1
|
Qin LN, Yu YF, Ma L, Yu R. Intestinal bacteria-derived extracellular vesicles in metabolic dysfunction-associated steatotic liver disease: From mechanisms to therapeutics. Mol Cells 2025; 48:100216. [PMID: 40239896 DOI: 10.1016/j.mocell.2025.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease that affects the health of approximately one-third of the world's population. It is the primary cause of end-stage liver disease, liver malignancy, and liver transplantation, resulting in a great medical burden. No medications have yet been approved by the US Food and Drug Administration for treating MASLD without liver inflammation or scarring. Therefore, the development of specific drugs to treat MASLD remains a key task in the ongoing research objective. Extracellular vesicles (EVs) play an important role in the communication between organs, tissues, and cells. Recent studies have found that intestinal microbiota are closely related to the pathogenesis and progression of MASLD. EVs produced by bacteria (BEVs) play an indispensable role in this process. Thus, this study provides a new direction for MASLD treatment. However, the mechanism by which BEVs affect MASLD remains unclear. Therefore, this study investigated the influence and function of intestinal microbiota in MASLD. Additionally, we focus on the research progress of BEVs in recent years and explain the relationship between BEVs and MASLD from the perspectives of glucose and lipid metabolism, immune responses, and intestinal homeostasis. Finally, we summarized the potential therapeutic value of BEVs and EVs from other sources, such as adipocytes, immunocytes, stem cells, and plants.
Collapse
Affiliation(s)
- Li-Na Qin
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun-Feng Yu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lie Ma
- Department of Reproductive Medicine, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Rong Yu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China; College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
2
|
Zhong H, Liu C, Huang Z, Tan P, Chen H, Fu W. Crosstalk between Hepatic Stellate Cells and Hepatic Macrophages in Metabolic Dysfunction-Associated Steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:1040-1056. [PMID: 40414682 DOI: 10.1016/j.ajpath.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/29/2025] [Accepted: 02/19/2025] [Indexed: 05/27/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease is the most prevalent liver condition worldwide. Its more severe manifestation, metabolic dysfunction-associated steatohepatitis (MASH), is accompanied by distinctive hepatocellular injury and inflammation with fibrosis. The involvement of chronic inflammation and accompanying immune cell activation in the maturation phases of MASH progression, mediated through hepatic stellate cells (HSCs), plays a central role. This review highlights the detailed molecular and cellular mechanisms of MASH, with special attention to the dynamic dialogue between HSCs and hepatic macrophages. This review will help narrow the existing gaps, with a summary of key roles HSCs and hepatic macrophages play within liver immunity to inflammation, discussing critical intercellular communication pathways as well as proposing new venues for research toward a better understanding of MASH pathobiology, which could pave ways toward breakthroughs in the clinical condition.
Collapse
Affiliation(s)
- Haoran Zhong
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Chen X, Wu C, Tang F, Zhou J, Mo L, Li Y, He J. The Immune Microenvironment: New Therapeutic Implications in Organ Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e05067. [PMID: 40391706 DOI: 10.1002/advs.202505067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Indexed: 05/22/2025]
Abstract
Fibrosis, characterized by abnormal deposition of structural proteins, is a major cause of tissue dysfunction in chronic diseases. The disease burden associated with progressive fibrosis is substantial, and currently approved drugs are unable to effectively reverse it. Immune cells are increasingly recognized as crucial regulators in the pathological process of fibrosis by releasing effector molecules, such as cytokines, chemokines, extracellular vesicles, metabolites, proteases, or intercellular contact. Therefore, targeting the immune microenvironment can be a potential strategy for fibrosis reduction and reversion. This review summarizes the recent advances in the understanding of the immune microenvironment in fibrosis including phenotypic and functional transformations of immune cells and the interaction of immune cells with other cells. The novel opportunities for the discovery and development of drugs for immune microenvironment remodeling and their associated challenges are also discussed.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyue Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Chen Y, Bian S, Le J. Molecular Landscape and Diagnostic Model of MASH: Transcriptomic, Proteomic, Metabolomic, and Lipidomic Perspectives. Genes (Basel) 2025; 16:399. [PMID: 40282358 PMCID: PMC12026639 DOI: 10.3390/genes16040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a progressive form of fatty liver disease, presents a significant global health challenge. Despite extensive research, fully elucidating its complex pathogenesis and developing accurate non-invasive diagnostic tools remain key goals. Multi-omics approaches, integrating data from transcriptomics, proteomics, metabolomics, and lipidomics, offer a powerful strategy to achieve these aims. This review summarizes key findings from multi-omics studies in MASH, highlighting their contributions to our understanding of disease mechanisms and the development of improved diagnostic models. Transcriptomic studies have revealed widespread gene dysregulation affecting lipid metabolism, inflammation, and fibrosis, while proteomics has identified altered protein expression patterns and potential biomarkers. Metabolomic and lipidomic analyses have further uncovered significant changes in various metabolites and lipid species, including ceramides, sphingomyelins, phospholipids, and bile acids, underscoring the central role of lipid dysregulation in MASH. These multi-omics findings have been leveraged to develop novel diagnostic models, some incorporating machine learning algorithms, with improved accuracy compared to traditional methods. Further research is needed to validate these findings, explore the complex interplay between different omics layers, and translate these discoveries into clinically useful tools for improved MASH diagnosis and prognosis.
