coalescence, offering an ecological overview that outlines its four-step process and elucidates the intrinsic interconnections in the context of community assembly. We examine pivotal mechanisms driving community coalescence, with a particular emphasis on elucidating the fates of both source and resident microbial communities and the consequential impacts on the ecosystem. Finally, we proffer recommendations to guide researchers in this rapidly evolving domain, facilitating deeper insights into the ecological ramifications of microbial community coalescence.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ecologie Microbienne Lyon, Centre National de la Recherche Scientifique (CNRS) UMR5557, Bâtiment Grégoire Mendel, 69100 Villeurbanne, France
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Kiousi DE, Karadedos DM, Sykoudi A, Repanas P, Kamarinou CS, Argyri AA, Galanis A. Development of a Multiplex PCR Assay for Efficient Detection of Two Potential Probiotic Strains Using Whole Genome-Based Primers. Microorganisms 2023; 11:2553. [PMID: 37894211 PMCID: PMC10609308 DOI: 10.3390/microorganisms11102553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Probiotics are microorganisms that exert strain-specific health-promoting effects on the host. Τhey are employed in the production of functional dairy or non-dairy food products; still, their detection in these complex matrices is a challenging task. Several culture-dependent and culture-independent methods have been developed in this direction; however, they present low discrimination at the strain level. Here, we developed a multiplex PCR assay for the detection of two potential probiotic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum L125 and Lp. pentosus L33, in monocultures and yogurt samples. Unique genomic regions were identified via comparative genomic analysis and were used to produce strain-specific primers. Then, primer sets were selected that produced distinct electrophoretic DNA banding patterns in multiplex PCR for each target strain. This method was further implemented for the detection of the two strains in yogurt samples, highlighting its biotechnological applicability. Moreover, it can be applied with appropriate modifications to detect any bacterial strain with available WGS.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Dimitrios M. Karadedos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Anastasia Sykoudi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| | - Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece;
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (A.S.); (P.R.); (C.S.K.)
| |
Collapse
|
8
|
Behr JH, Kampouris ID, Babin D, Sommermann L, Francioli D, Kuhl-Nagel T, Chowdhury SP, Geistlinger J, Smalla K, Neumann G, Grosch R. Beneficial microbial consortium improves winter rye performance by modulating bacterial communities in the rhizosphere and enhancing plant nutrient acquisition. FRONTIERS IN PLANT SCIENCE 2023; 14:1232288. [PMID: 37711285 PMCID: PMC10498285 DOI: 10.3389/fpls.2023.1232288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The beneficial effect of microbial consortium application on plants is strongly affected by soil conditions, which are influenced by farming practices. The establishment of microbial inoculants in the rhizosphere is a prerequisite for successful plant-microorganism interactions. This study investigated whether a consortium of beneficial microorganisms establishes in the rhizosphere of a winter crop during the vegetation period, including the winter growing season. In addition, we aimed for a better understanding of its effect on plant performance under different farming practices. Winter rye plants grown in a long-time field trial under conventional or organic farming practices were inoculated after plant emergence in autumn with a microbial consortium containing Pseudomonas sp. (RU47), Bacillus atrophaeus (ABi03) and Trichoderma harzianum (OMG16). The density of the microbial inoculants in the rhizosphere and root-associated soil was quantified in autumn and the following spring. Furthermore, the influence of the consortium on plant performance and on the rhizosphere bacterial community assembly was investigated using a multidisciplinary approach. Selective plating showed a high colonization density of individual microorganisms of the consortium in the rhizosphere and root-associated soil of winter rye throughout its early growth cycle. 16S rRNA gene amplicon sequencing showed that the farming practice affected mainly the rhizosphere bacterial communities in autumn and spring. However, the microbial consortium inoculated altered also the bacterial community composition at each sampling time point, especially at the beginning of the new growing season in spring. Inoculation of winter rye with the microbial consortium significantly improved the plant nutrient status and performance especially under organic farming. In summary, the microbial consortium showed sufficient efficacy throughout vegetation dormancy when inoculated in autumn and contributed to better plant performance, indicating the potential of microbe-based solutions in organic farming where nutrient availability is limited.
