1
|
Yang J, Jiang H, Wu C, Lin Y, Tan G, Zhan J, Han L, Zhu Y, Shang P, Liu L, Liu H. Copper silicate nanoparticle-mediated delivery of astragaloside-IV for osteoarthritis treatment by remodeling the articular cartilage microenvironment. J Control Release 2025; 381:113583. [PMID: 40032006 DOI: 10.1016/j.jconrel.2025.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
With the increasing global aging population, osteoarthritis (OA) has emerged as a major public health concern. OA pathogenesis is characterized by a complex interplay among inflammatory cytokines, reactive oxygen species, and extracellular matrix components, leading to cartilage degradation. Astragaloside-IV (AS-IV), a natural antioxidant, has shown promise in alleviating OA symptoms but is limited by poor bioavailability and ineffective cartilage drug delivery. To address these challenges, we aimed to develop a drug delivery system using copper silicate nanoparticles modified with polyethylene glycol and loaded with AS-IV (referred to as CSP@AS-IV). This system uses mesoporous silica nanoparticles with a hybrid metal framework to enhance drug release and efficacy. CSP@AS-IV degrades in the acidic OA microenvironment, releasing copper ions (Cu2+) and AS-IV, which synergistically exert antioxidant, antibacterial, anti-inflammatory, and chondroprotective effects. Both in vitro and in vivo rat model experiments demonstrated that CSP@AS-IV significantly alleviated joint inflammation, downregulated inflammatory marker expression, and promoted cartilage repair. These findings underscore that CSP@AS-IV offers considerable clinical potential for enhancing OA treatment outcomes.
Collapse
Affiliation(s)
- Jianfeng Yang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Congcong Wu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuzhe Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guancan Tan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Juannan Zhan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lijiang Han
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yiting Zhu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Jin SC, Choi YY, Song M, Baek HK, Yi S, Kim E, Yang WM. Osteo-F, a Newly Developed Herbal Formula, Ameliorates Osteoarthritis Through the NF-κB/IκB/JNK Pathway Based on Network Pharmacology. Food Sci Nutr 2025; 13:e70239. [PMID: 40357339 PMCID: PMC12066244 DOI: 10.1002/fsn3.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Osteoarthritis (OA) is a painful joint condition primarily caused by cartilage degradation, leading to pain and reduced mobility. Given the side effects of current treatments, this study investigates Osteo-F, a novel herbal-based functional ingredient formulated with Schizandra chinensis, Lycium chinense, and Eucommia ulmoides, traditionally valued for their bioactive and health-promoting properties. Network pharmacology analysis identified significant interactions involving Osteo-F within the TNF signaling pathway, highlighting its role in modulating key inflammatory processes in OA. In vivo experiments using a monosodium iodoacetate-induced OA rat model demonstrated significant improvements in arthritis scores, bone mineral content, and bone mineral density, alongside preservation of cartilage integrity, as confirmed by histological analyses. In vitro studies further revealed that this formulation reduced the activation of JNK and NF-κB pathways, decreasing inflammatory cytokines and matrix metalloproteinases critical in cartilage breakdown. These findings underscore the potential of Osteo-F as a functional food candidate to reduce inflammation and support cartilage preservation in OA. Future clinical trials are required to validate these findings and explore its dietary integration in OA management.