Collapse
Affiliation(s)
- Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shuixiu Bian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiamei Le
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
5
|
Wang J, Bao S, An Q, Li C, Feng J. Roles of extracellular vesicles from different origins in metabolic-associated fatty liver disease: progress and perspectives. Front Immunol 2025; 16:1544012. [PMID: 40129979 PMCID: PMC11930831 DOI: 10.3389/fimmu.2025.1544012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is the most common chronic liver disease worldwide, associated with systemic metabolic dysregulation. It can progress from simple hepatic steatosis (MAFL) to more severe conditions like Metabolic-Associated Steatohepatitis (MASH), fibrosis, cirrhosis, and Hepatocellular Carcinoma (HCC). There is a critical lack of reliable non-invasive diagnostic methods and effective pharmaceutical treatments for MAFLD/MASH, emphasizing the need for further research. Extracellular vesicles (EVs) are nanoscale structures that play important roles in cell signaling by delivering bioactive molecules. However, there is a significant gap in literature regarding the roles of EVs from hosts, plants, and microbiota in MAFLD. This review explores the potential of EVs from various sources-host, plants, and microbiota-as biomarkers, therapeutic agents, drug carriers, and treatment targets for MAFLD. Firstly, the roles of host-derived extracellular vesicles (EVs) in MAFLD, with a focus on cell-type specific EVs and their components-proteins, miRNAs, and lipids-for disease diagnosis and monitoring were discussed. Moreover, it highlighted the therapeutic potential of mesenchymal stem cell (MSC)-derived EVs in reducing lipid accumulation and liver injury, and immune cell-derived EVs in mitigating inflammation and fibrosis. The review also discussed the use of host-derived EVs as drug carriers and therapeutic targets due to their ability to deliver bioactive molecules that impact disease mechanisms. Additionally, it summarized research on plant-derived EVs, which help reduce liver lipid accumulation, inflammation, and enhance gut barrier function in MAFLD. Also, the review explored microbial-derived EVs as novel therapeutic targets, particularly in relation to insulin resistance, liver inflammation, and dysfunction in MAFLD. Overall, by exploring the diverse roles of EVs from host, plant, and microbiota sources in MAFLD, this review offers valuable insights into their potential as non-invasive biomarkers and novel therapeutic strategies, which could pave the way for more effective diagnostic and treatment options for this increasingly prevalent liver disease. Notably, the challenges of translating EVs into clinical practice were also thoroughly discussed, aiming to provide possible directions and strategies for future research.
Collapse
Affiliation(s)
- Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuoqiang Bao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qi An
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Caihong Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
6
|
Yang J, Gui Y, Zheng Y, He H, Chen L, Li T, Liu H, Wang D, Yuan D, Yuan C. Total saponins from Panax japonicus reduced lipid deposition and inflammation in hepatocyte via PHD2 and hepatic macrophage-derived exosomal miR-463-5p. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119376. [PMID: 39842748 DOI: 10.1016/j.jep.2025.119376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) is a traditional Chinese herbal medicine revered as the "King of Herbs" in Tujia and Hmong medical practices. Clinically, it is primarily used to treat weakness and fatigue, wound bleeding, arthritis, hyperlipidemia, and fatty liver. It is rich in saponins, and the total saponins from PJ (TSPJ), possess immunomodulatory, antioxidant, and lipid-lowering effects. These properties hold significant potential in managing liver-related metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). AIM OF STUDY Evaluate the therapeutic effects of TSPJ on lipid metabolism disorders in a NASH model and explore the possible underlying mechanisms. MATERIALS AND METHODS To model NASH, C57BL/6J mice were fed a high-fat diet (HFD) and RAW264.7 cells were stimulated with lipopolysaccharide (LPS) and palmitic acid (PA). The animal and cell models were also treated with TSPJ, and the changes in inflammation and lipid metabolism were measured. Additional models were created by transfecting lentiviral vectors to cause miR-463-5p knockdown in the C57BL/6J mouse and the RAW264.7 cells. RESULTS In the HFD-induced mice, TSPJ reduced the body weight and liver weight, lowered the serum levels of TG, T-CHO, ALT, and AST, and reduced the hepatic lipid droplet formation and vacuolization. In the RAW264.7 cells, TSPJ upregulated the M2 markers and downregulated the M1 markers. TSPJ also significantly increased the expression of miR-463-5p in the exosomes derived from the RAW264.7 cells or the primary mouse hepatic macrophages, and miR-463-5p suppressed the expression of PHD2 in hepatocytes to improve lipid metabolism. However, when the exosome secretion inhibitor GW4869 was applied, TSPJ became less effective in alleviating the lipid deposition and inflammation in hepatocytes. CONCLUSIONS TSPJ significantly upregulated the expression of miR-463-5p in the exosomes of hepatic macrophages to thus downregulate PHD2 expression in hepatocytes and improve hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jingjie Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Yibei Gui
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ying Zheng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haodong He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Lihan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Tongtong Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haoran Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Dongshuo Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China.
