1
|
Gupta S, Sharma A, Shukla A, Mishra A, Singh A. From development to clinical success: the journey of established and next-generation BTK inhibitors. Invest New Drugs 2025; 43:377-393. [PMID: 40014234 DOI: 10.1007/s10637-025-01513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Over the past decade, Bruton's tyrosine kinase (BTK) has emerged as a pivotal therapeutic target for B-cell malignancies and autoimmune diseases, given its essential role in B-cell development and function. Dysregulation of BTK signalling is implicated in a range of hematologic cancers, including Waldenström's macroglobulinaemia (WM), mantle cell lymphoma (MCL), and chronic lymphocytic leukaemia (CLL). The development of BTK inhibitors (BTKIs), starting with ibrutinib, has revolutionized the treatment of these malignancies by inhibiting B-cell receptor (BCR) signalling and inducing apoptosis in malignant B-cells. Despite the impressive clinical efficacy of ibrutinib, challenges such as resistance mutations and off-target effects remain. To address these issues, next-generation BTKIs, including acalabrutinib, orelabrutinib, zanubrutinib, and pirtobrutinib, have been developed, offering improved specificity and reduced toxicity profiles. This review highlights the therapeutic potential of BTK-targeted therapies in treating B-cell malignancies, discusses recent advancements with FDA-approved BTKIs, and explores the latest clinical outcomes from ongoing trials of novel inhibitors.
Collapse
Affiliation(s)
- Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India.
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Gibbs LC, Oviedo JM, Ondigo BN, Fairfax KC. Maternal Helminth Infection Causes Dysfunctional B Cell Development in Male Offspring. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1157-1169. [PMID: 39185897 PMCID: PMC11537230 DOI: 10.4049/jimmunol.2400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Infections during pregnancy are known to trigger alterations in offspring immunity, often leading to increased disease susceptibility. Maternal helminth infections correlate with lower Ab titers to certain childhood immunizations and putative decreased vaccine efficacy. The mechanisms that underlie how maternal infection blunts offspring humoral responses are unclear. Using our murine model of maternal schistosomiasis, we found that maternal helminth infection decreases the germinal center response of all offspring to tetanus immunization. However, only male offspring have defects in memory B cell and long-lived plasma cell generation. We found this sex-specific aberration begins during B cell development within the bone marrow via alteration of the IL-7 niche and persists throughout antigenic activation in the germinal center in the periphery. Critically, these defects in males are cell intrinsic, persisting following adoptive transfer to control male pups. Together, these data show that maternal infections can alter both the bone marrow microenvironment and the development of B lymphocytes in a sex-specific manner. This study correlates maternal infection induced defects in early life B cell development with ineffective Ab responses after vaccination.
Collapse
Affiliation(s)
- Lisa C. Gibbs
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| | - Juan M. Oviedo
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| | | | - Keke C. Fairfax
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| |
Collapse
|
3
|
Zhou D, Zi C, Gan G, Tang S, Chen Q. An exploration of the causal relationship between 731 immunophenotypes and osteoporosis: a bidirectional Mendelian randomized study. Front Endocrinol (Lausanne) 2024; 15:1341002. [PMID: 39086903 PMCID: PMC11288873 DOI: 10.3389/fendo.2024.1341002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Background There are complex interactions between osteoporosis and the immune system, and it has become possible to explore their causal relationship based on Mendelian randomization methods. Methods Utilizing openly accessible genetic data and employing Mendelian randomization analysis, we investigated the