1
|
Liu Y, Sun X, Jia Z, Hou Q, Yuan M, Xu T, Yuan J, Xu B, Yu Z. P2Y6 promoted pruning of FSTL1 nerves by cutaneous macrophages to reset pain threshold and cardiac function. Purinergic Signal 2025:10.1007/s11302-025-10088-5. [PMID: 40293604 DOI: 10.1007/s11302-025-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Hyperactivation of cutaneous macrophages promotes the development of chronic pain. Stimulation of nociceptive regions promotes neuroplasticity, which affects pain perception and related physiological responses. However, the specific mechanisms by which cutaneous macrophages sense and elicit nociceptive responses are unknown. Here, we exacerbated the reduction of systemic pain threshold after chronic heart failure (CHF) by silencing follistatin-like 1 (FSTL1), especially the abnormal cutaneous nociceptive sensation at PC6 acupoint, the site associated with cardiac involvement pain. The upregulation of P2Y6 and interleukin-27 expression is intimately linked to the activation of skin macrophages. Hyperactivation of P2Y6 receptor (P2Y6R) may be associated with MHC II M1+ macrophage polarization in PC6. Thus, P2Y6 is one of the key factors that modulate the functional polarization of skin macrophages, which may subsequently influence the expansion of the pain field. The supportive effect of CD206 M2+ macrophages on the cutaneous FSTL1+ nerves was significantly reduced. Meanwhile, FSTL1+ nerves in PC6 functionally interacted with calcitonin gene-related peptide (CGRP)+ nerves, and the overactivation of nerve growth factor (NGF) secreted by cutaneous macrophages induced CGRP+ neuropathological remodeling, which supported the enlargement of the pain sensory area. The activation of CGRP and P2X3 receptor (P2X3R), Na+/K+ ATPase (NKA), and P2X3R in the C8 DRG may be one of the molecular bases mediating cutaneous nociceptive transmission and affecting the function of the heart. Hyperactivation of NKA was consistent with decreased pain threshold and changes in cardiac dysfunction, and PC6 injection of an NKA inhibitor (digilanid C) was effective in ameliorating nociception and cardiac impairment. The beneficial effects of digilanid C were counteracted by FSTL1 silencing. These results indicated that P2Y6 mediates the remodeling of pain perception by skin macrophages via the action of FSTL1, while NKA inhibitors synergistically exert their therapeutic effects.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Sun
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengxu Jia
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qun Hou
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingqian Yuan
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinhong Yuan
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Barone Adesi L, Taraschi F, Macrì G, Scardina L, Di Leone A, Franceschini G, Salgarello M. Fat Grafting and Prepectoral Prosthetic Reconstruction with Polyurethane-Covered Implants: Protective Role against Adjuvant Radiotherapy. J Clin Med 2024; 13:4982. [PMID: 39274192 PMCID: PMC11396578 DOI: 10.3390/jcm13174982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Breast cancer treatment increasingly incorporates immediate prepectoral prosthetic reconstruction after conservative mastectomy, including nipple-sparing (NSMs) and skin-sparing mastectomies (SSMs). Although recent data from the literature show that postmastectomy radiotherapy (PMRT) after prepectoral reconstruction presents good clinical results, with reduction in capsular contracture and implant migration, compared to the traditional submuscular technique, these patients have higher rates of long-term complications when compared with nonradiated patients. This study evaluates the protective effects of autologous fat grafting to reduce long-term radiotherapy-induced complications in breast cancer patients submitted for prepectoral reconstruction with polyurethane-covered (PU) implants. Methods: A pilot study with two parallel cohorts of patients undergoing an NSM or SSM followed by PMRT was conducted. Patients were randomly assigned to either of the two groups to ensure homogeneity. One cohort underwent autologous fat grafting sessions, individually tailored based on periodic evaluations by the principal investigator (PI), M. Salgarello, at least six months after PMRT. The control group received standard clinical follow-ups without fat grafting. Inclusion criteria ensured participants were disease-free, non-smokers, and had a LENT-SOMA score within 2. Results: Preliminary findings indicate significant differences between the groups, with improved outcomes observed in patients undergoing tailored lipofilling. Specifically, these patients experienced a notable reduction in capsular contracture severity and reported higher satisfaction with the aesthetic results compared to the control group. Conclusions: Autologous fat grafting, customized per patient by the PI based on ongoing evaluations, appears to mitigate some adverse effects of radiotherapy in prepectoral breast reconstruction, suggesting a viable option for enhancing surgical outcomes in irradiated patients. Further research is needed to substantiate these findings and evaluate long-term benefits.