Collapse
Affiliation(s)
- Seong Chul Jin
- Department of Convergence Korean Medical Science, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - You Yeon Choi
- Department of Convergence Korean Medical Science, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Minwoo Song
- Department of Convergence Korean Medical Science, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Hee Kyung Baek
- KHU‐KIST Department of Converging Science and TechnologyCollege of Korean Medicine, Graduate School, Kyung Hee UniversitySeoulRepublic of Korea
| | - Seungyob Yi
- KHU‐KIST Department of Converging Science and TechnologyCollege of Korean Medicine, Graduate School, Kyung Hee UniversitySeoulRepublic of Korea
| | - Eun‐Jung Kim
- Department of Acupuncture and Moxibustion, Graduate School of Oriental MedicineDongguk UniversityGoyang‐siGyeonggi‐doKorea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
- Korean Medicine Digital Convergence Center (KMDC)Kyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Zhang Y, Zheng H, Li B. Nuclear receptor 4A1 inhibits chondrocyte inflammation and cartilage degeneration in osteoarthritis by inhibiting NF-κB signal pathway. Inflammopharmacology 2025; 33:1965-1971. [PMID: 39964671 DOI: 10.1007/s10787-025-01646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 04/13/2025]
Abstract
OBJECTIVE The objective of this study is to explore the mechanism of nuclear receptor subfamily 4 group A member 1 (NR4A1) inhibiting the inflammatory response and cartilage degeneration of osteoarthritis (OA) chondrocytes by inhibiting the nuclear factor κB (NF-κB). METHODS A total of 45 Sprague-Dawley (SD) rats were randomly divided into three groups (n = 15 in each group): the blank control group (BCG), OA model group (OAG), and NR4A1 overexpression group (OE-NR4A1). The rat model of knee OA was established by medial meniscectomy. A total of 1 week after the operation, the rat model of NR4A1 overexpression was established by injecting NR4A1 overexpression lentivirus into the articular cavity of rats; 5 weeks after the establishment of the model, the rats were killed, and the morphological changes of knee cartilage were observed by hematoxylin and eosin (HE) staining under light microscope. The expression of NR4A1 and NF-κB protein in cartilage tissue was detected by western blot, and the relative expression of NR4A1 and NF-κB mRNA in cartilage tissue was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The levels of interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α in the supernatant of chondrocytes were detected by ELISA, and the apoptosis of chondrocytes was detected by TUNEL staining. RESULTS The relative expression of NR4A1 mRNA and protein in knee cartilage of rats in OE-NR4A1 were raised compared with those of OAG and BCG (P < 0.05). The relative expression of NF-κB mRNA and protein expression in knee joint cartilage in OE-NR4A1 were reduced compared with those of OAG and BCG, while their expression in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups were lower than in the OE-NR4A1 (100 μL) group(P < 0.05). The knee cartilage Mankin's score and knee joint diameter in the OAG were raised compared with those in the BCG (P < 0.05), while those in the OE-NR4A1 were reduced compared with the OAG (P < 0.05), but higher than in the BCG; these measures in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups were lower than in the OE-NR4A1 (100 μL) group (P < 0.05). The levels of IL-6, TNF-α, and IL-1β in knee synovial fluid of rats in OE-NR4A1 were reduced compared with those in the OAG (P < 0.05), but raised compared with those in the BCG; and these in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups were lower than in the OE-NR4A1 (100 μL) group (P < 0.05). The scorch rate of chondrocytes in the OE-NR4A1 was reduced compared with that in the OAG and higher than that of the BCG, and this measure in the OE-NR4A1 (200 μL) and OE-NR4A1 (300 μL) groups was lower than in the OE-NR4A1 (100 μL) group (P < 0.05). CONCLUSIONS R4A1 can improve the level of intraarticular inflammatory factors by inhibiting the NF-κB signal pathway, thereby reducing intraarticular inflammation and cartilage degeneration, and it plays a protective role in OA.
Collapse
MESH Headings
- Animals
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Rats, Sprague-Dawley
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Rats
- Signal Transduction/physiology
- Inflammation/metabolism
- Inflammation/pathology
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Disease Models, Animal
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Traumatic Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, China.