potential causal connection between 731 immune cell traits and the risk of developing osteoporosis. Results Ten immune cell phenotypes were osteoporosis protective factors and three immune cell phenotypes were osteoporosis risk factors. Specifically, the odds ratio (OR) of IgD+ CD24+ %B cell (B cell panel) risk on Osteoporosis was estimated to be 0.9986 (95% CI = 0.9978~0.9996, P<0.01). The OR of CD24+ CD27+ %B cell (B cell panel) risk on Osteoporosis was estimated to be 0.9991 (95% CI = 0.9984~0.9998, P = 0.021). The OR of CD33- HLA DR+AC (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9996 (95% CI = 0.9993~0.9999, P = 0.038). The OR of EM CD8br %CD8br (Maturation stages of T cell panel) risk on Osteoporosis was estimated to be 1.0004 (95% CI = 1.0000~1.0008, P = 0.045). The OR of CD25 on IgD+ (B cell panel) risk on Osteoporosis was estimated to be 0.9995 (95% CI = 0.9991~0.9999, P = 0.024). The OR of CD25 on CD39+ activated Treg+ (Treg panel) risk on Osteoporosis was estimated to be 1.001 (95% CI = 1.0001~1.0019, P = 0.038). The OR of CCR2 on CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9992 (95% CI = 0.9984~0.9999, P = 0.048). The OR of CCR2 on CD62L+ plasmacytoid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9993 (95% CI = 0.9987~0.9999, P = 0.035). The OR of CD45 on CD33dim HLA DR+ CD11b- (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9988 (95% CI = 0.9977~0.9998, P = 0.031). The OR of CD45 on Mo MDSC (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9992 (95% CI = 0.9985~0.9998, P = 0.017). The OR of SSC-A on B cell (TBNK panel) risk on Osteoporosis was estimated to be 0.9986 (95% CI = 0.9972~0.9999, P = 0.042). The OR of CD11c on CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9987 (95% CI = 0.9978~0.9996, P<0.01). The OR of HLA DR on DC (cDC panel) risk on Osteoporosis was estimated to be 1.0007 (95% CI = 1.0002~1.0011, P<0.01). No causal effect of osteoporosis on immune cells was observed. Conclusions Our study identified 13 unreported immune phenotypes that are causally related to osteoporosis, providing a theoretical basis for the bone immunology doctrine.
Collapse
Affiliation(s)
- Dongqi Zhou
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Changyan Zi
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Gaofeng Gan
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Shiyun Tang
- Department of Good Clinical Practice (GCP), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Department of Endocrine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Yabas M, Bostanci A, Aral S. ATP11C promotes the differentiation of pre-B cells into immature B cells but does not affect their IL-7-dependent proliferation. Immunol Res 2023; 71:609-616. [PMID: 36753036 DOI: 10.1007/s12026-023-09364-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The P4-type ATPases are believed to function as flippases that contribute to the organization of the asymmetric aminophospholipid distribution on the plasma membranes of eukaryotes by their ability to internalize specific phospholipids from the outer leaflet to the inner leaflet. Despite the existence of 14 members of the P4-type ATPases in humans and 15 in mice, their roles in the immune system have not been fully understood. So far, ATP11C was shown to be important for B cells, and mice deficient for ATP11C had a developmental arrest at the pro-B to pre-B cell transition stage of B cell development. Using an ATP11C-deficient pre-B cell line generated through CRISPR/Cas9 engineering, we here tested the role of ATP11C in pre-B cells in vitro and showed that ablation of ATP11C in pre-B cells causes a defect in the flippase activity. We further demonstrated that loss of ATP11C does not impede the proliferation of pre-B cells in response to IL-7. However, pre-B cells lacking ATP11C failed to differentiate into immature B cells upon removal of IL-7. These results suggest that disruption of lipid asymmetry by loss of ATP11C in pre-B cells may control the switch from proliferation to differentiation in pre-B cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey.
- Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey.
| | - Ayten Bostanci
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Seda Aral
- Department of Biotechnology and Genetics, Institute of Natural Sciences, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Frase D, Lee C, Nachiappan C, Gupta R, Akkouch A. The Inflammatory Contribution of B-Lymphocytes and Neutrophils in Progression to Osteoporosis. Cells 2023; 12:1744. [PMID: 37443778 PMCID: PMC10340451 DOI: 10.3390/cells12131744] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a bone disease characterized by structural deterioration and low bone mass, leading to fractures and significant health complications. In this review, we summarize the mechanisms by which B-lymphocytes and neutrophils contribute to the development of osteoporosis and potential therapeutics targeting these immune mediators to reduce the proinflammatory milieu. B-lymphocytes-typically appreciated for their canonical role in adaptive, humoral immunity-have emerged as critical regulators of bone remodeling. B-lymphocytes communicate with osteoclasts and osteoblasts through various cytokines, including IL-7, RANK, and OPG. In inflammatory conditions, B-lymphocytes promote osteoclast activation and differentiation. However, B-lymphocytes also possess immunomodulatory properties, with regulatory B-lymphocytes (Bregs) secreting TGF-β1 to restrain pathogenic osteoclastogenesis. Neutrophils, the body's most prevalent leukocyte, also contribute to the proinflammatory environment that leads to osteoporotic bone remodeling. In aged individuals, neutrophils display reduced chemotaxis, phagocytosis, and apoptosis. Understanding the delicate interplay between B-lymphocytes and neutrophils in the context of impaired bone metabolism is crucial for targeted therapies for osteoporosis.
Collapse
Affiliation(s)
- Drew Frase
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Chi Lee
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Chidambaram Nachiappan
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Richa Gupta
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Adil Akkouch
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
- Department of Orthopaedic Surgery and Medical Engineering Program, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
6
|
Geng T, Yang D, Lin T, Harrison AG, Wang B, Torrance B, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella AT, Fikrig E, Wang P. An Essential Role of UBXN3B in B Lymphopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34462748 DOI: 10.1101/2021.03.04.433919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hematopoiesis is finely regulated to enable timely production of the right numbers and types of mature immune cells to maintain tissue homeostasis. Dysregulated hematopoiesis may compromise antiviral immunity and/or exacerbate immunopathogenesis. Herein, we report an essential role of UBXN3B in maintenance of hematopoietic homeostasis and restriction of immunopathogenesis during respiratory viral infection. Ubxn3b deficient ( Ubxn3b -/- ) mice are highly vulnerable to SARS-CoV-2 and influenza A infection, characterized by more severe lung immunopathology, lower virus-specific IgG, significantly fewer B cells, but more myeloid cells than Ubxn3b +/+ littermates. This aberrant immune compartmentalization is recapitulated in uninfected Ubxn3b -/- mice. Mechanistically, UBXN3B controls precursor B-I (pre-BI) transition to pre-BII and subsequent proliferation in a cell-intrinsic manner, by maintaining BLNK protein stability and pre-BCR signaling. These results reveal an essential role of UBXN3B for the early stage of B cell development.
Collapse
|
7
|
Increased O-GlcNAcylation of c-Myc Promotes Pre-B Cell Proliferation. Cells 2020; 9:cells9010158. [PMID: 31936366 PMCID: PMC7016991 DOI: 10.3390/cells9010158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification regulates the activity of hundreds of nucleocytoplasmic proteins involved in a wide variety of cellular processes, such as gene expression, signaling, and cell growth; however, the mechanism underlying the regulation of B cell development and function by O-GlcNAcylation remains largely unknown. Here, we demonstrate that changes in cellular O-GlcNAc levels significantly affected the growth of pre-B cells, which rapidly proliferate to allow expansion of functional clones that express successfully rearranged heavy chains at the pro-B stage during early B cell development. In our study, the overall O-GlcNAc levels in these proliferative pre-B cells, which are linked to the glucose uptake rate, were highly induced when compared with those in pro-B cells. Thus, pharmacologically, genetically, or nutritionally, inhibition of O-GlcNAcylation in pre-B cells markedly downregulated c-Myc expression, resulting in cell cycle arrest via blockade of cyclin expression. Importantly, the population of B cells after the pro-B cell stage in mouse bone marrow was severely impaired by the administration of an O-GlcNAc inhibitor. These results strongly suggest that O-GlcNAcylation-dependent expression of c-Myc represents a new regulatory component of pre-B cell proliferation, as well as a potential therapeutic target for the treatment of pre-B cell-derived leukemia.