Collapse
Affiliation(s)
- Jan Helge Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| | - Ioannis D. Kampouris
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Loreen Sommermann
- Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Davide Francioli
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Theresa Kuhl-Nagel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Günter Neumann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| |
Collapse
|
9
|
Qin H, Cai R, Wang Y, Deng X, Chen J, Xing J. Intensive management facilitates bacterial invasion on soil microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117963. [PMID: 37105104 DOI: 10.1016/j.jenvman.2023.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Intensive management has greatly altered natural forests, especially forests around the world are increasingly being converted into economic plantations. Soil microbiota are critical for community functions in all ecosystems, but the effects of microbial disturbance during economic plantation remain unclear. Here, we used Escherichia coli O157:H7, a model pathogenic species for bacterial invasion, to assess the invasion impacts on the soil microbial community under intensive management. The E. coli invasion was tracked for 135 days to explore the instant and legacy impacts on the resident community. Our results showed that bamboo economic plantations altered soil abiotic and biotic properties, especially increasing pH and community diversity. Higher pH in bamboo soils resulted in longer pathogen survivals than in natural hardwood soils, indicating that pathogen suppression during intensive management should arouse our attention. A longer invasion legacy effect on the resident community (P < 0.05) were found in bamboo soils underlines the need to quantify the soil resilience even when the invasion was unsuccessful. Deterministic processes drove community assembly in bamboo plantations, and this selection acted more strongly during by E. coli invasion than in hardwood soils. We also showed more associated co-occurrence patterns in bamboo plantations, suggesting more complex potential interactions within the microbial community. Apart from community structure, community functions are also strongly related to the resident species associated with invaders. These findings provide new perspectives to understand intensive management facilitates the bacterial invasion, and the impacts would leave potential risks on environmental and human health.
Collapse
Affiliation(s)
- Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruihang Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Yanan Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiajia Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Poppeliers SW, Sánchez-Gil JJ, de Jonge R. Microbes to support plant health: understanding bioinoculant success in complex conditions. Curr Opin Microbiol 2023; 73:102286. [PMID: 36878082 DOI: 10.1016/j.mib.2023.102286] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
A promising, sustainable way to enhance plant health and productivity is by leveraging beneficial microbes. Beneficial microbes are natural soil residents with proven benefits for plant performance and health. When applied in agriculture to improve crop yield and performance, these microbes are commonly referred to as bioinoculants. Yet, despite their promising properties, bioinoculant efficacy can vary dramatically in the field, hampering their applicability. Invasion of the rhizosphere microbiome is a critical determinant for bioinoculant success. Invasion is a complex phenomenon that is shaped by interactions with the local, resident microbiome and the host plant. Here, we explore all of these dimensions by cross-cutting ecological theory and molecular biology of microbial invasion in the rhizosphere. We refer to the famous Chinese philosopher and strategist Sun Tzu, who believed that solutions for problems require deep understanding of the problems themselves, to review the major biotic factors determining bioinoculant effectiveness.
Collapse
Affiliation(s)
- Sanne Wm Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Abstract
The genus Bacillus has been widely applied in contemporary agriculture as an environmentally-friendly biological agent. However, the real effect of commercial Bacillus-based fertilizers and pesticides varies immensely in the field. To harness Bacillus for efficient wheat production, we reviewed the diversity, functionality, and applicability of wheat-associated native Bacillus for the first time. Our main findings are: (i) Bacillus spp. inhabit the rhizosphere, root, stem, leaf, and kernel of wheat; (ii) B. subtilis and B. velezensis are the most widely endophytic species that can be isolated from both below and aboveground tissues; (iii) major functions of these representative strains are promotion of plant growth and alleviation of both abiotic and biotic stresses in wheat; (iv) stability and effectiveness are 2 major challenges during field application; (v) a STVAE pipeline that includes 5 processes, namely, Screen, Test, Validation, Application, and Evaluation, has been proposed for the capture and refinement of wheat-associated Bacillus spp. In particular, this review comprehensively addresses possible solutions, concerns, and criteria during the development of native Bacillus-based inoculants for sustainable wheat production.
Collapse
|
12
|
Mawarda PC, Mallon CA, Le Roux X, van Elsas JD, Salles JF. Interactions between Bacterial Inoculants and Native Soil Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS Microbiol Ecol 2022; 98:6776013. [PMID: 36302145 PMCID: PMC9681130 DOI: 10.1093/femsec/fiac127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial diversity can restrict the invasion and impact of alien microbes into soils via resource competition. However, this theory has not been tested on various microbial invaders with different ecological traits, particularly spore-forming bacteria. Here we investigated the survival capacity of two introduced spore-forming bacteria, Bacillus mycoides (BM) and B. pumillus (BP) and their impact on the soil microbiome niches with low and high diversity. We hypothesized that higher soil bacterial diversity would better restrict Bacillus survival via resource competition, and the invasion would alter the resident bacterial communities' niches only if inoculants do not escape competition with the soil community (e.g. through sporulation). Our findings showed that BP could not survive as viable propagules and transiently impacted the bacterial communities' niche structure. This may be linked to its poor resource usage and low growth rate. Having better resource use capacities, BM better survived in soil, though its survival was weakly related to the remaining resources left for them by the soil community. BM strongly affected the community niche structure, ultimately in less diverse communities. These findings show that the inverse diversity-invasibility relationship can be valid for some spore-forming bacteria, but only when they have sufficient resource use capacity.