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
7
|
Abreo Medina ADP, Shi M, Wang Y, Wang Z, Huang K, Liu Y. Exploring Extracellular Vesicles: A Novel Approach in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2717-2731. [PMID: 39846785 DOI: 10.1021/acs.jafc.4c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication. An imbalance in the gut microbiota composition may contribute to the progression of NAFLD, making the gut-liver axis a promising target for therapeutic strategies. This review aims to provide a comprehensive overview of EVs in NAFLD. Additionally, exosome-like nanovesicles derived from plants (PELNs) and probiotics-derived extracellular vesicles (postbiotics) have demonstrated the potential to re-establish intestinal equilibrium and modulate gut microbiota, thus offering the potential to alleviate NAFLD via the gut-liver axis. Further research is needed using multiple omics approaches to comprehensively characterize the cargo including protein, metabolites, genetic material packaged, and biological activities of extracellular vesicles derived from diverse microbes and plants.
Collapse
Affiliation(s)
- Andrea Del Pilar Abreo Medina
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31:32-55. [PMID: 39355871 PMCID: PMC11791556 DOI: 10.3350/cmh.2024.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key to maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, especially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Andrés-Rozas
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Alfaro-Retamero
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Washington AM, Kostallari E. Extracellular Vesicles and Micro-RNAs in Liver Disease. Semin Liver Dis 2024. [PMID: 39626790 DOI: 10.1055/a-2494-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Progression of liver disease is dependent on intercellular signaling, including those mediated by extracellular vesicles (EVs). Within these EVs, microRNAs (miRNAs) are packaged to selectively silence gene expression in recipient cells for upregulating or downregulating a specific pathway. Injured hepatocytes secrete EV-associated miRNAs which can be taken up by liver sinusoidal endothelial cells, immune cells, hepatic stellate cells, and other cell types. In addition, these recipient cells will secrete their own EV-associated miRNAs to propagate a response throughout the tissue and the circulation. In this review, we comment on the implications of EV-miRNAs in the progression of alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, viral and parasitic infections, liver fibrosis, and liver malignancies. We summarize how circulating miRNAs can be used as biomarkers and the potential of utilizing EVs and miRNAs as therapeutic methods to treat liver disease.
Collapse
Affiliation(s)
- Alexander M Washington
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
12
|
Kim JY, Cho DW, Choi JY, Jeong S, Kang M, Kim WJ, Hong IS, Song H, Chang H, Yang SR, Lee SJ, Park M, Hong SH. CXCL11 reprograms M2-biased macrophage polarization to alleviate pulmonary fibrosis in mice. Cell Biosci 2024; 14:140. [PMID: 39548525 PMCID: PMC11566568 DOI: 10.1186/s13578-024-01320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In understanding the pathophysiology of pulmonary fibrosis (PF), macrophage plasticity has been implicated with a crucial role in the fibrogenic process. Growing evidence indicates that accumulation of M2 macrophages correlates with the progression of PF, suggesting that targeted modulation of molecules that influence M2 macrophage polarization could be a promising therapeutic approach for PF. Here, we demonstrated a decisive role of C-X-C motif chemokine ligand 11 (CXCL11) in driving M1 macrophage polarization to alleviate PF in the bleomycin-induced murine model. RESULTS We intravenously administered secretome derived from naïve (M0) and polarized macrophages (M1 and M2) into PF mice and found that lung fibrosis was effectively reversed in only the M1-treated group, with modulation of the M1/M2 ratio toward the ratio of the control group. These findings suggest that the factors secreted from M1 macrophages contribute to alleviating PF by targeting macrophages and reshaping the immunofibrotic environment in a paracrine manner. Secretome analysis of macrophages identified CXCL11 as an M1-specific chemokine, and administration of recombinant CXCL11 effectively improved fibrosis with the reduction of M2 macrophages in vivo. Furthermore, a mechanistic in vitro study revealed that CXCL11 reprogrammed macrophages from M2 to M1 through the activation of pERK, pAKT, and p65 signaling. CONCLUSIONS Collectively, we demonstrate an unprecedented role for M1 macrophage-derived CXCL11 as an inducer of M1 macrophage polarization to revert the fibrogenic process in mice with PF, which may provide a clinically meaningful benefit.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong-Wook Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Yun Choi
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Suji Jeong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Minje Kang
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | | | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- KW-Bio Co., Ltd, Chuncheon, Republic of Korea.
