1
|
Blümke J, Schameitat M, Verma A, Limbecker C, Arlt E, Kessler SM, Kielstein H, Krug S, Bazwinsky-Wutschke I, Haemmerle M. Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer. Cancers (Basel) 2025; 17:1689. [PMID: 40427186 PMCID: PMC12110028 DOI: 10.3390/cancers17101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar-ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| | - Moritz Schameitat
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Atul Verma
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
| | - Celina Limbecker
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sonja M. Kessler
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Faculty of Natural Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sebastian Krug
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Monika Haemmerle
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| |
Collapse
|
2
|
Lucas D, Sarkar T, Niemeyer CY, Harnoss JC, Schneider M, Strowitzki MJ, Harnoss JM. IRE1 is a promising therapeutic target in pancreatic cancer. Am J Physiol Cell Physiol 2025; 328:C806-C824. [PMID: 39819023 DOI: 10.1152/ajpcell.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Denise Lucas
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tamal Sarkar
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Clara Y Niemeyer
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian C Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
3
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
5
|
Slusny B, Zimmer V, Nasiri E, Lutz V, Huber M, Buchholz M, Gress TM, Roth K, Bauer C. Optimized Spheroid Model of Pancreatic Cancer Demonstrates Influence of Macrophage-T Cell Interaction for Intratumoral T Cell Motility. Cancers (Basel) 2024; 17:51. [PMID: 39796680 PMCID: PMC11718817 DOI: 10.3390/cancers17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids. METHODS Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment. In particular, T cell migration analysis represents the final step of effector function, as T cells engage with targets cells upon cytotoxic interaction, which is represented by an arrest within the spheroid volume. Therefore, T cell arrest is a novel readout parameter of T cell effector function in spheroids. RESULTS Here, we demonstrate that incubation of macrophages with nigericin for NLRP3 activation increases T cell velocity, but results in decreased T cellular arrest. This is paralleled by reduced rejection kinetics of pancreatic cancer spheroids in the presence of antigen-dependent T cells and nigericin-treated macrophages. Our model demonstrates consistent changes in T cell motility upon coculturing of T cells and tumors cells with macrophages, including influences of molecular interventions such as NLRP3 activation. CONCLUSIONS Motility analysis using a spheroid model of pancreatic cancer is a more sophisticated alternative to in vitro cytotoxicity assays measuring spheroid size. Ultimately, an optimized spheroid model might replace at least some aspects of animal experiments investigating T cell effector function.
Collapse
Affiliation(s)
- Benedikt Slusny
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Vanessa Zimmer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Elena Nasiri
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Veronika Lutz
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Katrin Roth
- Core Facility Cellular Imaging, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
- Department of Gastroenterology, DonauIsar Klinikum Deggendorf, MedizinCampus Niederbayern, 94469 Deggendorf, Germany
| |
Collapse
|
6
|
Wang Q, Wang J, Xu K, Luo Z. Targeting the CSF1/CSF1R signaling pathway: an innovative strategy for ultrasound combined with macrophage exhaustion in pancreatic cancer therapy. Front Immunol 2024; 15:1481247. [PMID: 39416792 PMCID: PMC11479911 DOI: 10.3389/fimmu.2024.1481247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive and lethal malignancy characterized by a complex tumor microenvironment (TME) and immunosuppressive features that limit the efficacy of existing treatments. This paper reviews the potential of combining ultrasound with macrophage exhaustion in the treatment of pancreatic cancer. Macrophages, particularly tumor-associated macrophages (TAMs), are crucial in pancreatic cancer progression and immune escape. Prolonged exposure to the immunosuppressive TME leads to macrophage exhaustion, reducing their anti-tumor ability and instead promoting tumor growth. The CSF1/CSF1R signaling pathway is key in macrophage recruitment and functional regulation, making it an effective target for combating macrophage exhaustion. Ultrasound technology not only plays a significant role in diagnosis and staging but also enhances therapeutic efficacy by guiding radiofrequency ablation (RFA) and percutaneous alcohol injection (PEI) in combination with immunomodulators. Additionally, ultrasound imaging can monitor the number and functional status of TAMs in real-time, providing a basis for optimizing treatment strategies. Future studies should further investigate the combined use of ultrasound and immunomodulators to refine treatment regimens, address challenges such as individual variability and long-term effects, and offer new hope for pancreatic cancer patients.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ultrasound, Xichong People’s Hospital, Nanchong, China