Collapse
Affiliation(s)
| | - Cyrus A Mallon
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Xavier Le Roux
- INRAE, CNRS, Université Lyon 1, Université de Lyon, VetAgroSup, Laboratoire d'Ecologie Microbienne LEM, UMR 1418 INRAE, UMR 5557 CNRS, 69622 Villeurbanne Cedex, France
| | - Jan Dirk van Elsas
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
13
|
Zhang Y, Liu C, Chen H, Chen J, Li J, Teng Y. Metagenomic insights into resistome coalescence in an urban sewage treatment plant-river system. WATER RESEARCH 2022; 224:119061. [PMID: 36096031 DOI: 10.1016/j.watres.2022.119061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The effluents of sewage treatment plants (eSTP) are one of the critical contributors of antibiotic resistiome in rivers. Recently, community coalescence has been focused as the entire microbiome interchanges with one another. While works have reported the prevalence of antibiotic resistance genes (ARGs) in eSTP and their effects on river resistome, little research has investigated the extent of resistome coalescence in the environment. In the study, we have addressed the issue and focused on the resistome coalescence of eSTP in an urban river with a typical effluent/river coalescence model, by utilizing high-throughput sequencing (HTS)-based metagenomic assembly analysis. In all, a total of 609 ARGs were found in the eSTP-river system, conferring resistance to 30 antibiotic classes and including some emerging ARGs such as mcr-type, tetX and carbapenemase genes. Statistical analyses including linear discriminant analysis effect size (LEfSe) showed the coalescence of STP effluents increased the diversity and abundance of river resistome, indicating its low resistance to disturb the invasion of resistome community in eSTP. After coalescence in the river, the imprints of STP-derived ARGs presented a temporary increase and gradually decreased trend along the flow path. Further, an innovative fast expectation-maximization microbial source tracking (FEAST) method was used to quantitatively apportion the coalescence event, and demonstrated the contribution of eSTP on river resistome and its attenuation dynamics in the downstream. Notably, correlation-based network analysis and contig-based co-occurrence analysis showed the coalesced resistome in the downstream river co-occurred with human bacterial pathogens, mobile genetic elements and virulence factor genes, indicating potential resistome dissemination risk in the environment. This study provides more profound understanding of resistome coalescence between engineered and natural contexts, which is helpful for optimizing strategies to prevent and control resistome risk in aquatic environment.
Collapse
Affiliation(s)
- Yuxin Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Jinping Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
14
|
Mawarda PC, Le Roux X, Acosta MU, van Elsas JD, Salles JF. The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics. ISME COMMUNICATIONS 2022; 2:82. [PMID: 37938668 PMCID: PMC9723691 DOI: 10.1038/s43705-022-00166-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 10/06/2023]
Abstract
Protists' selective predation of bacterial cells is an important regulator of soil microbiomes, which might influence the success of bacterial releases in soils. For instance, the survival and activity of introduced bacteria can be affected by selective grazing on resident communities or the inoculant, but this remains poorly understood. Here, we investigated the impact of the introduction in the soil of two protozoa species, Rosculus terrestris ECOP02 and/or Cerocomonas lenta ECOP01, on the survival of the inoculants Bacillus mycoides M2E15 (BM) or B. pumilus ECOB02 (BP). We also evaluated the impact of bacterial inoculation with or without protozoan addition on the abundance and diversity of native soil bacterial and protist communities. While the addition of both protozoa decreased the survival of BM, their presence contrarily increased the BP abundance. Protists' selective predation governs the establishment of these bacterial inoculants via modifying the soil microbiome structure and the total bacterial abundance. In the BP experiment, the presence of the introduced protozoa altered the soil community structures and decreased soil bacterial abundance at the end of the experiment, favouring the invader survival. Meanwhile, the introduced protozoa did not modify the soil community structures in the BM experiment and reduced the BM + Protozoa inoculants' effect on total soil bacterial abundance. Our study reinforces the view that, provided added protozoa do not feed preferentially on bacterial inoculants, their predatory behaviour can be used to steer the soil microbiome to improve the success of bacterial inoculations by reducing resource competition with the resident soil microbial communities.
Collapse
Affiliation(s)
- Panji Cahya Mawarda
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Environment and Clean Technology, National Research and Innovation Agency Republic of Indonesia (BRIN), Komplek LIPI Bandung, Jalan Sangkuriang Gedung 50, Bandung, 40135, Indonesia.
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, INRAE, CNRS, Université de Lyon, Université Lyon 1, UMR INRAE 1418, UMR CNRS 5557, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Melissa Uribe Acosta
- Plant-Microbe Interactions Group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Pollution Diagnostics and Control Group (GDCON), Biology Institute, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Jan Dirk van Elsas
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|