| | - Hengheng Zheng
- Department of Traumatic Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, China
| | - Baitong Li
- Department of Traumatic Orthopedics, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, China
| |
Collapse
|
4
|
Kim MJ, Yang YJ, Heo JW, Son JD, You YZ, Yang JH, Park KI. Potential Chondroprotective Effect of Artemisia annua L. Water Extract on SW1353 Cell. Int J Mol Sci 2025; 26:1901. [PMID: 40076528 PMCID: PMC11899987 DOI: 10.3390/ijms26051901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Inflammation plays a critical role in the pathogenesis of osteoarthritis (OA). The objective of this study was to investigate the anti-inflammatory and chondroprotective properties of Artemisia annua L. water extract (AWE) following the induction of inflammation in cartilage cells (SW1353 cell) through the administration of interleukin-1 beta (IL-1β). We demonstrated significant antioxidant activity, as evidenced by elevated total phenolic and flavonoid content, in addition to robust free radical scavenging capacity, as assessed through DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. Its cytotoxic effects were assessed at a concentration of 200 μg/mL, where no cytotoxic signs were observed in SW1353 cells treated with IL-1β; the levels of reactive oxygen species (ROS) were notably reduced in a dose-dependent manner. The principal inflammatory markers, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), were significantly diminished by AWE treatment. AWE administration led to a dose-dependent reduction in the expression of key proteins involved in the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathways, ultimately resulting in a decrease in the release of matrix metalloproteinases (MMPs), specifically MMP-1 and MMP-13, which are known to contribute to cartilage degradation. Additionally, the levels of degraded collagen type II in the cartilage cells were restored. These findings suggest that reducing oxidative stress and inflammation, along with inhibiting activated MAPK and NF-κB signaling pathways, may ameliorate the progression of IL-1β-induced OA. Furthermore, a molecular docking analysis revealed a strong binding affinity of MMP-13, a critical mediator in the pathogenesis of OA. Six compounds were identified in AWE, corroborating its potential antioxidant and anti-inflammatory effects. Therefore, AWE may serve as a potentially useful therapeutic agent against OA by modulating inflammation-related mechanisms.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (J.-d.S.); (Y.Z.Y.)
| | - Ye Jin Yang
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (J.-d.S.); (Y.Z.Y.)
| | - Ji Woong Heo
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (J.-d.S.); (Y.Z.Y.)
| | - Jae-dong Son
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (J.-d.S.); (Y.Z.Y.)
| | - Young Zoo You
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (J.-d.S.); (Y.Z.Y.)
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (J.-d.S.); (Y.Z.Y.)
| |
Collapse
|
5
|
Sun W, Yue J, Cui Y, Feng J, He Q, Liang J, You W, Shi H, Sun W, Yi Q. Wedelolactone alleviates inflammation and cartilage degeneration by suppressing the NF-κB signaling pathway in osteoarthritis. Int Immunopharmacol 2024; 143:113359. [PMID: 39388895 DOI: 10.1016/j.intimp.2024.113359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Inflammation and extracellular matrix (ECM) degradation are two major factors involved in the pathogenesis of osteoarthritis (OA). Wedelolactone, a natural compound classified as a coumestan, is isolated from the medicinal plants Eclipta alba and Wedelia calendulacea. In this study, we assessed the protective effects of Wedelolactone on chondrocytes in OA. Our findings show that pretreatment with Wedelolactone effectively inhibited the IL-1β-induced upregulation of COX‑2, iNOS, TNF-α, and IL6 in chondrocytes, contributing to inflammation suppression. Moreover, pretreatment with Wedelolactone followed by IL-1β treatment significantly increased the expression of Collagen II and SOX9, while decreasing the expression of Adamts5, MMP1, MMP3, and MMP13, thereby promoting ECM protection. Through Network pharmacology Analysis, we identified 14 key targets that link Wedelolactone and OA. GO and KEGG pathway analysis suggested that Wedelolactone primarily impacted OA by targeting inflammatory responses, particularly the NF-κB signaling pathway. Further studies demonstrated Wedelolactone prevented IL-1β-induced activation of NF-κB signaling pathway by inhibiting the translocation of p65 and the preventing the degradation of IκBα in human chondrocytes. Molecular docking studies also indicated that Wedelolactone can directly bind to the NF-κB complex, thereby inhibited the nuclear localization of p65. In vivo experiments demonstrated that Wedelolactone can alleviate cartilage damage in DMM mice model. In summary, Wedelolactone appears to mitigate inflammation and cartilage degeneration by suppressing the NF-κB signaling pathway, thereby alleviating OA progression. Our results suggested Wedelolactone may offer therapeutic advantages for OA treatment.
