1
|
Flanagan K, Gassner K, Lang M, Ozelyte J, Hausmann B, Crepaz D, Pjevac P, Gasche C, Berry D, Vesely C, Pereira FC. Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal Bacteroides thetaiotaomicron. mBio 2025; 16:e0392824. [PMID: 39878512 PMCID: PMC11898669 DOI: 10.1128/mbio.03928-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function. When incubated with the human fecal microbiota, miR-21 revealed a rapid internalization or binding to microbial cells, which varied in extent across different donor samples. Fluorescence-activated cell sorting and sequencing of microbial cells incubated with fluorescently labeled miR-21 identified organisms belonging to the genera Bacteroides, Limosilactobacillus, Ruminococcus, or Coprococcus, which predominantly interacted with miR-21. Surprisingly, these and other genera also interacted with a miRNA scramble control, suggesting that physical interaction and/or uptake of these miRNAs by gut microbiota is not sequence-dependent. Nevertheless, transcriptomic analysis of the gut commensal Bacteroides thetaiotaomicron revealed a miRNA sequence-specific effect on bacterial transcript levels. Supplementation of miR-21, but not of small RNA controls, resulted in significantly altered levels of many cellular transcripts and increased transcription of a biosynthetic operon for indole and L-tryptophan, metabolites known to regulate host inflammation and colonic motility. Our study identifies a novel putative miR-21-dependent pathway of regulation of intestinal function through the gut microbiome with implications for gastrointestinal conditions. IMPORTANCE The mammalian gut represents one of the largest and most dynamic host-microbe interfaces. Host-derived microRNAs (miRNAs), released from the gut epithelium into the lumen, have emerged as important contributors to host-microbe crosstalk. Levels of several miRNAs are altered in the stool of patients with irritable bowel syndrome or inflammatory bowel disease. Understanding how miRNAs interact with and shape gut microbiota function is crucial as it may enable the development of new targeted treatments for intestinal diseases. This study provides evidence that the miRNA miR-21 can rapidly associate with diverse microbial cells form the gut and increase levels of transcripts involved in tryptophan synthesis in a ubiquitous gut microbe. Tryptophan catabolites regulate key functions, such as gut immune response or permeability. Therefore, this mechanism represents an unexpected host-microbe interaction and suggests that host-derived miR-21 may help regulate gut function via the gut microbiota.
Collapse
Affiliation(s)
- Kayla Flanagan
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Kirsten Gassner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michaela Lang
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Jurgita Ozelyte
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility, Medical University of Vienna and University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Daniel Crepaz
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Cornelia Vesely
- Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Fatima C. Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Mahata D, Jana M, Mondal SK, Manna S, Jana A, Chakraborty A, Ghosh AK, Chakraborty R, Hazra TK, Mandal SM. N-Glycidyl d-tryptophan ether-based ointment with anti-infective, anti-inflammatory, and wound-healing properties. RSC Med Chem 2025:d4md00878b. [PMID: 39935521 PMCID: PMC11808565 DOI: 10.1039/d4md00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 02/13/2025] Open
Abstract
Anti-infective hydrogel is an emerging and innovative material used as an antibacterial ointment or to coat medical devices. Here, we synthesized a novel derivative of N-glycidyl d-tryptophan ether using the d-isoform of tryptophan through a ring-opening polymerization reaction. The compound was characterized using gel permeation chromatography (GPC), HPLC, 1H NMR, 13C NMR, MALDI-TOF-MS, and FTIR spectroscopy. The results demonstrated its antibacterial activity by inhibiting quorum sensing and subsequent biofilm formation. In vivo studies revealed the ability of the compound to promote wound healing by reducing inflammatory cytokine levels, such as tumor necrosis factor alpha, interleukin-1β, and IL-6. Moreover, the compound showed antioxidant activity by scavenging the DPPH radical due to the presence of polymeric hydroxyl acidic protons near the nitrogen. Since inflammation prompted ROS-initiated DNA strand breaks, it was also confirmed that the compound could reduce DNA strand break accumulation, as demonstrated through testing against bleomycin-induced DNA strand break accumulation. Therefore, the synthesized compound, which could be used as a base material for ointments, was found to be effective for antibacterial and wound healing actions by (a) inhibiting biofilm formation by bacteria, (b) reducing the expression of inflammatory cytokines, and (c) preventing the accumulation of DNA strand breaks through free-radical scavenging activity.