| |
Collapse
|
13
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Wan Z, Liu X, Yang X, Huang Z, Chen X, Feng Q, Cao H, Deng H. MicroRNA-411-5p alleviates lipid deposition in metabolic dysfunction-associated steatotic liver disease by targeting the EIF4G2/FOXO3 axis. Cell Mol Life Sci 2024; 81:398. [PMID: 39261317 PMCID: PMC11391004 DOI: 10.1007/s00018-024-05434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Abnormal lipid deposition is an important driver of the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). MicroRNA-411-5p (miR-411-5p) and eukaryotic translation initiation factor 4γ2 (EIF4G2) are related to abnormal lipid deposition, but the specific mechanism is unknown. METHODS A high-fat, high-cholesterol diet (HFHCD) and a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) and a high-fructose diet (HFrD) were used to establish MASLD rat and mouse models, respectively. MiR-411-5p agomir and mimic were used to upregulate the miR-411-5p in vivo and in vitro, respectively. Adeno-associated virus type 8 (AAV8) carrying EIF4G2 short hairpin RNA (shRNA) and small interfering RNA (siRNA) were used to downregulate the EIF4G2 expression in vivo and in vitro, respectively. Liver histopathological analysis, Biochemical analysis and other experiments were used to explore the functions of miR-411-5p and EIF4G2. RESULTS MiR-411-5p was decreased in both MASLD rats and mice, and was negatively correlated with liver triglycerides and serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. Upregulation of miR-411-5p alleviated liver lipid deposition and hepatocellular steatosis. Moreover, miR-411-5p targeted and downregulated EIF4G2. Downregulation of EIF4G2 not only reduced liver triglycerides and serum ALT and AST levels in MASLD model, but also alleviated lipid deposition. Notably, upregulation of miR-411-5p and downregulation of EIF4G2 led to the reduction of forkhead box class O3 (FOXO3) and inhibited the expression of sterol regulatory-element binding protein 1 (SREBP1), acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN), thereby reducing fatty acid synthesis. CONCLUSIONS Upregulation of miR-411-5p inhibits EIF4G2 to reduce the FOXO3 expression, thereby reducing fatty acid synthesis and alleviating abnormal lipid deposition in MASLD.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoman Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qingqing Feng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Ma N, Tan J, Chen Y, Yang L, Li M, He Y. MicroRNAs in metabolic dysfunction-associated diseases: Pathogenesis and therapeutic opportunities. FASEB J 2024; 38:e70038. [PMID: 39250169 DOI: 10.1096/fj.202401464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.
Collapse
Affiliation(s)
- Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Tan
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Li
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Ashiqueali SA, Schneider A, Zhu X, Juszczyk E, Mansoor MAM, Zhu Y, Fang Y, Zanini BM, Garcia DN, Hayslip N, Medina D, McFadden S, Stockwell R, Yuan R, Bartke A, Zasloff M, Siddiqi S, Masternak MM. Early life interventions metformin and trodusquemine metabolically reprogram the developing mouse liver through transcriptomic alterations. Aging Cell 2024; 23:e14227. [PMID: 38798180 PMCID: PMC11488326 DOI: 10.1111/acel.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Recent studies have demonstrated the remarkable potential of early life intervention strategies at influencing the course of postnatal development, thereby offering exciting possibilities for enhancing longevity and improving overall health. Metformin (MF), an FDA-approved medication for type II diabetes mellitus, has recently gained attention for its promising anti-aging properties, acting as a calorie restriction mimetic, and delaying precocious puberty. Additionally, trodusquemine (MSI-1436), an investigational drug, has been shown to combat obesity and metabolic disorders by inhibiting the enzyme protein tyrosine phosphatase 1b (Ptp1b), consequently reducing hepatic lipogenesis and counteracting insulin and leptin resistance. In this study, we aimed to further explore the effects of these compounds on young, developing mice to uncover biomolecular signatures that are central to liver metabolic processes. We found that MSI-1436 more potently alters mRNA and miRNA expression in the liver compared with MF, with bioinformatic analysis suggesting that cohorts of differentially expressed miRNAs inhibit the action of phosphoinositide 3-kinase (Pi3k), protein kinase B (Akt), and mammalian target of rapamycin (Mtor) to regulate the downstream processes of de novo lipogenesis, fatty acid oxidation, very-low-density lipoprotein transport, and cholesterol biosynthesis and efflux. In summary, our study demonstrates that administering these compounds during the postnatal window metabolically reprograms the liver through induction of potent epigenetic changes in the transcriptome, potentially forestalling the onset of age-related diseases and enhancing longevity. Future studies are necessary to determine the impacts on lifespan and overall quality of life.
Collapse
Affiliation(s)
- Sarah A. Ashiqueali
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | - Xiang Zhu
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | - Mishfak A. M. Mansoor
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - Yun Zhu
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Yimin Fang
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Bianka M. Zanini
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotasBrazil
| | - Driele N. Garcia
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotasBrazil
| | - Natalie Hayslip
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - David Medina
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Samuel McFadden
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Robert Stockwell
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Rong Yuan
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Andrzej Bartke
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Michael Zasloff
- MedStar Georgetown Transplant InstituteGeorgetown University School of MedicineWashingtonDCUSA
| | - Shadab Siddiqi
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - Michal M. Masternak
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
17
|
Gonzalez-Sanchez E, Vaquero J, Caballero-Diaz D, Grzelak J, Fusté NP, Bertran E, Amengual J, Garcia-Saez J, Martín-Mur B, Gut M, Esteve-Codina A, Alay A, Coulouarn C, Calero-Perez S, Valdecantos P, Valverde AM, Sánchez A, Herrera B, Fabregat I. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche. J Pathol 2024; 263:482-495. [PMID: 38872438 DOI: 10.1002/path.6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- EHDG1703 CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases
- CERCA Programme/Generalitat de Catalunya
- CIVP20A6593 Fundacion Ramon Areces
- PID2019-108651RJ-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PID2021-122551OB-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PID-2021-122766OB-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTC2019-007125-1 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-094052-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-094079-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-099098-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RYC2021-034121-I Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- European Regional Development Fund
- Instituto de Salud Carlos III
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Centro de Investigación del Cancer and Instituto de Biología Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Daniel Caballero-Diaz
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Jan Grzelak
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Noel P Fusté
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Esther Bertran
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Josep Amengual
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Juan Garcia-Saez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Cedric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Silvia Calero-Perez
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Pilar Valdecantos
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Angela M Valverde
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Aránzazu Sánchez
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Blanca Herrera
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| |
Collapse
|
18
|
Qin X, Liu J. Nanoformulations for the diagnosis and treatment of metabolic dysfunction-associated steatohepatitis. Acta Biomater 2024; 184:37-53. [PMID: 38879104 DOI: 10.1016/j.actbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.