Collapse
|
8
|
Yosef A, Touloukian EZ, Nambudiri VE. Ibrutinib in the management of Waldenstrom macroglobulinemia. J Oncol Pharm Pract 2018; 25:434-441. [PMID: 29996737 DOI: 10.1177/1078155218786037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bruton tyrosine kinase plays a critical role in hastening cell proliferation. Bruton tyrosine kinase inhibitors are a class of immunotheraputic agents that disrupt this signaling pathway. Ibrutinib, a novel Bruton tyrosine kinase inhibitor approved by the Food and Drug Administration (FDA) for the treatment of Waldenstrom macroglobulinemia in patients who have failed treatment with other agents, has emerged as an important therapeutic agent in the management of Waldenstrom macroglobulinemia and other plasma cell dyscrasias. Ibrutinib has shown to increase progression free survival and improve overall mortality. We present a review of ibrutinib, beginning with an overview of the Bruton tyrosine kinase pathway and clinically relevant gene mutations impacting treatment and prognosis for patients with Waldenstrom macroglobulinemia, followed by evidence supporting therapeutic indications for ibrutinib, and detailing its safety and efficacy evidence, current clinical guidelines, adverse effects and their management, and finally challenges of drug resistance. We also present findings on newly developed Bruton tyrosine kinase inhibitors in the therapeutic pipeline to provide readers insight into this rapidly evolving corner of oncology pharmacy practice.
Collapse
Affiliation(s)
- Amir Yosef
- Grand Strand Regional Medical Center, Myrtle Beach, USA
| | | | | |
Collapse
|
9
|
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17:57. [PMID: 29455639 PMCID: PMC5817726 DOI: 10.1186/s12943-018-0779-z] [Citation(s) in RCA: 488] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Department of Immunology, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Khass M, Blackburn T, Elgavish A, Burrows PD, Schroeder HW. In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Front Immunol 2018; 9:120. [PMID: 29472919 PMCID: PMC5810287 DOI: 10.3389/fimmu.2018.00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023] Open
Abstract
Sequential developmental checkpoints are used to “optimize” the B cell antigen receptor repertoire by minimizing production of autoreactive or useless immunoglobulins and enriching for potentially protective antibodies. The first and apparently most impactful checkpoint requires μHC to form a functional pre-B cell receptor (preBCR) by associating with surrogate light chain, which is composed of VpreB and λ5. Absence of any of the preBCR components causes a block in B cell development that is characterized by severe immature B cell lymphopenia. Previously, we showed that preBCR controls the amino acid content of the third complementary determining region of the H chain (CDR-H3) by using a VpreB amino acid motif (RDR) to select for tyrosine at CDR-H3 position 101 (Y101). In antibodies bound to antigen, Y101 is commonly in direct contact with the antigen, thus preBCR selection impacts the antigen binding characteristics of the repertoire. In this work, we sought to determine the forces that shape the peripheral B cell repertoire when it is denied preBCR selection. Using bromodeoxyuridine incorporation and evaluation of apoptosis, we found that in the absence of preBCR there is increased turnover of B cells due to increased apoptosis. CDR-H3 sequencing revealed that this is accompanied by adjustments to DH identity, DH reading frame, JH, and CDR-H3 amino acid content. These adjustments in the periphery led to wild-type levels of CDR-H3 Y101 content among transitional (T1), mature recirculating, and marginal zone B cells. However, peripheral selection proved incomplete, with failure to restore Y101 levels in follicular B cells and increased production of dsDNA-binding IgM antibodies.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Tessa Blackburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ada Elgavish
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Matheson LS, Bolland DJ, Chovanec P, Krueger F, Andrews S, Koohy H, Corcoran AE. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(D)J Recombination. Front Immunol 2017; 8:1550. [PMID: 29204143 PMCID: PMC5698286 DOI: 10.3389/fimmu.2017.01550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022] Open
Abstract
V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa (Igκ) light chain recombination follows immunoglobulin heavy chain (Igh) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh, as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations.