Collapse
Affiliation(s)
- Denial Mahata
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India +91 3222 255303 +91 3222 282486
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Centre Chicago IL USA
| | - Suresh K Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India +91 3222 255303 +91 3222 282486
| | - Sounik Manna
- Department of Microbiology, Midnapore College (Autonomous) Midnapore 721102 WB India
| | - Arundhuti Jana
- Department of Neurological Sciences, Rush University Medical Centre Chicago IL USA
| | - Anirban Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston Texas USA
| | - Ananta K Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India +91 3222 255303 +91 3222 282486
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal Raja Rammohanpur Darjeeling 734013 West Bengal India
| | - Tapas K Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston Texas USA
| | - Santi M Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India +91 3222 255303 +91 3222 282486
| |
Collapse
|
3
|
Wang F, Du R, Shang Y. Biological function of d-tryptophan: a bibliometric analysis and review. Front Microbiol 2025; 15:1455540. [PMID: 39872820 PMCID: PMC11770058 DOI: 10.3389/fmicb.2024.1455540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Background d-Tryptophan is recognised for its unique physiological properties. In this study, we aimed to explore the dynamic trends and emerging topics in d-tryptophan research to offer fresh perspectives for future studies. Methods Employing bibliometric analysis, we examined the literature on d-tryptophan indexed in the Web of Science Core Collection from January 1987 to December 2023. The "Bibliometrix" R package and CiteSpace were utilised for data processing. Results Analyses of 865 publications revealed 2209 keywords, 4068 authors, 2094 institutions, and contributors from 302 regions. The USA was at the forefront of publications concerning d-tryptophan, but the European Journal of Pharmacology, Journal of Biological Chemistry, and Journal of Medicinal Chemistry were notable for their contributions, co-citations, and impact, respectively. This literature review reveals that since 1987, studies have developed from a focus on d-tryptophan metabolism to the exploration of its functions in organic and medicinal chemistry and food science. Recent findings highlight the potential of d-tryptophan as a non-nutritional sweetener and food preservative as well as its role in inhibiting the growth of bacterial biofilms. Additionally, its immunomodulatory properties are being investigated in relation to allergic diseases. Furthermore, d-tryptophan plays a role in the therapy of atherosclerosis, osteoporosis, tuberculosis, and cancer. Conclusion The results of bibliometric analysis highlight that future research should focus on the biological functions of d-tryptophan as a food preservative and its use in immunomodulation and drug development, providing strong guidance for future research.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Liu R, Zhang F, Li S, Liu Q, Pang Y, Li L. Regulation of ROS metabolism in macrophage via xanthine oxidase is associated with disease progression in pulmonary tuberculosis. Metabolomics 2024; 20:127. [PMID: 39520502 DOI: 10.1007/s11306-024-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) exacerbation can lead to respiratory failure, multi-organ failure, and symptoms related to central nervous system diseases. The purpose of this study is to screen biomarkers and metabolic pathways that can predict the progression of PTB, and to verify the role of the metabolic enzyme xanthine oxidase (XO) in the progression of PTB. METHODS To explore the biomarkers and mechanisms underlying the progression of PTB, plasma metabolomics sequencing was conducted on patients with severe PTB, non-severe PTB, and healthy individuals. Screening differential metabolites and metabolic pathways that can predict the progression of PTB, and verifying the function and mechanism of action of XO through experiments. RESULTS The purine metabolism, sphingolipid metabolism, and amino acid metabolism between the three groups differ. In patients with severe PTB, the levels of xanthosine and hypoxanthine are increased, while the levels of D-tryptophan, dihydroceramide and uric acid are decreased. Inhibition of XO activity has been observed to reduce the levels of tumor necrosis factor (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), as well as to suppress the production of reactive oxygen species (ROS) and the activation of the NF-κB pathway, while also promoting the growth of MTB within cells. CONCLUSION D-tryptophan, xanthosine, and dihydroceramide can be utilized as biomarkers for progression of PTB, assisting in the evaluation of disease progression, and XO stands out as a potential therapeutic target for impeding the progression of PTB.