| | - Jianhong Wang
- Department of Internal Medicine, Guang’an Vocational & Technical College, Guang’an, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Hansen FJ, Mittelstädt A, Clausen FN, Knoedler S, Knoedler L, Klöckner S, Kuchenreuther I, Mazurie J, Arnold LS, Anthuber A, Jacobsen A, Merkel S, Weisel N, Klösch B, Karabiber A, Tacyildiz I, Czubayko F, Reitberger H, Gendy AE, Brunner M, Krautz C, Wolff K, Mihai S, Neufert C, Siebler J, Grützmann R, Weber GF, David P. CD71 expressing circulating neutrophils serve as a novel prognostic biomarker for metastatic spread and reduced outcome in pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:21164. [PMID: 39256468 PMCID: PMC11387421 DOI: 10.1038/s41598-024-70916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, presenting a persisting global health burden. Neutrophils have a double-edged role in tumor progression exhibiting both pro-tumor and anti-tumor functions. CD71, also known as transferrin receptor 1, performs a critical role in cellular iron uptake and is highly expressed on proliferating cells, and especially on activated immune cells. CD71 is known to be elevated in various types of solid cancers and is associated with poor prognosis, however, the expression of CD71 on neutrophils in PDAC and its potential clinical impact is still unknown. Therefore, we analyzed CD71 on circulating neutrophils in PDAC and clinical control patients and found a significant increased expression in PDAC patients. High expression of CD71 on neutrophils in PDAC patients was associated with reduced outcome compared to low expression. CD71 on neutrophils correlated positively with the levels of proinflammatory cytokines IL-6, IFN-γ, and growth factor ligands CD40-L, and BAFF in plasma of PDAC patients. Finally, we have demonstrated that high expression of CD71 on neutrophils was also associated with an increased expression of CD39 and CD25 on circulating T-cells. Based on our findings, we hypothesize that CD71 on neutrophils is associated with tumor progression in PDAC. Further studies are required to investigate the distinct functionality of CD71 expressing neutrophils and their potential clinical application.
Collapse
Affiliation(s)
- Frederik J Hansen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anke Mittelstädt
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Ingolstädter Landtsraße 1, 85764, Neuherberg, Germany
| | - Leonard Knoedler
- Division of Genetic Immunotherapy (LIT), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Sebastian Klöckner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Isabelle Kuchenreuther
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Johanne Mazurie
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Lisa-Sophie Arnold
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anna Anthuber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anne Jacobsen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Susanne Merkel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Nadine Weisel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Bettina Klösch
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Alara Karabiber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Irem Tacyildiz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Franziska Czubayko
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Helena Reitberger
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Amr El Gendy
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Kerstin Wolff
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor im Universitätsklinikum, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 12, Erlangen, Germany
| | - Clemens Neufert
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Paul David
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| |
Collapse
|
8
|
Lorestani P, Dashti M, Nejati N, Habibi MA, Askari M, Robat-Jazi B, Ahmadpour S, Tavakolpour S. The complex role of macrophages in pancreatic cancer tumor microenvironment: a review on cancer progression and potential therapeutic targets. Discov Oncol 2024; 15:369. [PMID: 39186144 PMCID: PMC11347554 DOI: 10.1007/s12672-024-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide with low survival rates and poor outcomes. The treatment landscape for PC is fraught with obstacles, including drug resistance, lack of effective targeted therapies and the immunosuppressive tumor microenvironment (TME). The resistance of PC to existing immunotherapies highlights the need for innovative approaches, with the TME emerging as a promising therapeutic target. The recent advancements in understanding the role of macrophages, this context highlight their significant impact on tumor development and progression. There are two important types of macrophages: M1 and M2, which play critical roles in the TME. Therapeutics strategies including, depletion of tumor-associated macrophages (TAMs), reprogramming TAMs to promote anti-tumor activity, and targeting macrophage recruitment can lead to promising outcomes. Targeting macrophage-related pathways may offer novel strategies for modulating immune responses, inhibiting angiogenesis, and overcoming resistance to chemotherapy in PC treatment.
