1
|
Biju KC, Torres Hernandez E, Stallings AM, Felix-Ortiz AC, Hebbale SK, Norton L, Mader MJ, Clark RA. Metabolic dysregulation and resistance to high-fat diet-induced weight gain in mice overexpressing human wild-type α-synuclein. NPJ Parkinsons Dis 2025; 11:90. [PMID: 40274795 PMCID: PMC12022322 DOI: 10.1038/s41531-025-00961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Unintentional weight loss is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. To explore how early α-synuclein pathology contributes to metabolic dysregulation leading to weight loss in PD, transgenic mice overexpressing human wild-type α-synuclein (α-Syn) and controls were fed a high-fat diet (HFD) chow for 4 months. Compared with controls on HFD, α-Syn mice on HFD exhibited a dramatically leaner phenotype, improved glucose tolerance, a major decrease in fat mass, an increase in energy expenditure, a decrease in insulin signaling in the olfactory bulb, aggravated olfactory and motor dysfunctions, and an increase in mortality. Our results show that high-fat diet in α-Syn mice provides a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. Moreover, a role is proposed for olfactory dysfunction in PD-related unintentional weight loss.
Collapse
Affiliation(s)
- K C Biju
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Enrique Torres Hernandez
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alison Michelle Stallings
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ada C Felix-Ortiz
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Skanda K Hebbale
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Luke Norton
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael J Mader
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Robert A Clark
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Hara Y, Jha MK, Huang JY, Han Y, Langohr IM, Gaglia G, Zhu C, Piepenhagen P, Gayvert K, Lim WK, Asrat S, Nash S, Jacob‐Nara JA, Orengo JM, Bangari DS, de Rinaldis E, Mattoo H, Hicks A. The IL-4-IL-4Rα axis modulates olfactory neuroimmune signaling to induce loss of smell. Allergy 2025; 80:440-461. [PMID: 39418114 PMCID: PMC11804309 DOI: 10.1111/all.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
IL-4 and IL-13 have non-redundant effects in olfaction, with loss of smell in mice evoked only by intranasal administration of IL-4, but not IL-13. IL-4-evoked pathophysiological effects on olfaction is independent of compromised structural integrity of the olfactory neuroepithelium. IL-4-IL-4Rα signaling modulates neuronal crosstalk with immune cells, suggesting a functional link between olfactory impairment and neuroinflammation. Abbreviations: IL, interleukin; KO, knock-out; wk, week; WT, wild-type.
Collapse
Affiliation(s)
- Yannis Hara
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| | - Mithilesh Kumar Jha
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| | - Jeremy Y. Huang
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Yingnan Han
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | | | - Giorgio Gaglia
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Cheng Zhu
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | | | - Kaitlyn Gayvert
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Wei Keat Lim
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Seblewongel Asrat
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Scott Nash
- Medical Affairs, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | - Jamie M. Orengo
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | | | - Hamid Mattoo
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Alexandra Hicks
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Biju K, Hernandez ET, Stallings AM, Felix-Ortiz AC, Hebbale SK, Norton L, Mader MJ, Clark RA. Resistance to high-fat diet-induced weight gain in transgenic mice overexpressing human wild-type α-synuclein: A model for metabolic dysfunction in Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-4870881. [PMID: 39257980 PMCID: PMC11384802 DOI: 10.21203/rs.3.rs-4870881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Unintentional weight loss, primarily due to the loss of fat mass rather than muscle mass, is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. Since transgenic mice overexpressing human wild-type α-synuclein (α-Syn mice) are modestly leaner than control mice, and since diabetes, a metabolic disorder, is a major risk factor for PD, we reasoned that high-fat diet-induced diabetes/metabolic dysregulation in α-Syn mice may serve as a robust tool for exploring how early α-synuclein pathology contributes to metabolic dysregulation, leading to weight loss in PD. Thus, α-Syn and age-matched controls were fed a high-fat diet (HFD) chow (60% fat calories) ad libitum for four months. Compared with controls on HFD (control-HFD), α-Syn mice on HFD (α-Syn-HFD) were dramatically leaner. The resistance to gaining weight in α-Syn-HFD mice was accompanied by improved glucose tolerance, a dramatic decrease in fat mass, and an increase in energy expenditure. Despite this leaner phenotype and better glucose tolerance, the mortality was much higher in male α-Syn-HFD mice than in all controls, but was unaffected in females, suggesting protective effects of female sex hormones, as well as lower α-synuclein levels. Immunoblot analysis of insulin signaling in the olfactory bulb, the proposed initial seeding site of α-synuclein pathology, revealed a decrease of IGF-IRβ, p GSK, and p mTOR in α-Syn-HFD mice. Since GSK-3β and mTOR regulate synaptic plasticity, we assessed levels of PSD-95 and synaptophysin in the olfactory bulb. As anticipated, we observed a significant decrease in the levels of PSD-95, along with a potentially compensatory increase in synaptophysin levels. Our results show that α-Syn mice, when challenged with diet-induced diabetes/metabolic dysregulation, clearly reveal a profile of robust metabolic dysfunction, thus providing a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. We propose a role for olfactory dysfunction in PD-related unintentional weight loss and suggest that strategies aimed at increasing body weight/BMI will improve the quality of life and prognosis for people living with PD.