Collapse
Affiliation(s)
- Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Peter Chovanec
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, United Kingdom
| | - Hashem Koohy
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
12
|
Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, Mai H, Yuan X, Du Y, Wang X, Hong X, Li X, Wen F, Xu X, Pan J, Li C, Liu X. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol 2016; 7:403. [PMID: 27757113 PMCID: PMC5048610 DOI: 10.3389/fimmu.2016.00403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Acute B lymphoblastic leukemia (B-ALL) is one of the most common types of childhood cancer worldwide and chemotherapy is the main treatment approach. Despite good response rates to chemotherapy regiments, many patients eventually relapse and minimal residual disease (MRD) is the leading risk factor for relapse. The evolution of leukemic clones during disease development and treatment may have clinical significance. In this study, we performed immunoglobulin heavy chain (IGH) repertoire high throughput sequencing (HTS) on the diagnostic and post-treatment samples of 51 pediatric B-ALL patients. We identified leukemic IGH clones in 92.2% of the diagnostic samples and nearly half of the patients were polyclonal. About one-third of the leukemic clones have correct open reading frame in the complementarity determining region 3 (CDR3) of IGH, which demonstrates that the leukemic B cells were in the early developmental stage. We also demonstrated the higher sensitivity of HTS in MRD detection and investigated the clinical value of using peripheral blood in MRD detection and monitoring the clonal IGH evolution. In addition, we found leukemic clones were extensively undergoing continuous clonal IGH evolution by variable gene replacement. Dynamic frequency change and newly emerged evolved IGH clones were identified upon the pressure of chemotherapy. In summary, we confirmed the high sensitivity and universal applicability of HTS in MRD detection. We also reported the ubiquitous evolved IGH clones in B-ALL samples and their response to chemotherapy during treatment.
Collapse
Affiliation(s)
- Jinghua Wu
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Shan Jia
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Changxi Wang
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Sixi Liu
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Xiaojing Zeng
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Huirong Mai
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Xiuli Yuan
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Yuanping Du
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Xiaodong Wang
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Xueyu Hong
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Xuemei Li
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Feiqiu Wen
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | - Changgang Li
- Hematology and Oncology Department, Shenzhen Children's Hospital , Shenzhen , China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China; China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China; Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Rother MB, Jensen K, van der Burg M, van de Bovenkamp FS, Kroek R, van IJcken WFJ, van der Velden VHJ, Cupedo T, Olstad OK, van Dongen JJM, van Zelm MC. Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Sci Rep 2016; 6:33924. [PMID: 27658954 PMCID: PMC5034271 DOI: 10.1038/srep33924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
Newborns are unable to mount antibody responses towards certain antigens. This has been related to the restricted repertoire of immunoglobulin (Ig) genes of their B cells. The mechanisms underlying the restricted fetal Ig gene repertoire are currently unresolved. We here addressed this with detailed molecular and cellular analysis of human precursor-B cells from fetal liver, fetal bone marrow (BM), and pediatric BM. In the absence of selection processes, fetal B-cell progenitors more frequently used proximal V, D and J genes in complete IGH gene rearrangements, despite normal Ig locus contraction. Fewer N-nucleotides were added in IGH gene rearrangements in the context of low TdT and XRCC4 expression. Moreover, fetal progenitor-B cells expressed lower levels of IL7Rα than their pediatric counterparts. Analysis of progenitor-B cells from IL7Rα-deficient patients revealed that TdT expression and N-nucleotides additions in Dh-Jh junctions were dependent on functional IL7Rα. Thus, IL7Rα affects TdT expression, and decreased expression of this receptor underlies at least in part the skewed Ig repertoire formation in fetal B-cell precursors. These new insights provide a better understanding of the formation of adaptive immunity in the developing fetus.
