1
|
Alum EU, Ikpozu EN, Offor CE, Igwenyi IO, Obaroh IO, Ibiam UA, Ukaidi CUA. RNA-based diagnostic innovations: A new frontier in diabetes diagnosis and management. Diab Vasc Dis Res 2025; 22:14791641251334726. [PMID: 40230050 PMCID: PMC12033450 DOI: 10.1177/14791641251334726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Background/Objective: Diabetes mellitus (DM) remains a major global health challenge due to its chronic nature and associated complications. Traditional diagnostic approaches, though effective, often lack the sensitivity required for early-stage detection. Recent advancements in molecular biology have identified RNA molecules, particularly non-coding RNAs such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), as promising biomarkers for diabetes. This review aims to explore the role of RNA-based biomarkers in the diagnosis, prognosis, and management of diabetes, highlighting their potential to revolutionize diabetes care.Method: A comprehensive literature review was conducted using electronic databases including PubMed, Scopus, and Web of Science. Articles published up to 2024 were screened and analyzed to extract relevant findings related to RNA-based diagnostics in diabetes. Emphasis was placed on studies demonstrating clinical utility, mechanistic insights, and translational potential of RNA molecules.Results: Numerous RNA species, particularly miRNAs such as miR-375, miR-29, and lncRNAs like H19 and MEG3, exhibit altered expression patterns in diabetic patients. These molecules are involved in key regulatory pathways of glucose metabolism, insulin resistance, and β-cell function. Circulating RNAs are detectable in various biofluids, enabling non-invasive diagnostic approaches. Emerging technologies, including RNA sequencing and liquid biopsy platforms, have enhanced the sensitivity and specificity of RNA detection, fostering the development of novel diagnostic tools and personalized therapeutic strategies.Conclusion: RNA-based biomarkers hold significant promise in advancing early detection, risk stratification, and therapeutic monitoring in diabetes care. Despite current challenges such as standardization and clinical validation, the integration of RNA diagnostics into routine clinical practice could transform diabetes management, paving the way for precision medicine approaches. Further research and multi-center trials are essential to validate these biomarkers and facilitate their regulatory approval and clinical implementation.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Uganda
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | | | | | | | - Israel Olusegun Obaroh
- Department of Biological and Environmental Sciences, School of Natural and Applied Sciences, Kampala International University, Uganda
| | - Udu Ama Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, College of Science, Evangel University Akaeze, Abakaliki, Nigeria
| | - Chris U. A. Ukaidi
- College of Economics and Management, Kampala International University, Uganda
| |
Collapse
|
2
|
Tsai YM, Lee YH, Chang CY, Tsai HP, Wu YY, Lee HC, Wu LY, Ong CT, Sun CH, Tsai MJ, Hsu YL. Characterizing the diabetes-induced pathological changes of the mouse lung by single-cell RNA sequencing. Life Sci 2025; 363:123408. [PMID: 39832739 DOI: 10.1016/j.lfs.2025.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Pulmonary disorders are exacerbated by high blood sugar, leading to a disordered immune defense and increased susceptibility to infection. Type 2 diabetes mellitus (T2D) is characterized by insulin resistance and inadequate insulin production. Mechanisms leading to pulmonary alternation due to T2D are not clear. The advancements in single-cell RNA sequencing aid in characterizing the effects of T2D on lungs and its altered mechanisms. Our results first revealed that in late-stage diabetic mice, the number of immune cells in the lungs significantly increased, with these immune cells predominantly being immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). At the early stages of diabetes, alveolar cell type I and type II (AT I & II) exhibited a mesenchymal phenotype and showed reduced expression of several key cytokines essential for maintaining lung immunity, including Cxcl15, Cxcl14, and Il34. Additionally, the antigen-presenting cell function of AT II, resulting from the downregulation of several MHC type II proteins, was markedly diminished in diabetic mice. Moreover, decreased expressions of interferon-related genes Ifnar1 and Ifnar2, along with impaired Sftpd expression, compromised lung immunity impairment in diabetic mice. These pathogenic changes contributed to the increased susceptibility and severity of respiratory syncytial virus and tuberculosis in the lung of diabetes. In addition to alveolar cells, pulmonary capillary endothelial cells also exhibited an immature transition phenotype, with a significant increase in angiogenic capacity. Our findings provided a comprehensive exploration of lung pathology under the influence of diabetes and explained the multiple factors impacting lung immunity in diabetic conditions.