Collapse
Affiliation(s)
- Liliana Barone Adesi
- UO Chirurgia Plastica, Dipartimento per la Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| | - Federico Taraschi
- UO Chirurgia Plastica, Dipartimento per la Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Macrì
- UO Chirurgia Plastica, Dipartimento per la Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| | - Lorenzo Scardina
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alba Di Leone
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| | - Gianluca Franceschini
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| | - Marzia Salgarello
- UO Chirurgia Plastica, Dipartimento per la Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS-Università Cattolica del "Sacro Cuore"-Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
3
|
Guo J, Zhang X, Mao R, Li H, Hao Y, Zhang J, Wang W, Zhang Y, Liu J. Multifunctional Glycopeptide-Based Hydrogel via Dual-Modulation for the Prevention and Repair of Radiation-Induced Skin Injury. ACS Biomater Sci Eng 2024; 10:5168-5180. [PMID: 39016069 DOI: 10.1021/acsbiomaterials.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The radiation-induced skin injury (RISI) remains a great challenge for clinical wound management and care after radiotherapy, as patients will suffer from the acute radiation injury and long-term chronic inflammatory damage during the treatment. The excessive ROS in the early acute stage and prolonged inflammatory response in the late healing process always hinder therapeutic efficiency. Herein, we developed an extracellular matrix (ECM)-mimetic multifunctional glycopeptide hydrogel (oCP@As) to promote and accelerate RISI repair via a dual-modulation strategy in different healing stages. The oCP@As hydrogel not only can form an ECM-like nanofiber structure through the Schiff base reaction but also exhibits ROS scavenging and DNA double-strand break repair abilities, which can effectively reduce the acute radiation damage. Meanwhile, the introduction of oxidized chondroitin sulfate, which is the ECM polysaccharide-like component, enables regulation of the inflammatory response by adsorption of inflammatory factors, accelerating the repair of chronic inflammatory injury. The animal experiments demonstrated that oCP@As can significantly weaken RISI symptoms, promote epidermal tissue regeneration and angiogenesis, and reduce pro-inflammatory cytokine expression. Therefore, this multifunctional glycopeptide hydrogel dressing can effectively attenuate RISI symptoms and promote RISI healing, showing great potential for clinical applications in radiotherapy protection and repair.
Collapse
Affiliation(s)
- Jiajun Guo
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoguang Zhang
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin 300384, P. R. China
| | - Ruiqi Mao
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin 300384, P. R. China
| | - Hui Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yusen Hao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Wei Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, P. R. China
| | - Yumin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
4
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
5
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
6
|
Malekzadeh H, Surucu Y, Chinnapaka S, Yang KS, Arellano JA, Samadi Y, Epperly MW, Greenberger JS, Rubin JP, Ejaz A. Metformin and adipose-derived stem cell combination therapy alleviates radiation-induced skin fibrosis in mice. Stem Cell Res Ther 2024; 15:13. [PMID: 38185658 PMCID: PMC10773046 DOI: 10.1186/s13287-023-03627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Radiation therapy often leads to late radiation-induced skin fibrosis (RISF), causing movement impairment and discomfort. We conducted a comprehensive study to assess the effectiveness of metformin and adipose-derived stem cells (ASCs), whether autologous or allogeneic, individually or in combination therapy, in mitigating RISF. METHODS Using a female C57BL/6J mouse model subjected to hind limb irradiation as a representative RISF model, we evaluated metformin, ASCs, or their combination in two contexts: prophylactic (started on day 1 post-irradiation) and therapeutic (initiated on day 14 post-irradiation, coinciding with fibrosis symptoms). We measured limb movement, examined skin histology, and analyzed gene expression to assess treatment efficacy. RESULTS Prophylactic metformin and ASCs, whether autologous or allogeneic, effectively prevented late fibrosis, with metformin showing promising results. However, combination therapy did not provide additional benefits when used prophylactically. Autologous ASCs, alone or with metformin, proved most effective against late-stage RISF. Prophylactic intervention outperformed late therapy for mitigating radiation skin damage. Co-culture studies revealed that ASCs and metformin downregulated inflammation and fibrotic gene expression in both mouse and human fibroblasts. CONCLUSIONS Our study suggests metformin's potential as a prophylactic measure to prevent RISF, and the combination of ASCs and metformin holds promise for late-stage RISF treatment. These findings have clinical implications for improving the quality of life for those affected by radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Hamid Malekzadeh
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Yusuf Surucu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Katherine S Yang
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - José A Arellano
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Yasamin Samadi
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
- McGowan Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.
| |
Collapse
|