Collapse
Affiliation(s)
- Parsa Lorestani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Dashti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Askari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behruz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Soheil Tavakolpour
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Gross NE, Zhang Z, Mitchell JT, Charmsaz S, Hernandez AG, Coyne EM, Shin SM, Vargas Carvajal DC, Sidiropoulos DN, Cho Y, Mo G, Yuan X, Cannon C, Suresh Babu J, Lyman MR, Armstrong T, Kagohara LT, Bever KM, Le DT, Jaffee EM, Fertig EJ, Ho WJ. Phosphodiesterase-5 inhibition collaborates with vaccine-based immunotherapy to reprogram myeloid cells in pancreatic ductal adenocarcinoma. JCI Insight 2024; 9:e179292. [PMID: 39106104 PMCID: PMC11457845 DOI: 10.1172/jci.insight.179292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to immunotherapy. Although immune recognition can be enhanced with immunomodulatory agents including checkpoint inhibitors and vaccines, few patients experience clinical efficacy because the tumor immune microenvironment (TiME) is dominated by immunosuppressive myeloid cells that impose T cell inhibition. Inhibition of phosphodiesterase-5 (PDE5) was reported to downregulate metabolic regulators arginase and inducible NOS in immunosuppressive myeloid cells and enhance immunity against immune-sensitive tumors, including head and neck cancers. We show for the first time to our knowledge that combining a PDE5 inhibitor, tadalafil, with a mesothelin-specific vaccine, anti-programmed cell death protein 1, and anti-cytotoxic T lymphocyte-associated protein 4 yields antitumor efficacy even against immune-resistant PDAC. To determine immunologic advantages conferred by tadalafil, we profiled the TiME using mass cytometry and single-cell RNA-sequencing analysis with Domino to infer intercellular signaling. Our analyses demonstrated that tadalafil reprograms myeloid cells to be less immunosuppressive. Moreover, tadalafil synergized with the vaccine, enhancing T cell activation including mesothelin-specific T cells. Tadalafil treatment was also associated with myeloid/T cell signaling axes important for antitumor responses (e.g., Cxcr3, Il12). Our study shows that PDE5 inhibition combined with vaccine-based immunotherapy promotes pro-inflammatory states of myeloid cells, activation of T cells, and enhanced myeloid/T cell crosstalk to yield antitumor efficacy against immune-resistant PDAC.
Collapse
Affiliation(s)
- Nicole E. Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Zhehao Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
- Department of Genetic Medicine
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | | | - Erin M. Coyne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Sarah M. Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | | | | | - Yeonju Cho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Guanglan Mo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Xuan Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
| | - Courtney Cannon
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
| | | | - Melissa R. Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Todd Armstrong
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
| | - Katherine M. Bever
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Bloomberg-Kimmel Institute for Cancer Immunotherapy; and
| | - Dung T. Le
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Bloomberg-Kimmel Institute for Cancer Immunotherapy; and
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
- Bloomberg-Kimmel Institute for Cancer Immunotherapy; and
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
- Department of Genetic Medicine
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
- Convergence Institute
| |
Collapse
|
10
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Lee HK, Kim SY, Chung SH, Choi B, Kim JE, Yoon D, Jang SI, Yeo A, Kang HG, Lee J, Choi YH, Park JS, Sung Y, Kim JK, Chang EJ, Lee DK. Tumour-associated myeloid cells expressing IL-10R2/IL-22R1 as a potential biomarker for diagnosis and recurrence of pancreatic ductal adenocarcinoma. Br J Cancer 2024; 130:1979-1989. [PMID: 38643339 PMCID: PMC11183123 DOI: 10.1038/s41416-024-02676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.