Collapse
MESH Headings
- Animals
- Mice
- Lung/pathology
- Lung/immunology
- Lung/metabolism
- Single-Cell Analysis/methods
- Sequence Analysis, RNA/methods
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Male
Collapse
Affiliation(s)
- Ying-Ming Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | | | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Hsiao-Chen Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Chai-Tung Ong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan
| | - Chien-Hui Sun
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; National Pingtung University of Science and Technology, Department of Biological Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| |
Collapse
|
3
|
Xu K, Nnyamah C, Pandya N, Sweis N, Corona-Avila I, Priyadarshini M, Wicksteed B, Layden BT. β cell acetate production and release are negligible. Islets 2024; 16:2339558. [PMID: 38607959 PMCID: PMC11018053 DOI: 10.1080/19382014.2024.2339558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Studies suggest that short chain fatty acids (SCFAs), which are primarily produced from fermentation of fiber, regulate insulin secretion through free fatty acid receptors 2 and 3 (FFA2 and FFA3). As these are G-protein coupled receptors (GPCRs), they have potential therapeutic value as targets for treating type 2 diabetes (T2D). The exact mechanism by which these receptors regulate insulin secretion and other aspects of pancreatic β cell function is unclear. It has been reported that glucose-dependent release of acetate from pancreatic β cells negatively regulates glucose stimulated insulin secretion. While these data raise the possibility of acetate's potential autocrine action on these receptors, these findings have not been independently confirmed, and multiple concerns exist with this observation, particularly the lack of specificity and precision of the acetate detection methodology used. METHODS Using Min6 cells and mouse islets, we assessed acetate and pyruvate production and secretion in response to different glucose concentrations, via liquid chromatography mass spectrometry. RESULTS Using Min6 cells and mouse islets, we showed that both intracellular pyruvate and acetate increased with high glucose conditions; however, intracellular acetate level increased only slightly and exclusively in Min6 cells but not in the islets. Further, extracellular acetate levels were not affected by the concentration of glucose in the incubation medium of either Min6 cells or islets. CONCLUSIONS Our findings do not substantiate the glucose-dependent release of acetate from pancreatic β cells, and therefore, invalidate the possibility of an autocrine inhibitory effect on glucose stimulated insulin secretion.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Chioma Nnyamah
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Nupur Pandya
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadia Sweis
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
4
|
Kazer SW, Match CM, Langan EM, Messou MA, LaSalle TJ, O'Leary E, Marbourg J, Naughton K, von Andrian UH, Ordovas-Montanes J. Primary nasal influenza infection rewires tissue-scale memory response dynamics. Immunity 2024; 57:1955-1974.e8. [PMID: 38964332 PMCID: PMC11324402 DOI: 10.1016/j.immuni.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge. Compositional analysis revealed restricted infection to the respiratory mucosa with stepwise changes in immune and epithelial cell subsets and states. We identified and characterized a rare subset of Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells, which concurrently increased with tissue-resident memory T (TRM)-like cells. Proportionality analysis, cell-cell communication inference, and microscopy underscored the CXCL16-CXCR6 axis between KNIIFE and TRM cells. Secondary influenza challenge induced accelerated and coordinated myeloid and lymphoid responses without epithelial proliferation. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses.
Collapse
Affiliation(s)
- Samuel W Kazer
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Colette Matysiak Match
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Erica M Langan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas J LaSalle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, USA
| | - Elise O'Leary
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Xie S, Xu J, Chen L, Qi Y, Yang H, Tan B. Single-Cell Transcriptomic Analysis Revealed the Cell Population Changes and Cell-Cell Communication in the Liver of a Carnivorous Fish in Response to High-Carbohydrate Diet. J Nutr 2024; 154:2381-2395. [PMID: 38945299 DOI: 10.1016/j.tjnut.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Carnivorous fish have a low carbohydrate utilization ability, and the physiologic and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of single-nuclei RNA sequencing (snRNA-seq). METHODS Two diets were formulated, a low-carbohydrate (LC) diet and a high-carbohydrate (HC) diet. The feeding trial lasted for 6 wk, and then, growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13,247 and 12,848 cells from the liver derived from 2 groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower and hepatic stellate cells (HSCs) and immune cells were higher in the HC group than those in the LC group. Reclustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other hepatocyte subtypes. Cell-cell communication mainly focused on cell junction-related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis-related genes were highly expressed in the HC group. HC diet induced the activation of HSCs and, therefore, led to the liver fibrosis of largemouth bass. CONCLUSIONS HC diet induces liver glucolipid metabolism disorder and liver injury of largemouth bass. The increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiates into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitors.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang, China.