Collapse
Affiliation(s)
- Ruichao Liu
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Fuzhen Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qiuyue Liu
- Department of Intensive Care Unit, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Liang Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.
| |
Collapse
|
5
|
Chen M, Huang Y, Ma L, Liu JJ, Cao Y, Zhao PJ, Mo MH. Cis-3-Indoleacrylic Acid: A Nematicidal Compound from Streptomyces youssoufiensis YMF3.862 as V-ATPase Inhibitor on Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24347-24358. [PMID: 39453611 DOI: 10.1021/acs.jafc.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The application of the bionematicides derived from microorganisms and their secondary metabolites represents a promising strategy for managing root-knot nematodes. In this study, a nematicidal compound, cis-3-indoleacrylic acid, was isolated from Streptomyces youssoufiensis YMF3.862. This compound caused Meloidogyne incognita juveniles to have swollen bodies with apparent cracks on the cuticle surface. The LC50 value of cis-3-indoleacrylic acid against juveniles was 16.31 μg/mL 24 h of post-treatment. Cis-3-indoleacrylic acid at 20 μg/mL significantly inhibited V-ATPase expression and remarkably decreased enzyme activity by 84.41%. As an inhibitor of V-ATPase, cis-3-indoleacrylic acid caused significant H+ accumulation in nematode bodies, resulting in lower intracellular pH values and higher extracellular pH values of M. incognita. Application of 50 μg/mL cis-3-indoleacrylic acid generated a 71.06% control efficiency against M. incognita on tomatoes. The combination results of this study indicated that cis-3-indoleacrylic acid can be developed as a natural nematicide for controlling M. incognita.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer 665000, P. R. China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang 550081, P. R. China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
6
|
Moghimani M, Noori SMA, Afshari A, Hashemi M. D-tryptophan, an eco-friendly natural, safe, and healthy compound with antimicrobial activity against food-borne pathogens: A systematic review. Food Sci Nutr 2024; 12:3068-3079. [PMID: 38726420 PMCID: PMC11077176 DOI: 10.1002/fsn3.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Recently, the use of D-amino acids as food preservatives has attracted considerable attention because these natural compounds do not have adverse effects on human health. In addition, D-amino acids such as D-tryptophan can reduce the harmful effects of other treatments. For instance, the use of D-tryptophan in food reduces the requirement for high temperatures and their damaging effects on nutrients such as proteins and vitamins. The purpose of this systematic review was to investigate the antimicrobial effect of D-tryptophan on food-borne pathogens in vitro and in food models. To identify related studies, scientific digital databases such as PubMed, Science Direct, and Google Scholar were searched from January 2000 to February 2023. The results of the studies showed that when D-tryptophan was used with other stresses such as using different salt concentrations, refrigeration, or high temperatures, it showed significant antimicrobial effects on Gram-positive and Gram-negative food-borne pathogens, and antibiofilm impacts were also observed with D-tryptophan. Since studies have shown that the antimicrobial activity of D-tryptophan depends on several factors, including the pathogen strain, the type of stress, and the concentration of D-tryptophan, and every article has focused on one of these factors, there is a need for a systematic review that summarizes and concludes the effect of all these factors on the antimicrobial activity of D-tryptophan against food-borne pathogens.