Collapse
Affiliation(s)
- Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
19
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
20
|
Ning D, Jin J, Fang Y, Du P, Yuan C, Chen J, Huang Q, Cheng K, Mo J, Xu L, Guo H, Yang MJ, Chen X, Liang H, Zhang B, Zhang W. DEAD-Box Helicase 17 exacerbates non-alcoholic steatohepatitis via transcriptional repression of cyp2c29, inducing hepatic lipid metabolism disorder and eliciting the activation of M1 macrophages. Clin Transl Med 2024; 14:e1529. [PMID: 38303609 PMCID: PMC10835191 DOI: 10.1002/ctm2.1529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.
Collapse
Affiliation(s)
- Deng Ning
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Jin
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Yuanyuan Fang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pengcheng Du
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Chaoyi Yuan
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Jin Chen
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Qibo Huang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Kun Cheng
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Jie Mo
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Lei Xu
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Hui Guo
- Institute of Organ TransplantationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Mia Jiming Yang
- Institute for Management in Medicine and Health SciencesUniversity of BayreuthBayreuthGermany
| | - Xiaoping Chen
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| | - Huifang Liang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| | - Bixiang Zhang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| | - Wanguang Zhang
- Department of Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of HealthWuhanChina
| |
Collapse
|
21
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
22
|
Li YJ, Baumert BO, Stratakis N, Goodrich JA, Wu HT, He JX, Zhao YQ, Aung MT, Wang HX, Eckel SP, Walker DI, Valvi D, La Merrill MA, Ryder JR, Inge TH, Jenkins T, Sisley S, Kohli R, Xanthakos SA, Baccarelli AA, McConnell R, Conti DV, Chatzi L. Circulating microRNA expression and nonalcoholic fatty liver disease in adolescents with severe obesity. World J Gastroenterol 2024; 30:332-345. [PMID: 38313232 PMCID: PMC10835537 DOI: 10.3748/wjg.v30.i4.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.
Collapse
Affiliation(s)
- Yi-Jie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Nikos Stratakis
- Barcelona Institute of Global Health, Barcelona Institute of Global Health, Barcelona 08036, Spain
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hao-Tian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Jing-Xuan He
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Yin-Qi Zhao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hong-Xu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30329, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Justin R Ryder
- Department of Surgery, Lurie Children’s Hospital of Chicago, Chicago, IL 60611, United States
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Thomas H Inge
- Department of Surgery, Lurie Children’s Hospital of Chicago, Chicago, IL 60611, United States
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Todd Jenkins
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Stephanie Sisley
- Department of Pediatrics, Children’s Nutrition Research Center USDA/ARS, Baylor College of Medicine, Houston, TX 77030, United States
| | - Rohit Kohli
- Department of Gastroenterology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, United States
| | - Stavra A Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| |
Collapse
|
23
|
Ortega-Ribera M, Babuta M, Szabo G. Sinusoidal cell interactions—From soluble factors to exosomes. SINUSOIDAL CELLS IN LIVER DISEASES 2024:23-52. [DOI: 10.1016/b978-0-323-95262-0.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Xiang SY, Deng KL, Yang DX, Yang P, Zhou YP. Function of macrophage-derived exosomes in chronic liver disease: From pathogenesis to treatment. World J Hepatol 2023; 15:1196-1209. [DOI: 10.4254/wjh.v15.i11.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic liver disease (CLD) imposes a heavy burden on millions of people worldwide. Despite substantial research on the pathogenesis of CLD disorders, no optimal treatment is currently available for some diseases, such as liver cancer. Exosomes, which are extracellular vesicles, are composed of various cellular components. Exosomes have unique functions in maintaining cellular homeostasis and regulating cell communication, which are associated with the occurrence of disease. Furthermore, they have application potential in diagnosis and treatment by carrying diverse curative payloads. Hepatic macrophages, which are key innate immune cells, show extraordinary heterogeneity and polarization. Hence, macrophage-derived exosomes may play a pivotal role in the initiation and progression of various liver diseases. This review focuses on the effects of macrophage-derived exosomes on liver disease etiology and their therapeutic potential, which will provide new insights into alleviating the global pressure of CLD.