| | - Jia Xu
- Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Liutong Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yu Qi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Huijun Yang
- Guangzhou Chengyi Aquaculture, Guangzhou, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China.
| |
Collapse
|
6
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Yang H, Luo J, Liu X, Luo Y, Lai X, Zou F. Unveiling cell subpopulations in T1D mouse islets using single-cell RNA sequencing. Am J Physiol Endocrinol Metab 2024; 326:E723-E734. [PMID: 38506753 PMCID: PMC11376805 DOI: 10.1152/ajpendo.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, Jiujiang University Affiliated Hospital, Jiujiang, People's Republic of China
| | - Junming Luo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuyang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yue Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiaoyang Lai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
Kazer SW, Match CM, Langan EM, Messou MA, LaSalle TJ, O’Leary E, Marbourg J, Naughton K, von Andrian UH, Ordovas-Montanes J. Primary nasal viral infection rewires the tissue-scale memory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.11.539887. [PMID: 38562902 PMCID: PMC10983857 DOI: 10.1101/2023.05.11.539887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The nasal mucosa is frequently the initial site of respiratory viral infection, replication, and transmission. Recent work has started to clarify the independent responses of epithelial, myeloid, and lymphoid cells to viral infection in the nasal mucosa, but their spatiotemporal coordination and relative contributions remain unclear. Furthermore, understanding whether and how primary infection shapes tissue-scale memory responses to secondary challenge is critical for the rational design of nasal-targeting therapeutics and vaccines. Here, we generated a single-cell RNA-sequencing (scRNA-seq) atlas of the murine nasal mucosa sampling three distinct regions before and during primary and secondary influenza infection. Primary infection was largely restricted to respiratory mucosa and induced stepwise changes in cell type, subset, and state composition over time. Type I Interferon (IFN)-responsive neutrophils appeared 2 days post infection (dpi) and preceded transient IFN-responsive/cycling epithelial cell responses 5 dpi, which coincided with broader antiviral monocyte and NK cell accumulation. By 8 dpi, monocyte-derived macrophages (MDMs) expressing Cxcl9 and Cxcl16 arose alongside effector cytotoxic CD8 and Ifng-expressing CD4 T cells. Following viral clearance (14 dpi), rare, previously undescribed Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells expressing multiple genes with immune communication potential increased concurrently with tissue-resident memory T (TRM)-like cells and early IgG+/IgA+ plasmablasts. Proportionality analysis coupled with cell-cell communication inference, alongside validation by in situ microscopy, underscored the CXCL16-CXCR6 signaling axis between MDMs and effector CD8 T cells 8dpi and KNIIFE cells and TRM cells 14 dpi. Secondary influenza challenge with a homologous or heterologous strain administered 60 dpi induced an accelerated and coordinated myeloid and lymphoid response without epithelial proliferation, illustrating how tissue-scale memory to natural infection engages both myeloid and lymphoid cells to reduce epithelial regenerative burden. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses upon rechallenge.
Collapse
Affiliation(s)
- Samuel W. Kazer
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Colette Matysiak Match
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Erica M. Langan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas J. LaSalle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Elise O’Leary
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Suda N, Bartolomé A, Liang J, Son J, Yagishita Y, Siebel C, Accili D, Ding H, Pajvani UB. β-cell Jagged1 is sufficient but not necessary for islet Notch activity and insulin secretory defects in obese mice. Mol Metab 2024; 81:101894. [PMID: 38311286 PMCID: PMC10877406 DOI: 10.1016/j.molmet.2024.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Notch signaling, re-activated in β cells from obese mice and causal to β cell dysfunction, is determined in part by transmembrane ligand availability in a neighboring cell. We hypothesized that β cell expression of Jagged1 determines the maladaptive Notch response and resultant insulin secretory defects in obese mice. METHODS We assessed expression of Notch pathway components in high-fat diet-fed (HFD) or leptin receptor-deficient (db/db) mice, and performed single-cell RNA sequencing (scRNA-Seq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, β cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. RESULTS Jag1 was the only Notch ligand that tracked with increased Notch activity in HFD-fed and db/db mice, as well as in metabolically-inflexible β cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from HFD-fed and db/db mice potentiated GSIS ex vivo. To demonstrate if β cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible β cell-specific Jag1 transgenic (β-Jag1TG) and loss-of-function (iβ-Jag1KO) mice. While forced Jagged1 impaired glucose intolerance due to reduced GSIS, loss of β cell Jagged1 did not protect against HFD-induced insulin secretory defects. CONCLUSIONS Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that β cells are not a likely source of the Jagged1 signal.