Collapse
Affiliation(s)
- Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Yinxing Cui
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Qifei He
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Wei You
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646099, China.
| |
Collapse
|
6
|
Andrei C, Mihai DP, Nitulescu GM, Nitulescu G, Zanfirescu A. Modulating Autophagy in Osteoarthritis: Exploring Emerging Therapeutic Drug Targets. Int J Mol Sci 2024; 25:13695. [PMID: 39769455 PMCID: PMC11727697 DOI: 10.3390/ijms252413695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of cartilage and the subsequent inflammation of joint tissues, leading to pain and reduced mobility. Despite advancements in symptomatic treatments, disease-modifying therapies for OA remain limited. This narrative review examines the dual role of autophagy in OA, emphasizing its protective functions during the early stages and its potential to contribute to cartilage degeneration in later stages. By delving into the molecular pathways that regulate autophagy, this review highlights its intricate interplay with oxidative stress and inflammation, key drivers of OA progression. Emerging therapeutic strategies aimed at modulating autophagy are explored, including pharmacological agents such as AMP kinase activators, and microRNA-based therapies. Preclinical studies reveal encouraging results, demonstrating that enhancing autophagy can reduce inflammation and decelerate cartilage degradation. However, the therapeutic benefits of autophagy modulation depend on precise, stage-specific approaches. Excessive or dysregulated autophagy in advanced OA may lead to chondrocyte apoptosis, exacerbating joint damage. This review underscores the promise of autophagy-based interventions in bridging the gap between experimental research and clinical application. By advancing our understanding of autophagy's role in OA, these findings pave the way for innovative and effective therapies. Nonetheless, further research is essential to optimize these strategies, address potential off-target effects, and develop safe, targeted treatments that improve outcomes for OA patients.
Collapse
Affiliation(s)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.A.); (G.M.N.); (G.N.); (A.Z.)
| | | | | | | |
Collapse
|
7
|
Park YM, Shin DY, Lee HY, Hwang HM, Kim JG, Kim BS, Lee SH, Lee SC, Kim MJ, Yang HJ, Kim MS, Bae JS. Pinus densiflora Root Extract Attenuates Osteoarthritis Progression by Inhibiting Inflammation and Cartilage Degradation in Interleukin-1β and Monosodium Iodoacetate-Induced Osteoarthritis Models. Nutrients 2024; 16:3882. [PMID: 39599668 PMCID: PMC11597245 DOI: 10.3390/nu16223882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint condition caused by an imbalance between cartilage synthesis and degradation, which disrupts joint homeostasis. This study investigated the anti-inflammatory and joint-improving effects of Pinus densiflora root extract powder (PDREP) in both in vitro and in vivo OA models. METHODS/RESULTS In an in vitro OA model, in which SW1353 human chondrosarcoma cells were treated with interleukin (IL)-1β, PDREP treatment significantly reduced the mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 while enhancing collagen type II alpha 1 (Col2a1) mRNA level, and decreased IL-6 and prostaglandin E2 (PGE2) levels. In addition, PDREP inhibited the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), p38, nuclear factor-kappa B (NF-κB), and the expression of inducible nitric oxide synthase (iNOS). In a monosodium iodoacetate (MIA)-induced OA rat model, the administration of PDREP resulted in decreased OA clinical indices, improved weight-bearing indices and gait patterns, reduced histological damage, and lowered serum inflammatory cytokine and MMPs expression. Furthermore, PDREP downregulated the phosphorylation of ERK, JNK, p38, and NF-κB, as well as the expression of iNOS, consistent with the in vitro findings. CONCLUSIONS These results suggest that PDREP exhibits anti-inflammatory and joint-improving effects and has potential as a therapeutic strategy or functional food for the treatment of OA.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dong Yeop Shin
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
- Department of Companion and Laboratory Animal Science, Kongju National University, 54-3 Deahak-ro, Esan-Eub, Yesan-gun 32439, Chungnam, Republic of Korea;
| | - Hak Yong Lee
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Hai Min Hwang
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Jae Gon Kim
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Byeong Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, 54-3 Deahak-ro, Esan-Eub, Yesan-gun 32439, Chungnam, Republic of Korea;
| | - Sang Ho Lee
- Sigolsori Farming Association Corporation, 153, Jangpa-gil, Gui-myeon, Wanju-gun 55363, Jeonbuk, Republic of Korea; (S.H.L.); (S.C.L.)