Collapse
Affiliation(s)
- Shi-Yi Xiang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Kai-Li Deng
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Ping Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
25
|
Lu H, Zhang R, Zhang S, Li Y, Liu Y, Xiong Y, Yu X, Lan T, Li X, Wang M, Liu Z, Zhang G, Li J, Chen S. HSC-derived exosomal miR-199a-5p promotes HSC activation and hepatocyte EMT via targeting SIRT1 in hepatic fibrosis. Int Immunopharmacol 2023; 124:111002. [PMID: 37804655 DOI: 10.1016/j.intimp.2023.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Exosomes have been implicated in inflammation-related diseases, such as hepatic fibrosis (HF) and renal fibrosis, via transferring bioactive cargoes to recipient cells. This study aimed to investigate the possible effect of hepatic stellate cell (HSC)-derived exosomes on the initiation and development of HF by delivering microRNA (miR)-199a-5p. In HF rats with cholestasis induced by ligating the common bile duct, miR-199a-5p was upregulated while SIRT1 was downregulated in liver tissues from bile duct ligation (BDL) rats compared with that of sham rats. Furthermore, miR-199a-5p expression was upregulated, but the mRNA and protein expression levels of SIRT1 were downregulated in TGF-β1-activated LX-2. miR-199a-5p promoted the proliferation and further activation of LX-2 and enhanced the expression levels of the HF markers COL1A1 and α-SMA. Subsequently, the binding of miR-199a-5p to the 3'UTR of SIRT1 mRNA was predicted by bioinformatics websites and evidenced by fluorescent reporter assay. Knocking down SIRT1 enhanced the abilities of LX-2 cell proliferation, migration, and colony formation and increased the expression levels of the HF markers α-SMA and COL1A1. LX-2-derived exosomal miR-199a-5p transferred to LX-2 and THLE-2, inhibited the proliferation of THLE-2, and promoted the epithelial mesenchymal transition (EMT) and senescence of THLE-2. Furthermore, in vivo results suggested that miR-199a-5p overexpression aggravated HF in BDL rats; increased miR-199a-5p, α-SMA, and COL1A1 expression levels; and significantly upregulated the serum ALT, AST, TBA, and TBIL levels. However, reverse results were obtained with inhibited miR-199a-5p expression. In conclusion, HSC-derived exosomal miR-199a-5p may promote HF by accelerating HSC activation and hepatocyte EMT by targeting SIRT1, suggesting that miR-199a-5p and SIRT1 may serve as potential therapeutic targets for HF.
Collapse
Affiliation(s)
- Hongjian Lu
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ronghua Zhang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Shukun Zhang
- Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Yufeng Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China
| | - Yankun Liu
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China
| | - Yanan Xiong
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaohan Yu
- North China University of Science and Technology Affiliated Hospital, School of Public Health, Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Tao Lan
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Xin Li
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Meimei Wang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiyong Liu
- Health Science Center, North China University of Science and Technology, Tangshan 063210, China
| | - Guangling Zhang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Jingwu Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China.
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China.
| |
Collapse
|
26
|
Li F, Yan T, Wang S, Wen X. Exosome-associated miRNA-99a-5p targeting BMPR2 promotes hepatocyte apoptosis during the process of hepatic fibrosis. Clin Exp Med 2023; 23:4021-4031. [PMID: 37354366 DOI: 10.1007/s10238-023-01122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Liver fibrosis is a serious stage of chronic liver injury. Inhibition of hepatic stellate cells activation and hepatocytes apoptosis is important measures in the treatment of liver fibrosis. Studies have shown that exosomes are involved in regulating the information transmission between cells, but there are few studies on the interaction between exosomes from HSC and hepatocytes. This study screened miRNAs with significant differences related to liver fibrosis in the database. Then, we activated HSC applying transforming growth factor β1 (TGF-β1) and collected exosomes. The expression of miRNA in HSC-derived exosomes was verified by quantitative real-time PCR (qRT-PCR). The results of cell function test showed that HSC-derived exocrine miRNA-99a-5p could inhibit hepatocytes proliferation and promote hepatocytes apoptosis. Conversely, inhibition of miRNA-99a-5p can promote hepatocytes proliferation and inhibit apoptosis. Target gene prediction and luciferase assay show that miRNA can specifically bind to BMPR2 site sequence. In addition, we also detected the expression of BMPR2 and apoptosis-related protein by qRT-PCR and Western blot (WB). In conclusion, this study demonstrates that HSC-derived exocrine miRNA-99a-5p can promote hepatocytes apoptosis and participate in the process of liver fibrosis by targeting BMPR2. Our findings highlight the therapeutic potential of HSC-derived exocrine miRNA-99a-5p in hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China.