Collapse
Affiliation(s)
- Magdalena B. Rother
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kristin Jensen
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Roel Kroek
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | - Tom Cupedo
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | | | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
|
15
|
ZFP521 contributes to pre-B-cell lymphomagenesis through modulation of the pre-B-cell receptor signaling pathway. Oncogene 2015; 35:3227-38. [PMID: 26522721 DOI: 10.1038/onc.2015.385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/08/2022]
Abstract
ZFP521 was previously identified as a putative gene involved in induction of B-cell lymphomagenesis. However, the contribution of ZFP521 to lymphomagenesis has not been confirmed. In this study, we sought to elucidate the role of ZFP521 in B-cell lymphomagenesis. To this end, we used a retroviral insertion method to show that ZFP521 was a target of mutagenesis in pre-B-lymphoblastic lymphoma cells. The pre-B-cell receptor (pre-BCR) signaling molecules BLNK, BTK and BANK1 were positively regulated by the ZFP521 gene, leading to enhancement of the pre-BCR signaling pathway. In addition, c-myc and c-jun were upregulated following activation of ZFP521. Stimulation of pre-BCR signaling using anti-Vpreb antibodies caused aberrant upregulation of c-myc and c-jun and of Ccnd3, which encodes cyclin D3, thereby inducing the growth of pre-B cells. Stimulation with Vpreb affected the growth of pre-B cells, and addition of interleukin (IL)-7 receptor exerted competitive effects on pre-B-cell growth. Knockdown of BTK and BANK1, targets of ZFP521, suppressed the effects of Vpreb stimulation on cell growth. Furthermore, in human lymphoblastic lymphoma, analogous to pre-B-cell lymphoma in mice, the expression of ZNF521, the homolog of ZFP521 in humans, was upregulated. In conclusion, our data showed that the ZFP521 gene comprehensively induced pre-B-cell lymphomagenesis by modulating the pre-B-cell receptor signaling pathway.
Collapse
|
16
|
Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 2015; 29:1623-31. [PMID: 25943180 DOI: 10.1038/leu.2015.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
Abstract
The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.
Collapse
Affiliation(s)
- J Eswaran
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - P Sinclair
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - O Heidenreich
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Irving
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - L J Russell
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - A Hall
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - D P Calado
- 1] Cancer Research UK, London Research Institute, London, UK [2] Peter Gorer Department of Immunobiology, Kings College London, London, UK
| | - C J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- 1] Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK [2] Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Buchner M, Swaminathan S, Chen Z, Müschen M. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunol Rev 2015; 263:192-209. [PMID: 25510278 DOI: 10.1111/imr.12235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pre-B cells within the bone marrow represent the normal counterpart for most acute lymphoblastic leukemia (ALL). During normal early B-cell development, survival and proliferation signals are dominated by cytokines, particularly interleukin-7 (IL-7) for murine developing B cells. With expression of a functional pre-B-cell receptor (BCR), cytokine signaling is attenuated and the tonic/autonomous pre-BCR signaling pathway provides proliferation as well as differentiation signals. In this review, we first describe checkpoint mechanisms during normal B-cell development and then discuss how genetic lesions in these pathways function as oncogenic mimicries and allow transformed pre-B cells to bypass checkpoint control. We focus on cytokine receptor signaling that is mimicked by activating lesions in receptor subunits or downstream mediators as well as aberrant activation of non-B lymphoid cytokine receptors. Furthermore, we describe the molecular switch from cytokine receptor to pre-BCR signaling, how this pathway is of particular importance for certain ALL subtypes, and how pre-BCR signaling is engaged by genetic lesions, such as BCR-ABL1. We discuss the transcriptional control mechanisms downstream of both cytokine- and pre-BCR signaling and how normal checkpoint control mechanisms are circumvented in pre-B ALL. Finally, we highlight new therapeutic concepts for targeted inhibition of oncogenic cytokine or pre-BCR signaling pathways.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
18
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
MAP Kinase Cascades in Antigen Receptor Signaling and Physiology. Curr Top Microbiol Immunol 2015; 393:211-231. [PMID: 26275875 DOI: 10.1007/82_2015_481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play roles in a cell type and context-dependent manner to convert extracellular stimuli to a variety of cellular responses, thereby directing cells to proliferation, differentiation, survival, apoptosis, and migration. Studies of genetically engineered mice or chemical inhibitors specific to each MAPK signaling pathway revealed that MAPKs have various, but non-redundant physiologically important roles among different families. MAPK cascades are obviously integrated in the B cell receptor signaling pathways as critical components to drive B cell-mediated immunity.