Collapse
Affiliation(s)
- Minoo Moghimani
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research CenterMedical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Asma Afshari
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hashemi
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
7
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
8
|
Liu P, Liu Y, Cheng J, Xia Y, Yang Y. Copper exposure causes alteration in the intestinal microbiota and metabolites in Takifugu rubripes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116064. [PMID: 38340599 DOI: 10.1016/j.ecoenv.2024.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Copper is an environmental pollutant, and copper in aquatic environments mainly comes from soil and water. It enters the environment through atmospheric deposition, sewage discharge, and industrial production, and enters aquatic organisms, causing toxicity. Takifugu rubripes (T. rubripes) is a marine fish with high economic value. Due to the toxic effects of heavy metals on aquatic organisms such as fish, it can affect the gut community and metabolites of fish. The gut is an important channel for fish to communicate with the outside world and a necessary pathway for the metabolism of nutrients and toxic substances in the fish body. Studies have shown that due to changes in global water emissions and the high sensitivity of aquatic organisms to the environment, copper may pose greater potential hazards to aquatic organisms. Copper poses a greater risk to aquatic species than other heavy metals and metal/metal like pollutants (such as cadmium, lead, mercury, arsenic, etc.) . In order to elucidate the effects of copper exposure on the gut of T. rubripes. In this study, we exposed T. rubripes to 0, 50, 100, or 500 μg/L of copper for three days, the effects of copper exposure on the gut microbiota structure and metabolites of the T. rubripes were investigated using 16 S rRNA gene and metabolomics techniques. The research results indicate that with the increase copper concentration, the intestinal tissue of T. rubripes undergoes significant damage. 16 S rRNA sequencing results show that copper exposure alters the structure and metabolites of intestinal microbiota. Copper exposure of 100 and 500 μg/L inhibited the colonization of the bacterial gut, disrupted the intestinal barrier, and made the fish susceptible to the pathogens. Liquid chromatography-mass spectrometry analysis showed that copper regulated the production of metabolites such as L-histidine, arachidonic acid, and L-glutamic acid, which are related to energy and immunity. Microbiome-metabolome correlation analysis showed that Subdoligranulum, Family_XIII_AD3011_group, and Clostridium_sensu_stricto_1 were the key bacteria for copper ion intervention, and they might up-regulate the levels of metabolites such as indole-3-acetic acid, 3-indoleacrylic acid, and 5-hydroxyindole in the tryptophan metabolism pathway. In summary, our research has demonstrated that copper exposure can cause pathological changes in the intestinal tissue of the T. rubripes. High concentrations of copper ions can affect the colonization of the T. rubripes microbiota in the intestine, damage the fish's immune system, and alter the structure and metabolites of the intestinal microbiota, this can lead to intestinal metabolic dysfunction. providing a reference for the evaluation of the biological toxicity effects of heavy metal elements in the marine environment. This study provides a reference for evaluating the biological toxicity effects of heavy metal elements in marine environments.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| | - Yanyun Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jianxin Cheng
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
9
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
10
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
11
|
Li K, Liu X, Hou R, Zhao H, Zhao P, Tian Y, Li J. Uncovering mechanisms of Baojin Chenfei formula treatment for silicosis by inhibiting inflammation and fibrosis based on serum pharmacochemistry and network analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115082. [PMID: 37257350 DOI: 10.1016/j.ecoenv.2023.115082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Baojin Chenfei formula (BCF), a Chinese herbal formula, has significant effects on improving the clinical symptoms of patients with silicosis. However, its active compounds and the underlying mechanisms have not yet fully been elucidated. PURPOSE This study aimed to explore the underlying mechanisms of BCF in treating silicosis. METHODS The rat model of silicosis was developed via a single intratracheal instillation of SiO2 suspension to examine the therapeutic impacts of BCF on silicosis. Subsequently, the active compounds, targets, and mechanisms of BCF were analyzed based on serum pharmacochemistry and network analysis. Finally, the underlying mechanisms of representative compounds of BCF were validated in vitro experiments. RESULTS BCF significantly alleviated SiO2-induced silicosis in rats, evidenced by improved lung function, decreased pathological injury, and reduced inflammatory response and fibrosis. 19 active compounds were identified from the rat serum samples after BCF gavage. Subsequently, 299 targets for these 19 compounds in BCF and 257 genes related to silicosis were collected. 26 overlapping targets, including AKT1, TNF, IL6, MAPK3, EGFR, and others, were obtained from the intersection of the 299 BCF-related targets and 257 silicosis-associated genes. These overlapping targets mainly corresponded to glycyrrhetic acid and paeoniflorin and were mainly associated with positive regulation of smooth muscle cell proliferation, positive regulation of MAP kinase activity, and inflammatory response. In vitro experiments also demonstrated that the representative compounds of BCF (glycyrrhetic acid and paeoniflorin) could suppress inflammatory response by the MAPK pathway, and also inhibited fibroblast activation by the EGFR-PI3K-AKT pathway. CONCLUSION Active compounds of BCF, such as glycyrrhetic acid and paeoniflorin, could suppress inflammatory response by the MAPK pathway and suppress fibroblast activation by the EGFR-PI3K-AKT pathway. These might be the mechanisms of BCF in treating silicosis.