| | - Tengfei Yan
- Baoding First Central Hospital, Baoding, 071000, Heibei, China
| | - Shunlan Wang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| |
Collapse
|
27
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
28
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. SCOPE OF REVIEW There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. MAJOR CONCLUSIONS The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
林 嘉, 娄 安, 李 旭. [Lipopolysaccharide stimulates macrophages to secrete exosomes containing miR-155-5p to promote activation and migration of hepatic stellate cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:994-1001. [PMID: 37439172 PMCID: PMC10339300 DOI: 10.12122/j.issn.1673-4254.2023.06.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE To observe the effect of exosomes secreted by lipopolysaccharides (LPS)-stimulated macrophages on hepatic stellate cell activation and migration and explore the underlying molecular mechanism. METHODS Human monocyte THP-1 cells were induced to differentiate into macrophages using propylene glycol methyl ether acetic acid (PMA, 100 ng/mL, 24 h) followed by stimulation with LPS, and the culture supernatant of macrophages was collected for extraction of the exosomes by ultracentrifugation. The expression of miR-155-5p in the exosomes was detected using qRT-PCR. A Transwell co-culture system was used to observe the effects of the macrophage-derived exosomes on LX2 cell (a hepatic stellate cell line) proliferation, migration, oxidative stress and the expression of fibrosis biomarkers, which were also observed in LX2 cells transfected with miR-155-5p-mimics or miR-155-5p-inhibitors. Western blotting was used to detect the expressions of SOCS1 and its downstream signal pathway proteins. RESULTS Treatment with the exosomes from LPS-stimulated macrophages significantly enhanced the proliferation and migration ability of LX2 cells and increased the levels of oxidative stress and expressions of the fibrosis markers such as type Ⅰ collagen (P < 0.05). The expression of miR-155-5p in the exosomes secreted by macrophages was significantly increased after LPS treatment (P < 0.01). LX2 cells overexpressing miR-155-5p also exhibited significantly enhanced proliferation and migration with increased oxidative stress levels and expression of type Ⅰ collagen (P < 0.05), and interference of miR-155-5p expression produced the opposite effects. Western blotting showed that miR-155-5p overexpression obviously inhibited SOCS1 expression and promoted p-Smad2/3, Smad2/3 and RhoA protein expressions in LX2 cells (P < 0.05). CONCLUSION LPS stimulation of the macrophages increases miR-155-5p expression in the exosomes to promote activation and migration and increase oxidative stress and collagen production in hepatic stellate cells.
Collapse
Affiliation(s)
- 嘉宜 林
- 南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 安妮 娄
- 南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 旭 李
- 南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 海南医学院急救与创伤研究教育部重点实验室,海南 海口 571199Key Laboratory of First Aid and Trauma Research, Ministry of Education, Hainan Medical College, Haikou 571199, China
| |
Collapse
|
30
|
J Saadh M, Abedi Kiasari B, Shahrtash SA, Arias-Gonzáles JL, Chaitanya M, Cotrina-Aliaga JC, Kadham MJ, Sârbu I, Akhavan-Sigari R. Exosomal non-coding RNAs' role in immune regulation and potential therapeutic applications. Pathol Res Pract 2023; 247:154522. [PMID: 37201467 DOI: 10.1016/j.prp.2023.154522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Exosomes are now significant players in both healthy and unhealthy cell-to-cell communication. Exosomes can mediate immune activation or immunosuppression, which can influence the growth of tumors. Exosomes affect the immune responses to malignancies in various ways by interacting with tumor cells and the environment around them. Exosomes made by immune cells can control the growth, metastasis, and even chemosensitivity of tumor cells. In contrast, exosomes produced by cancer cells can encourage immune responses that support the tumor. Exosomes carry circular RNAs, long non-coding RNAs, and microRNAs (miRNAs), all involved in cell-to-cell communication. In this review, we focus on the most recent findings concerning the role of exosomal miRNAs, lncRNAs, and circRNAs in immune modulation and the potential therapeutic implications of these discoveries.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| | - Seyed Abbas Shahrtash
- Department of Pharmaceutical Engineering, Alborz Campus, University of Tehran, Tehran, Iran
| | | | - Mvnl Chaitanya
- Department of Pharmacognosy, School of Pharmacy, Lovely professional university Phagwara, Punjab 144001, India
| | | | | | - Ioan Sârbu
- 2nd Department of Surgery - Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
31
|
Yin KL, Li M, Song PP, Duan YX, Ye WT, Tang W, Kokudo N, Gao Q, Liao R. Unraveling the Emerging Niche Role of Hepatic Stellate Cell-derived Exosomes in Liver Diseases. J Clin Transl Hepatol 2023; 11:441-451. [PMID: 36643031 PMCID: PMC9817040 DOI: 10.14218/jcth.2022.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in various liver diseases, and exosomes are critical mediators of intercellular communication in local and distant microenvironments. Cellular crosstalk between HSCs and surrounding multiple tissue-resident cells promotes or inhibits the activation of HSCs. Substantial evidence has revealed that HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC-derived exosomes are underpinned by vehicle molecules, such as mRNAs and microRNAs, that function in, and significantly affect, the processes of various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer. As such, numerous exosomes derived from HSCs or HSC-associated exosomes have attracted attention because of their biological roles and translational applications as potential targets for therapeutic targets. Herein, we review the pathophysiological and metabolic processes associated with HSC-derived exosomes, their roles in various liver diseases and their potential clinical application.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Cui XY, Jiang XD, Li WH, Zhang R, You HJ, Tang ZQ, Ma Y, Yang Z, Che NC, Liu WL. Investigation of effective components and action mechanism of Yiguanjian in treatment of liver fibrosis based on network pharmacology. Shijie Huaren Xiaohua Zazhi 2023; 31:256-267. [DOI: 10.11569/wcjd.v31.i7.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine compounds are characterized by the comprehensive adjustment of multiple components and show unique advantages in the prevention and treatment of liver fibrosis. Yiguanjian (YGJ) is a famous prescription for nourishing Yin to soothe the liver, which can improve the symptoms of liver fibrosis, and understanding its anti-liver fibrosis mechanism can promote its development and use.