Collapse
MESH Headings
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/blood
- Humans
- Animals
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/blood
- Mice
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Receptors, Interleukin/genetics
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Interleukin-10 Receptor beta Subunit/genetics
- Female
- Male
- Tumor Microenvironment/genetics
- Cell Line, Tumor
Collapse
Affiliation(s)
- Hyung Keun Lee
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
- College of Pharmacy, Yonsei University, Incheon, Korea
| | - So Young Kim
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Institute of Biomedical Research, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bongkun Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohee Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Areum Yeo
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
- Institute of Biomedical Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Goo Kang
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jusung Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- Department of New Biology, DGIST, Daegu, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
13
|
Olaoba OT, Yang M, Adelusi TI, Maidens T, Kimchi ET, Staveley-O’Carroll KF, Li G. Targeted Therapy for Highly Desmoplastic and Immunosuppressive Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:1470. [PMID: 38672552 PMCID: PMC11048089 DOI: 10.3390/cancers16081470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a very poor prognosis. Despite advancements in treatment strategies, PDAC remains recalcitrant to therapies because patients are often diagnosed at an advanced stage. The advanced stage of PDAC is characterized by metastasis, which typically renders it unresectable by surgery or untreatable by chemotherapy. The tumor microenvironment (TME) of PDAC comprises highly proliferative myofibroblast-like cells and hosts the intense deposition of a extracellular matrix component that forms dense fibrous connective tissue, a process called the desmoplastic reaction. In desmoplastic TMEs, the incessant aberration of signaling pathways contributes to immunosuppression by suppressing antitumor immunity. This feature offers a protective barrier that impedes the targeted delivery of drugs. In addition, the efficacy of immunotherapy is compromised because of the immune cold TME of PDAC. Targeted therapy approaches towards stromal and immunosuppressive TMEs are challenging. In this review, we discuss cellular and non-cellular TME components that contain actionable targets for drug development. We also highlight findings from preclinical studies and provide updates about the efficacies of new investigational drugs in clinical trials.
Collapse
Affiliation(s)
- Olamide T. Olaoba
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
| | - Temitope I. Adelusi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Tessa Maidens
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
15
|
Chick RC, Ruff SM, Pawlik TM. Neoadjuvant systemic therapy for hepatocellular carcinoma. Front Immunol 2024; 15:1355812. [PMID: 38495884 PMCID: PMC10940409 DOI: 10.3389/fimmu.2024.1355812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Surgical resection and liver transplant remain the only curative therapies for most patients with hepatocellular carcinoma (HCC). Systemic therapy options have typically been ineffective, but recent advances, such as the combination of immune checkpoint inhibitors and targeted therapies, have shown great promise. Neoadjuvant systemic therapy in resectable or locally advanced HCC is under active investigation with encouraging results in small, early-phase trials. Many of these completed and ongoing trials include combinations of systemic therapy (e.g. immune checkpoint inhibitors, tyrosine kinase inhibitors), transarterial therapies, and radiation. Despite early successes, larger trials with evaluation of long-term oncologic outcomes are needed to determine the role of neoadjuvant systemic therapy in patients with HCC who may be eligible for curative intent surgery or transplant.
Collapse
Affiliation(s)
| | | | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
16
|
Zhou G, Zhang L, Shao S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 2024; 51:246. [PMID: 38300385 DOI: 10.1007/s11033-023-09201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body's immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.
Collapse
Affiliation(s)
- Guiyuan Zhou
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China
| | - Lei Zhang
- Shijiazhuang Vocational College of City Economy, No. 12, Wenming Road, Economic and Technological Development Zone, Shijiazhuang, 050017, China.