Collapse
Affiliation(s)
- Kangchen Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China; Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xinguang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Runsu Hou
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Hulei Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China; Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
12
|
Gonda Y, Matsuda A, Adachi K, Ishii C, Suzuki M, Osaki A, Mita M, Nishizaki N, Ohtomo Y, Shimizu T, Yasui M, Hamase K, Sasabe J. Mammals sustain amino acid homochirality against chiral conversion by symbiotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2300817120. [PMID: 37014864 PMCID: PMC10104486 DOI: 10.1073/pnas.2300817120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Mammals exhibit systemic homochirality of amino acids in L-configurations. While ribosomal protein synthesis requires rigorous chiral selection for L-amino acids, both endogenous and microbial enzymes convert diverse L-amino acids to D-configurations in mammals. However, it is not clear how mammals manage such diverse D-enantiomers. Here, we show that mammals sustain systemic stereo dominance of L-amino acids through both enzymatic degradation and excretion of D-amino acids. Multidimensional high performance liquidchromatography analyses revealed that in blood, humans and mice maintain D-amino acids at less than several percent of the corresponding L-enantiomers, while D-amino acids comprise ten to fifty percent of the L-enantiomers in urine and feces. Germ-free experiments showed that vast majority of D-amino acids, except for D-serine, detected in mice are of microbial origin. Experiments involving mice that lack enzymatic activity to catabolize D-amino acids showed that catabolism is central to the elimination of diverse microbial D-amino acids, whereas excretion into urine is of minor importance under physiological conditions. Such active regulation of amino acid homochirality depends on maternal catabolism during the prenatal period, which switches developmentally to juvenile catabolism along with the growth of symbiotic microbes after birth. Thus, microbial symbiosis largely disturbs homochirality of amino acids in mice, whereas active host catabolism of microbial D-amino acids maintains systemic predominance of L-amino acids. Our findings provide fundamental insight into how the chiral balance of amino acids is governed in mammals and further expand the understanding of interdomain molecular homeostasis in host-microbial symbiosis.
Collapse
Affiliation(s)
- Yusuke Gonda
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
- Department of Pediatrics, Juntendo University Urayasu Hospital, 279-0021Chiba, Japan
| | - Akina Matsuda
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
- Department of Pediatrics, Juntendo UniversityFaculty of Medicine, 113-8431Tokyo, Japan
| | - Kenichiro Adachi
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
| | - Chiharu Ishii
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Masataka Suzuki
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
| | - Akina Osaki
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
| | | | - Naoto Nishizaki
- Department of Pediatrics, Juntendo University Urayasu Hospital, 279-0021Chiba, Japan
| | - Yoshiyuki Ohtomo
- Department of Pediatrics, Juntendo University Nerima Hospital, 177-8521Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo UniversityFaculty of Medicine, 113-8431Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, 160-8582Tokyo, Japan
| |
Collapse
|