| | - Sang Choon Lee
- Sigolsori Farming Association Corporation, 153, Jangpa-gil, Gui-myeon, Wanju-gun 55363, Jeonbuk, Republic of Korea; (S.H.L.); (S.C.L.)
| | - Min Jung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Hye Jeong Yang
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Myung-Sunny Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
8
|
Li L, Li J, Li JJ, Zhou H, Zhu XW, Zhang PH, Huang B, Zhao WT, Zhao XF, Chen ES. Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis. Front Cell Dev Biol 2024; 12:1472613. [PMID: 39507422 PMCID: PMC11537998 DOI: 10.3389/fcell.2024.1472613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.
Collapse
Affiliation(s)
- Lan Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Jiang Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Zhou
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing-Wang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ping-Heng Zhang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Huang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Feng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - En-Sheng Chen
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Xu T, Zhao H, Fang X, Wang S, Li J, Wu H, Hu W, Lu R. Mulberroside A mitigates intervertebral disc degeneration by inhibiting MAPK and modulating Ppar-γ/NF-κB pathways. J Inflamm (Lond) 2024; 21:32. [PMID: 39198816 PMCID: PMC11360712 DOI: 10.1186/s12950-024-00398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common spine disease with inflammation as its main pathogenesis. Mulberroside A (MA), isolated from herbal medicine, possesses anti-inflammatory characteristics in many diseases. Whereas, there is little exploration of the therapeutic potential of MA on IVDD. This study aimed at the therapeutic potential of MA on IVDD in vivo and in vitro and the mechanism involved. METHODS In vitro, western blotting, RT-qPCR, and immunofluorescence analysis were implemented to explore the bioactivity of MA on interleukin-1 beta (IL-1β)-induced inflammation nucleus pulposus cells (NPCs) isolated from Sprague-Dawley male rats. In vivo, X-ray and MRI were applied to measure the morphological changes, and histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disc sections on puncture-induced IVDD rat models. RESULTS In vitro, MA up-regulated the expression level of anabolic-related proteins (Aggrecan and Collagen II) and decreased catabolic-related proteins (Mmp2, Mmp3, Mmp9, and Mmp13) in IL-1β-induced NPCs. Furthermore, MA inhibits the production of pro-inflammatory factors (Inos, Cox-2, and Il-6) stimulated by IL-1β. Mechanistically, MA inhibited the signal transduction of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways in IL-1β-induced NPCs. Moreover, MA might bind to Ppar-γ and then suppress the NF-kB pathway. In vivo experiment illustrated that MA mitigates the IVDD progression in puncture-induced IVDD model. X-ray and MRI images showed MA restore the disc height and T2-weighted signal intensity after puncturing. H&E and Safranin O/Fast Green also showed MA also alleviated morphological changes caused by acupuncture. In addition, MA reversed the expression level of Mmp13, Aggrecan, Collagen II, and Ppar-γ induced in IVDD models. CONCLUSIONS MA inhibited degenerative phenotypes in NPCs and alleviated IVDD progression via inhibiting the MAPK and NF-κB pathways; besides, MA suppressed the NF-κB pathway was attributed to activating Ppar-γ, those supported that MA or Ppar-γ might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Li
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Huang Q, Shi W, Wang M, Zhang L, Zhang Y, Hu Y, Pan S, Ling B, Zhu H, Xiao W, Hua T, Yang M. Canagliflozin attenuates post-resuscitation myocardial dysfunction in diabetic rats by inhibiting autophagy through the PI3K/Akt/mTOR pathway. iScience 2024; 27:110429. [PMID: 39104415 PMCID: PMC11298657 DOI: 10.1016/j.isci.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
This study investigated the effects of canagliflozin on myocardial dysfunction after cardiac arrest and cardiopulmonary resuscitation in diabetic rats and the underlying mechanisms. Male rats with type 2 diabetes mellitus (T2DM) were subjected to a modified epicardial fibrillation model. Pretreatment with canagliflozin (10 mg/kg/day) for four weeks improved ATP levels, post-resuscitation ejection fraction, acidosis, and hemodynamics. Canagliflozin also reduced myocardial edema, mitochondrial damage and, post-resuscitation autophagy levels. In vitro analyses showed that canagliflozin significantly reduced reactive oxygen species and preserved mitochondrial membrane potential. Using the PI3K/Akt pathway inhibitor Ly294002, canagliflozin was shown to attenuate hyperautophagy and cardiac injury induced by high glucose and hypoxia-reoxygenation through activation of the PI3K/Akt/mTOR pathway. This study highlights the therapeutic potential of canagliflozin in post-resuscitation myocardial dysfunction in diabetes, providing new insights for clinical treatment and experimental research.