Collapse
Affiliation(s)
- Nina Suda
- Department of Medicine, Columbia University, New York, NY, USA
| | | | - Jiani Liang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yoko Yagishita
- Department of Medicine, Columbia University, New York, NY, USA
| | - Christian Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, NY, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Merotto L, Sturm G, Dietrich A, List M, Finotello F. Making mouse transcriptomics deconvolution accessible with immunedeconv. BIOINFORMATICS ADVANCES 2024; 4:vbae032. [PMID: 38464974 PMCID: PMC10924280 DOI: 10.1093/bioadv/vbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Summary Transcriptome deconvolution has emerged as a reliable technique to estimate cell-type abundances from bulk RNA sequencing data. Unlike their human equivalents, methods to quantify the cellular composition of complex tissues from murine transcriptomics are sparse and sometimes not easy to use. We extended the immunedeconv R package to facilitate the deconvolution of mouse transcriptomics, enabling the quantification of murine immune-cell types using 13 different methods. Through immunedeconv, we further offer the possibility of tweaking cell signatures used by deconvolution methods, providing custom annotations tailored for specific cell types and tissues. These developments strongly facilitate the study of the immune-cell composition of mouse models and further open new avenues in the investigation of the cellular composition of other tissues and organisms. Availability and implementation The R package and the documentation are available at https://github.com/omnideconv/immunedeconv.
Collapse
Affiliation(s)
- Lorenzo Merotto
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck 6020, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria
- Boehringer Ingelheim International Pharma GmbH & Co KG, Biberach 88400, Germany
| | - Alexander Dietrich
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
11
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
13
|
Liu G, Li Y, Li M, Li S, He Q, Liu S, Su Q, Chen X, Xu M, Zhang ZN, Shao Z, Li W. Charting a high-resolution roadmap for regeneration of pancreatic β cells by in vivo transdifferentiation from adult acinar cells. SCIENCE ADVANCES 2023; 9:eadg2183. [PMID: 37224239 DOI: 10.1126/sciadv.adg2183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult mammals have limited capacity to regenerate functional cells. Promisingly, in vivo transdifferentiation heralds the possibility of regeneration by lineage reprogramming from other fully differentiated cells. However, the process of regeneration by in vivo transdifferentiation in mammals is poorly understood. Using pancreatic β cell regeneration as a paradigm, we performed a single-cell transcriptomic study of in vivo transdifferentiation from adult mouse acinar cells to induced β cells. Using unsupervised clustering analysis and lineage trajectory construction, we uncovered that the cell fate remodeling trajectory was linear at the initial stage and the reprogrammed cells either evolved to induced β cells or toward a "dead-end" state after day 4.Moreover, functional analyses identified both p53 and Dnmt3a that acted as reprogramming barriers during the process of in vivo transdifferentiation. Collectively, we decipher a high-resolution roadmap of regeneration by in vivo transdifferentiation and provide a detailed molecular blueprint to facilitate mammalian regeneration.
Collapse
Affiliation(s)
- Gang Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sheng Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qing He
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Shuxin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qiang Su
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Xiangyi Chen
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai 200120, China
| |
Collapse
|
14
|
Wang Y, Gao Y, Li X, Tian G, Lü J. Single-cell infrared phenomics identifies cell heterogeneity of individual pancreatic islets in mouse model. Anal Chim Acta 2023; 1258:341185. [PMID: 37087295 DOI: 10.1016/j.aca.2023.341185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Identifying the islet heterogeneity (cell types and the proportion of each subpopulation) and their relevance to function and disease will lead to fundamental information for the prevention and therapies of diabetes. Here, we introduce a single-cell phenotypic essay on the heterogeneity within individual pancreatic islets by using the combination of synchrotron infrared microspectroscopy and quantitative calculation. In a mouse model, the cellular heterogeneities at both the whole pancreas and single intact islet level were identified. The variation of biochemical phenotypes successfully subdivided islet cells into five main groups and quantitatively determined their proportion. These findings not only demonstrate single-cell infrared phenomics as a value complementary technique and strategy for the description of cellular heterogeneity within the pancreatic islets but also provide a quick, label-free optical platform for investigating phenotypic heterogeneity at the small-organelle level with single cell resolution.
Collapse
|