Collapse
|
20
|
Winkelmann R, Sandrock L, Kirberg J, Jäck HM, Schuh W. KLF2--a negative regulator of pre-B cell clonal expansion and B cell activation. PLoS One 2014; 9:e97953. [PMID: 24874925 PMCID: PMC4038547 DOI: 10.1371/journal.pone.0097953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/27/2014] [Indexed: 01/11/2023] Open
Abstract
Maturation as well as antigen-dependent activation of B cells is accompanied by alternating phases of proliferation and quiescence. We and others have previously shown that Krüppel-like factor 2 (KLF2), a regulator of T cell quiescence and migration, is upregulated in small resting precursor (pre)-B cells after assembly of the immature pre-B cell receptor (pre-BCR) and is downregulated upon antigen-induced proliferation of mature B cells. These findings suggest that KLF2, besides its function in maintaining follicular B cell identity, peripheral B cell homeostasis and homing of antigen-specific plasma cells to the bone marrow, also controls clonal expansion phases in the B cell lineage. Here, we demonstrate that enforced expression of KLF2 in primary pre-B cells results in a severe block of pre-BCR-induced proliferation, upregulation of the cell cycle inhibitors p21 and p27 and downregulation of c-myc. Furthermore, retroviral KLF2 transduction of primary B cells impairs LPS-induced activation, favors apoptosis and results in reduced abundance of factors, such as AID, IRF4 and BLIMP1, that control the antigen-dependent phase of B cell activation and plasma cell differentiation. Hence, we conclude that KLF2 is not only a key player in terminating pre-B cell clonal expansion but also a potent suppressor of B cell activation.
Collapse
Affiliation(s)
- Rebecca Winkelmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Sandrock
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
21
|
Choukrallah MA, Matthias P. The Interplay between Chromatin and Transcription Factor Networks during B Cell Development: Who Pulls the Trigger First? Front Immunol 2014; 5:156. [PMID: 24782862 PMCID: PMC3990105 DOI: 10.3389/fimmu.2014.00156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 01/25/2023] Open
Abstract
All mature blood cells derive from hematopoietic stem cells through gradual restriction of their cell fate potential and acquisition of specialized functions. Lineage specification and cell commitment require the establishment of specific transcriptional programs involving the activation of lineage-specific genes and the repression of lineage-inappropriate genes. This process requires the concerted action of transcription factors (TFs) and epigenetic modifying enzymes. Within the hematopoietic system, B lymphopoiesis is one of the most-studied differentiation programs. Loss of function studies allowed the identification of many TFs and epigenetic modifiers required for B cell development. The usage of systematic analytical techniques such as transcriptome determination, genome-wide mapping of TF binding and epigenetic modifications, and mass spectrometry analyses, allowed to gain a systemic description of the intricate networks that guide B cell development. However, the precise mechanisms governing the interaction between TFs and chromatin are still unclear. Generally, chromatin structure can be remodeled by some TFs but in turn can also regulate (i.e., prevent or promote) the binding of other TFs. This conundrum leads to the crucial questions of who is on first, when, and how. We review here the current knowledge about TF networks and epigenetic regulation during hematopoiesis, with an emphasis on B cell development, and discuss in particular the current models about the interplay between chromatin and TFs.