Collapse
Affiliation(s)
- Qihui Huang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Wei Shi
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Minjie Wang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Liangliang Zhang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Yijun Zhang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Yan Hu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Sinong Pan
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Bingrui Ling
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Huaqing Zhu
- Laboratory of Molecular, Biology and Department of Biochemistry, Anhui Medical University, Hefei 230022, Anhui, People’s Republic of China
| | - Wenyan Xiao
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Tianfeng Hua
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Min Yang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| |
Collapse
|
12
|
Xu T, Liu K, Fan J, Jia X, Guo X, Zhao X, Cao Y, Zhang H, Wang Q. Metformin mitigates osteoarthritis progression by modulating the PI3K/AKT/mTOR signaling pathway and enhancing chondrocyte autophagy. Open Life Sci 2024; 19:20220922. [PMID: 39091625 PMCID: PMC11292032 DOI: 10.1515/biol-2022-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by overall joint tissue damage. Metformin (Met) has been shown to inhibit inflammatory reactions, though its potential protective mechanism on cartilage remains unclear. This study investigated Met's potential to protect cartilage in an OA rat model. Various morphological experiments were conducted to assess changes in cartilage tissue morphology before and after Met treatment. Protein and mRNA levels of cartilage-specific genes were measured using western blot, immunohistochemical staining, and RT-qPCR. Additionally, protein levels of autophagy-related and mTOR pathway-related proteins were measured. The results indicate an imbalance in the synthesis and degradation metabolism of chondrocytes, downregulation of cellular autophagy, and activation of the PI3K/Akt/mTOR pathway after surgery. However, treatment with Met could upregulate the expression of synthetic metabolic factors, indicating its contribution to cartilage repair. Furthermore, analysis of autophagy and pathway protein levels indicated that Met effectively attenuated autophagic damage to osteoarthritic cartilage cells and abnormal activation of the PI3K/Akt/mTOR pathway. In conclusion, Met can inhibit the abnormal activation of the PI3K/AKT/mTOR signaling pathway in cartilage tissue, promote the restoration of cartilage cell autophagic function, improve the balance of cartilage cell synthesis and degradation metabolism, and thus exert a protective effect on rat joint cartilage.
Collapse
Affiliation(s)
- Tianjie Xu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, Hebei, 063000, China
| | - Kainan Liu
- Department of Basic Medicine, Xingtai Medical College, Xingtai, Hebei, 054000, China
| | - Jiaxin Fan
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, Hebei, 063000, China
| | - Xiang Jia
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, Hebei, 063000, China
| | - Xiaoling Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, Hebei, 063000, China
| | - Xingwang Zhao
- Department of Orthopedics, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, 063000, China
| | - Yanhua Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000, China
| | - Hui Zhang
- Department of Joint Surgery 1, The Second Hospital of Tangshan, Tangshan, Hebei, 063000, China
| | - Qian Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, Hebei, 063000, China
| |
Collapse
|
13
|
Cai H, Zheng Y, Chen Y, Lu Q, Hong W, Guo Q, Zheng S. Miao medicine Gu Yan Xiao tincture inhibits mTOR to stimulate chondrocyte autophagy in a rabbit model of osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118095. [PMID: 38548121 DOI: 10.1016/j.jep.2024.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use. AIM OF THE STUDY This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy. MATERIALS AND METHODS The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac. RESULTS The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them. CONCLUSIONS Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.