Collapse
Affiliation(s)
- K.C. Biju
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Enrique Torres Hernandez
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Alison Michelle Stallings
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Ada C. Felix-Ortiz
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Skanda K. Hebbale
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Luke Norton
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Michael J. Mader
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
| | - Robert A. Clark
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
4
|
Yuan R, Adlimoghaddam A, Zhu Y, Han X, Bartke A. Early Life Interventions: Impact on Aging and Longevity. Aging Dis 2024:AD.202.0516. [PMID: 39325935 DOI: 10.14336/ad.202.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 09/28/2024] Open
Abstract
Across mammals, lifespans vary remarkably, spanning over a hundredfold difference. Comparative studies consistently reveal a strong inverse relationship between developmental pace and lifespan, hinting at the potential for early-life interventions (ELIs) to influence aging and lifespan trajectories. Focusing on postnatal interventions in mice, this review explores how ELIs influence development, lifespan, and the underlying mechanisms. Previous ELI studies have employed a diverse array of approaches, including dietary modifications, manipulations of the somatotropic axis, and various chemical treatments. Notably, these interventions have demonstrated significant impacts on aging and lifespan in mice. The underlying mechanisms likely involve pathways related to mitochondrial function, mTOR and AMPK signaling, cellular senescence, and epigenetic alterations. Interestingly, ELI studies may serve as valuable models for investigating the complex regulatory mechanisms of development and aging, particularly regarding the interplay among somatic growth, sexual maturation, and lifespan. In addition, prior research has highlighted the intricacies of experimental design and data interpretation. Factors such as timing, sex-specific effects, administration methods, and animal husbandry practices must be carefully considered to ensure the reliability and reproducibility of results, as well as rigorous interpretation. Addressing these factors is essential for advancing our understanding of how development, aging, and lifespan are regulated, potentially opening avenues for interventions that promote healthy aging.
Collapse
Affiliation(s)
- Rong Yuan
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Aida Adlimoghaddam
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Neurology, Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Yun Zhu
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Xiuqi Han
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
5
|
Khant Aung Z, Ladyman SR, Brown RSE. Transient loss of satiety effects of leptin in middle-aged male mice. J Neuroendocrinol 2024; 36:e13386. [PMID: 38549242 DOI: 10.1111/jne.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18-22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Garratt M, Try H, Neyt C, Brooks RC. Exposure to female olfactory cues hastens reproductive ageing and increases mortality when mating in male mice. Proc Biol Sci 2024; 291:20231848. [PMID: 38412966 PMCID: PMC10898972 DOI: 10.1098/rspb.2023.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Theories of ageing predict that investment in reproduction will trade-off against survival and later-life reproduction. Recent evidence from invertebrates suggests that just perceiving cues of a potential mate's presence can reduce lifespan, particularly in males, and that activation of neuroendocrine reward pathways associated with mating can alleviate these effects. Whether similar effects occur in vertebrates remains untested. We tested whether exposure to olfactory cues from the opposite sex would influence mortality and reproductive senescence in male mice. We observed that males exposed to female olfactory cues from middle- to old age (from 10 to 24 months of age) showed reduced late-life fertility, irrespective of whether they had also been allowed to mate with females earlier in life. Males that were exposed to female odours in conjunction with mating also showed an increased mortality rate across the exposure period, indicating that olfactory cues from females can increase male mortality in some environments. Our results show that exposure to female odours can influence reproductive ageing and mortality in male mice, highlighting that sensory perception of mates may be an important driver of life-history trade-offs in mammals.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Heather Try
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christine Neyt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robert C Brooks
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|