AIM To explore the mechanism of YGJ in the treatment of liver fibrosis through network pharmacology and to experi-mentally validate the initial results obtained.
METHODS Components of YGJ and potentially targeted proteins were downloaded from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The targets of liver fibrosis were accessed from GeneCard and OMIM databases. STRING database was utilized to construct a protein-protein interaction (PPI) network based on the components of YGJ and the targets of liver fibrosis. The PPI network was subjected to random walk with restart (RWR) to obtain key genes, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed based on the DAVID database. For animal experimental validation, eighteen SD rats were randomly assigned to a normal group, a model group, and a YGJ group. The rats in the model group and YGJ group were intraperitoneally injected with 50% CCl4 olive oil solution for 6 wk to induce liver fibrosis, and rats in the normal group were intraperitoneally injected with the same amount of olive oil solution. Then, the rats of the YGJ group were given YGJ decoction (6.67 g/kg) daily for 4 weeks. Meanwhile, rats in the other groups were given distilled water. Blood and liver samples were collected, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum of rats were detected with an automated analyzer. Pathological changes in liver tissue were observed by hematoxylin-eosin (HE) and Masson staining. Western blot and qRT-PCR were used to detect the expression of key proteins and genes in the liver.
RESULTS A total of 52 components and 186 potential targets of YGJ were obtained, and 1080 targets of liver fibrosis were screened. The top 10 genes with the high-affinity scores to the drug targets were STAT6, SRC, MAPK3, STX1A, EP300, STAT3, PLG, CTNNB1, CDKN1B, and CANX. The top 50 genes were mainly enriched in response to PI3K- Akt signaling pathway and FoxO signaling pathway, etc. In CCl4-induced liver fibrosis rats, YGJ decoction could significantly improve liver lesions and reduce fibrosis. YGJ decoction could reduce α-SMA expression, promote the expression of phosphorylated STAT6, increase the protein expression of PPAR-γ and CD163 and the mRNA expression of Arg-1, CD206, and CD163, and inhibit the gene expression of IL-6.
CONCLUSION The therapeutic effect of YGJ decoction for liver fibrosis involves multiple components and multiple pathways, including the STAT6/PPAR-γ pathway.
Collapse
|
33
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
34
|
Liu Y, Zheng Y, Yang Y, Liu K, Wu J, Gao P, Zhang C. Exosomes in liver fibrosis: The role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications. Front Immunol 2023; 14:1133297. [PMID: 37020547 PMCID: PMC10067730 DOI: 10.3389/fimmu.2023.1133297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianying Wu
- Department of Digestive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chuantao Zhang, ; Peiyang Gao,
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chuantao Zhang, ; Peiyang Gao,
| |
Collapse
|
35
|
Yu W, Wang S, Wang Y, Chen H, Nie H, Liu L, Zou X, Gong Q, Zheng B. MicroRNA: role in macrophage polarization and the pathogenesis of the liver fibrosis. Front Immunol 2023; 14:1147710. [PMID: 37138859 PMCID: PMC10149999 DOI: 10.3389/fimmu.2023.1147710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Macrophages, as central components of innate immunity, feature significant heterogeneity. Numerus studies have revealed the pivotal roles of macrophages in the pathogenesis of liver fibrosis induced by various factors. Hepatic macrophages function to trigger inflammation in response to injury. They induce liver fibrosis by activating hepatic stellate cells (HSCs), and then inflammation and fibrosis are alleviated by the degradation of the extracellular matrix and release of anti-inflammatory cytokines. MicroRNAs (miRNAs), a class of small non-coding endogenous RNA molecules that regulate gene expression through translation repression or mRNA degradation, have distinct roles in modulating macrophage activation, polarization, tissue infiltration, and inflammation regression. Considering the complex etiology and pathogenesis of liver diseases, the role and mechanism of miRNAs and macrophages in liver fibrosis need to be further clarified. We first summarized the origin, phenotypes and functions of hepatic macrophages, then clarified the role of miRNAs in the polarization of macrophages. Finally, we comprehensively discussed the role of miRNAs and macrophages in the pathogenesis of liver fibrotic disease. Understanding the mechanism of hepatic macrophage heterogeneity in various types of liver fibrosis and the role of miRNAs on macrophage polarization provides a useful reference for further research on miRNA-mediated macrophage polarization in liver fibrosis, and also contributes to the development of new therapies targeting miRNA and macrophage subsets for liver fibrosis.
Collapse
Affiliation(s)
- Wen Yu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yangyang Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| |
Collapse
|