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China.
| |
Collapse
|
17
|
Tay AHM, Cinotti R, Sze NSK, Lundqvist A. Inhibition of ERO1a and IDO1 improves dendritic cell infiltration into pancreatic ductal adenocarcinoma. Front Immunol 2023; 14:1264012. [PMID: 38187398 PMCID: PMC10766682 DOI: 10.3389/fimmu.2023.1264012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and treatment resistant cancers. Due to its desmoplastic and hypoxic nature along with an abundance of myeloid cell infiltration and scarce T cell infiltration, PDAC is considered a cold tumor. Methods Here we sought to investigate myeloid cell infiltration and composition in PDAC spheroids by targeting the hypoxia-associated pathways endoplasmic reticulum oxidoreductase 1 alpha (ERO1a) and indoleamine 2,3-dioxygenase 1 (IDO1). Using MiaPaCa2 spheroids with hypoxic core, we assessed the roles of ERO1a and IDO1 inhibition in modulating monocyte infiltration and differentiation, followed by characterizing immunomodulatory factors secreted using LC-MS/MS. Results Inhibition of ERO1a and IDO1 significantly improved monocyte infiltration and differentiation into dendritic cells. LC-MS/MS analysis of the PDAC spheroid secretome identified downregulation of hypoxia and PDAC pathways, and upregulation of antigen presentation pathways upon inhibition of ERO1a and IDO1. Furthermore, immunomodulatory factors involved in immune infiltration and migration including interleukin-8, lymphocyte cytosolic protein 1, and transgelin-2, were upregulated upon inhibition of ERO1a and IDO1. Discussion Collectively, our results show that inhibition of ERO1a and IDO1 modulates the tumor microenvironment associated with improved monocyte infiltration and differentiation into dendritic cells to potentially influence therapeutic responses in patients with PDAC.
Collapse
Affiliation(s)
- Apple Hui Min Tay
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Cinotti
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Newman Sui Kwan Sze
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Okabe J, Kodama T, Sato Y, Shigeno S, Matsumae T, Daiku K, Sato K, Yoshioka T, Shigekawa M, Higashiguchi M, Kobayashi S, Hikita H, Tatsumi T, Okamoto T, Satoh T, Eguchi H, Akira S, Takehara T. Regnase-1 downregulation promotes pancreatic cancer through myeloid-derived suppressor cell-mediated evasion of anticancer immunity. J Exp Clin Cancer Res 2023; 42:262. [PMID: 37814340 PMCID: PMC10561497 DOI: 10.1186/s13046-023-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Pancreatitis is known to be an important risk factor for pancreatic ductal adenocarcinoma (PDAC). However, the exact molecular mechanisms of how inflammation promotes PDAC are still not fully understood. Regnase-1, an endoribonuclease, regulates immune responses by degrading mRNAs of inflammation-related genes. Herein, we investigated the role of Regnase-1 in PDAC. METHODS Clinical significance of intratumor Regnase-1 expression was evaluated by immunohistochemistry in 39 surgically-resected PDAC patients. The functional role of Regnase-1 was investigated by pancreas-specific Regnase-1 knockout mice and Kras-mutant Regnase-1 knockout mice. The mechanistic studies with gene silencing, RNA immunoprecipitation sequencing (RIP-seq) and immune cell reconstitution were performed in human/mouse PDAC cell lines and a syngeneic orthotopic tumor transplantation model of KrasG12D-mutant and Trp53-deficient PDAC cells. RESULTS Regnase-1 expression was negatively correlated with the clinical outcomes and an independent predictor of poor relapse-free and overall survival in PDAC patients. Pancreas-specific Regnase-1 deletion in mice promoteed pancreatic cancer with PMN-MDSC infiltration and shortened their survival. A syngeneic orthotopic PDAC model exhibited that Regnase-1 downregulation accelerated tumor progression via recruitment of intratumor CD11b+ MDSCs. Mechanistically, Regnase-1 directly negatively regulated a variety of chemokines/cytokines important for MDSC recruitment and activation, including CXCL1, CXCL2, CSF2, and TGFβ, in pancreatic cancer cells. We subsequently showed that IL-1β-mediated Regnase-1 downregulation recruited MDSCs to tumor sites and promoted pancreatic cancer progression via mitigation of cytotoxic T lympohocytes-mediated antitumor immunity. CONCLUSIONS IL-1b-mediated Regnase-1 downregulation induces MDSCs and promotes pancreatic cancer through the evasion of anticancer immunity.