Collapse
Affiliation(s)
- He Cai
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yuhao Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yinying Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing Lu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Wu Hong
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qiucheng Guo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Shuguang Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
14
|
Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X, Yu W. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy 2024; 20:1114-1133. [PMID: 38037248 PMCID: PMC11135866 DOI: 10.1080/15548627.2023.2287930] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Renal fibrosis is a typical pathological change in chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) is the predominant stage. Activation of macroautophagy/autophagy plays a crucial role in the process of EMT. Lycopene (LYC) is a highly antioxidant carotenoid with pharmacological effects such as anti-inflammation, anti-apoptosis and mediation of autophagy. In this study, we demonstrated the specific mechanism of LYC in activating mitophagy and improving renal fibrosis. The enrichment analysis results of GO and KEGG showed that LYC had high enrichment values with autophagy. In this study, we showed that LYC alleviated aristolochic acid I (AAI)-induced intracellular expression of PINK1, TGFB/TGF-β, p-SMAD2, p-SMAD3, and PRKN/Parkin, recruited expression of MAP1LC3/LC3-II and SQSTM1/p62, decreased mitochondrial membrane potential (MMP), and ameliorated renal fibrosis in mice. When we simultaneously intervened NRK52E cells using bafilomycin A1 (Baf-A1), AAI, and LYC, intracellular MAP1LC3-II and SQSTM1 expression was significantly increased. A similar result was seen in renal tissue and cells when treated in vitro and in vivo with CQ, AAI, and LYC, and the inhibitory effect of LYC on the AAI-activated SMAD2-SMAD3 signaling pathway was attenuated. Molecular docking simulation experiments showed that LYC stably bound to the AKT active site. After intervention of cells with AAI and GSK-690693, the expression of PINK1, PRKN, MAP1LC3-II, BECN1, p-SMAD2 and p-SMAD3 was increased, and the expression of SQSTM1 was decreased. However, SC79 inhibited autophagy and reversed the inhibitory effect of LYC on EMT. The results showed that LYC could inhibit the AKT signaling pathway to activate mitophagy and reduce renal fibrosis.Abbreviation: AA: aristolochic acid; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB: actin beta; AKT/protein kinase B: thymoma viral proto-oncogene; BAF-A1: bafilomycin A1; BECN1: beclin 1, autophagy related; CCN2/CTGF: cellular communication network factor 2; CDH1/E-Cadherin: cadherin 1; CKD: chronic kidney disease; COL1: collagen, type I; COL3: collagen, type III; CQ: chloroquine; ECM: extracellular matrix; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; LYC: lycopene; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase ; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PPI: protein-protein interaction; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1/p62: sequestosome 1; TGFB/TGFβ: transforming growth factor, beta; VIM: vimentin.
Collapse
Affiliation(s)
- Yu Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhenlei Ping
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongxin Gao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhihui Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyang Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of Animal Pathogenesis and Comparative Medicine in Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| |
Collapse
|
16
|
Fang S, Zhang B, Xiang W, Zheng L, Wang X, Li S, Zhang T, Feng D, Gong Y, Wu J, Yuan J, Wu Y, Zhu Y, Liu E, Ni Z. Natural products in osteoarthritis treatment: bridging basic research to clinical applications. Chin Med 2024; 19:25. [PMID: 38360724 PMCID: PMC10870578 DOI: 10.1186/s13020-024-00899-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
Collapse
Affiliation(s)
- Shunzheng Fang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
- Rehabilitation Center, Key Specialty of Neck and Low Back Pain Rehabilitation, Strategic Support Force Xingcheng Special Duty Sanatorium, Liaoning, 125100, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Liujie Zheng
- Department of Orthopaedic Surgery, The Fourth Hospital of Wuhan, Wuhan, 430000, Hubei, China
| | - Xiaodong Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yunquan Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jinhui Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jing Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yaran Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yizhen Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Enli Liu
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China.
| |
Collapse
|