1
|
Nhuchhen Pradhan R, Montell C, Lee Y. Cholesterol taste avoidance in Drosophila melanogaster. eLife 2025; 14:RP106256. [PMID: 40244888 PMCID: PMC12005718 DOI: 10.7554/elife.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.
Collapse
Affiliation(s)
- Roshani Nhuchhen Pradhan
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Mi T, Sheng C, Lee CK, Nguyen P, Zhang YV. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life (Basel) 2025; 15:110. [PMID: 39860050 PMCID: PMC11766477 DOI: 10.3390/life15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Chemosensation and mechanosensation are vital to insects' survival and behavior, shaping critical physiological processes such as feeding, metabolism, mating, and reproduction. During feeding, insects rely on diverse chemosensory and mechanosensory receptors to distinguish between nutritious and harmful substances, enabling them to select suitable food sources while avoiding toxins. These receptors are distributed across various body parts, allowing insects to detect environmental cues about food quality and adjust their behaviors accordingly. A deeper understanding of insect sensory physiology, especially during feeding, not only enhances our knowledge of insect biology but also offers significant opportunities for practical applications. This review highlights recent advancements in research on feeding-related sensory receptors, covering a wide range of insect species, from the model organism Drosophila melanogaster to agricultural and human pests. Additionally, this review examines the potential of targeting insect sensory receptors for precision pest control. Disrupting behaviors such as feeding and reproduction emerges as a promising strategy for pest management. By interfering with these essential behaviors, we can effectively control pest populations while minimizing environmental impacts and promoting ecological balance.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Chengwang Sheng
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Pesticide Science, Anhui Agricultural University, Hefei 230036, China
| | - Cassidy Kylene Lee
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Peter Nguyen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yali V. Zhang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Physiology, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Jean-François F, Pratibha S, Stéphane F, Enisa A, Fabrice N, Bernard M, Deepa A, Claude E. Experimental Evolution Induced by Maternal Post-copulatory Factors in Drosophila. Behav Genet 2025; 55:29-42. [PMID: 39570491 DOI: 10.1007/s10519-024-10206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Experimental evolution is a powerful approach to study the mechanisms underlying the adaptation of selected characters under the conditions chosen in the laboratory. Drosophila melanogaster is a species frequently used to investigate the experimental evolution of characters, especially those related to reproduction. Recent intra-generational studies showed that cis-vaccenyl acetate (cVa), a sex pheromone transferred with bacteria on eggs by females either 1 day (D1) or 5 days (D5) after copulation, differentially affected the behavior and pheromone release in adult males emerging from these eggs. Here, we extended this finding to determine whether this alternative egg exposure repeated over many generations could affect a larger set of reproduction-related characters in both sexes. To test the repetitive effects of maternal D1 or D5 post-copulatory factors, we carried out an experimental selection procedure consisting of exposing eggs during 40 successive generations to D1 or D5 maternal post-copulatory factors. We compared cVa and cuticular pheromones, courtship and mating behaviors, and fecundity at different generations in flies of D1 and D5 lines. Based on findings obtained at earlier generations, we also determined survival, bacterial composition and gene expression in adults. Some of these complex traits significantly diverged between D1 and D5 lines indicating that maternal post-copulatory factors transmitted to eggs can influence adult life history traits.
Collapse
Affiliation(s)
- Ferveur Jean-François
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.
| | | | - Fraichard Stéphane
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Aruçi Enisa
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
- Molecular and Biology Department, Cornell University, Ithaca, NY, USA
| | - Neiers Fabrice
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Moussian Bernard
- Animal Genetics, Interfaculty Institute for Cell Biology, Universität Tübingen, Tübingen, Germany
- INRAE, CNRS, Institut Sophia Agrobiotech, Université Côte d'Azur, Sophia Antipolis, France
| | - Agashe Deepa
- National Centre for Biological Sciences (NCBS-TIFR), Bengaluru, India
| | - Everaerts Claude
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| |
Collapse
|
4
|
Shrestha B, Sang J, Rimal S, Lee Y. Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster. eLife 2024; 13:RP101439. [PMID: 39660835 PMCID: PMC11634064 DOI: 10.7554/elife.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Suman Rimal
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Arntsen C, Guillemin J, Audette K, Stanley M. Tastant-receptor interactions: insights from the fruit fly. Front Nutr 2024; 11:1394697. [PMID: 38665300 PMCID: PMC11043608 DOI: 10.3389/fnut.2024.1394697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Across species, taste provides important chemical information about potential food sources and the surrounding environment. As details about the chemicals and receptors responsible for gustation are discovered, a complex view of the taste system is emerging with significant contributions from research using the fruit fly, Drosophila melanogaster, as a model organism. In this brief review, we summarize recent advances in Drosophila gustation and their relevance to taste research more broadly. Our goal is to highlight the molecular mechanisms underlying the first step of gustatory circuits: ligand-receptor interactions in primary taste cells. After an introduction to the Drosophila taste system and how it encodes the canonical taste modalities sweet, bitter, and salty, we describe recent insights into the complex nature of carboxylic acid and amino acid detection in the context of sour and umami taste, respectively. Our analysis extends to non-canonical taste modalities including metals, fatty acids, and bacterial components, and highlights unexpected receptors and signaling pathways that have recently been identified in Drosophila taste cells. Comparing the intricate molecular and cellular underpinnings of how ligands are detected in vivo in fruit flies reveals both specific and promiscuous receptor selectivity for taste encoding. Throughout this review, we compare and contextualize these Drosophila findings with mammalian research to not only emphasize the conservation of these chemosensory systems, but to demonstrate the power of this model organism in elucidating the neurobiology of taste and feeding.
Collapse
Affiliation(s)
| | | | | | - Molly Stanley
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
6
|
Sang J, Dhakal S, Shrestha B, Nath DK, Kim Y, Ganguly A, Montell C, Lee Y. A single pair of pharyngeal neurons functions as a commander to reject high salt in Drosophila melanogaster. eLife 2024; 12:RP93464. [PMID: 38573740 PMCID: PMC10994663 DOI: 10.7554/elife.93464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Salt (NaCl), is an essential nutrient for survival, while excessive salt can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two co-receptors IR25a and IR76b are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Bhanu Shrestha
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Yunjung Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Anindya Ganguly
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|