Collapse
Affiliation(s)
- Junya Okabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Shigeno
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Matsumae
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuma Daiku
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuhiko Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teppei Yoshioka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaya Higashiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Satoh
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
20
|
Tu J, He Y, Zhang H, Wang J, Li Z, Sun H. Anti-tumor effect of Crocus sativus petals polysaccharides by reconstructing tumor microenvironment. Int J Biol Macromol 2023; 248:125878. [PMID: 37467829 DOI: 10.1016/j.ijbiomac.2023.125878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Two polysaccharides from Crocus sativus petals (PCSPs), PCSPA and PCSPB have been previously reported to possess the immunopotentiation activity and improve innate immunity in mice. In this study, PCSPB was evaluated for the anti-tumor activity and explored its immunological mechanisms based on tumor microenvironment (TME) using S180 sarcoma-bearing mice. Although PCSPB showed the lower toxicity to a series of tumor cells, it significantly and dose-dependently suppressed the growth of S180 sarcomas transplanted in mice. HE staining, immunohistochemical analysis, and TUNEL assay revealed that PCSPB significantly induced tumor cell necrosis, apoptosis, and vessel disruption in sarcoma tissues. Meanwhile, PCSPB markedly decreased the levels of inflammatory factors TGF-β, IFN-γ, IL-10 and TNF-α and down-regulated the mRNA expression levels of TGF-β and TNF-α in tumor tissues. Flow cytometric analysis showed that PCSPB significantly increased the proportion of CD8+ T cells and NK cells, but decreased that of regulatory T cells (Tregs), total myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) in sarcoma tissues. Furthermore, immunofluorescence assay demonstrated that PCSPB noteworthily reprogrammed TAMs from a tumorigenic M2 towards an antitumorigenic M1 phenotype in S180 tissues. These findings demonstrated that PCSPB might exert the anti-tumor activity by reconstructing TME and could act as an anti-tumor candidate with low toxicity.
Collapse
Affiliation(s)
- Jue Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huifang Zhang
- Medical College, Jinhua Polytechnic, Jinhua 321000, China
| | - Juanjuan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenhao Li
- Longevity Valley Pharmaceutical, Jinhua 321200, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Wang T, Hu Y, Dusi S, Qi F, Sartoris S, Ugel S, De Sanctis F. "Open Sesame" to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front Immunol 2023; 14:1130060. [PMID: 36911674 PMCID: PMC9992799 DOI: 10.3389/fimmu.2023.1130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Pattern recognition receptors are primitive sensors that arouse a preconfigured immune response to broad stimuli, including nonself pathogen-associated and autologous damage-associated molecular pattern molecules. These receptors are mainly expressed by innate myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Recent investigations have revealed new insights into these receptors as key players not only in triggering inflammation processes against pathogen invasion but also in mediating immune suppression in specific pathological states, including cancer. Myeloid-derived suppressor cells are preferentially expanded in many pathological conditions. This heterogeneous cell population includes immunosuppressive myeloid cells that are thought to be associated with poor prognosis and impaired response to immune therapies in various cancers. Identification of pattern recognition receptors and their ligands increases the understanding of immune-activating and immune-suppressive myeloid cell functions and sheds light on myeloid-derived suppressor cell differences from cognate granulocytes and monocytes in healthy conditions. This review summarizes the different expression, ligand recognition, signaling pathways, and cancer relations and identifies Toll-like receptors as potential new targets on myeloid-derived suppressor cells in cancer, which might help us to decipher the instruction codes for reverting suppressive myeloid cells toward an antitumor phenotype.
Collapse
Affiliation(s)
- Tian Wang
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Yushu Hu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Dusi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Fang Qi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|