Collapse
Affiliation(s)
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland ; Faculty of Sciences, University of Basel , Basel , Switzerland
| |
Collapse
|
22
|
Abstract
Bruton's tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signalling and functions as an important regulator of cell proliferation and cell survival in various B cell malignancies. Small-molecule inhibitors of BTK have shown antitumour activity in animal models and, recently, in clinical studies. High response rates were reported in patients with chronic lymphocytic leukaemia and mantle cell lymphoma. Remarkably, BTK inhibitors have molecular effects that cannot be explained by the classic role of BTK in BCR signalling. In this Review, we highlight the importance of BTK in various signalling pathways in the context of its therapeutic inhibition.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Laurens P Kil
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
23
|
Swaminathan S, Duy C, Müschen M. BACH2-BCL6 balance regulates selection at the pre-B cell receptor checkpoint. Trends Immunol 2014; 35:131-7. [PMID: 24332591 PMCID: PMC3943645 DOI: 10.1016/j.it.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/16/2013] [Accepted: 11/10/2013] [Indexed: 11/21/2022]
Abstract
At the pre-B cell receptor (BCR) checkpoint, developing pre-B cells are selected for successful rearrangement of V(H)-DJ(H) gene segments and expression of a pre-BCR. Reduced stringency at this checkpoint may obstruct the B cell repertoire with nonfunctional B cell clones. Earlier studies have described that activation of B cell lymphoma/leukemia (BCL)6 by a functional pre-BCR mediates positive selection of pre-B cells that have passed the checkpoint. This concept is now further elaborated by the recent finding that the BTB and CNC homology 1 basic leucine zipper transcription factor 2 (BACH2) induces negative selection and opposes BCL6 function prior to the pre-BCR checkpoint. Here, we discuss the antagonism between BCL6 and BACH2 during early B cell development, as well as its implications in both repertoire selection and counter-selection of premalignant clones for leukemia suppression.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cihangir Duy
- Departments of Medicine and Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Stadhouders R, de Bruijn MJW, Rother MB, Yuvaraj S, de Almeida CR, Kolovos P, Van Zelm MC, van Ijcken W, Grosveld F, Soler E, Hendriks RW. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol 2014; 12:e1001791. [PMID: 24558349 PMCID: PMC3928034 DOI: 10.1371/journal.pbio.1001791] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022] Open
Abstract
Chromatin conformation analyses provide novel insights into how variable segments in the immunoglobulin light chain gene become accessible for recombination in precursor B lymphocytes. During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline Vκ transcription. To investigate whether pre-BCR signaling modulates Vκ accessibility through enhancer-mediated Igκ locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the κ enhancers robustly interact with the ∼3.2 Mb Vκ region and its flanking sequences. Analyses in wild-type, Btk, and Slp65 single- and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igκ locus flanking sequences and increases interactions of the 3′κ enhancer with Vκ genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and Vκ genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used Vκ genes, which are often marked by transcription factor E2a. We conclude that the κ enhancers interact with the Vκ region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the Vκ region, whereby the two enhancers play distinct roles. B lymphocyte development involves the generation of a functional antigen receptor, comprising two heavy chains and two light chains arranged in a characteristic “Y” shape. To do this, the receptor genes must first be assembled by ordered genomic recombination events, starting with the immunoglobulin heavy chain (IgH) gene segments. On successful rearrangement, the resulting IgH μ protein is presented on the cell surface as part of a preliminary version of the B cell receptor—the “pre-BCR.” Pre-BCR signaling then redirects recombination activity to the immunoglobulin κ light chain gene. The activity of two regulatory κ enhancer elements is known to be crucial for opening up the gene, but it remains largely unknown how the hundred or so Variable (V) segments in the κ locus gain access to the recombination system. Here, we studied a panel of pre-B cells from mice lacking specific signaling molecules, reflecting absent, partial, or complete pre-BCR signaling. We identify gene regulatory changes that are dependent on pre-BCR signaling and occur via long-range chromatin interactions between the κ enhancers and the V segments. Surprisingly the light chain gene initially contracts, but the interactions then become more functionally redistributed when pre-BCR signaling occurs. Interestingly, we find that the two enhancers play distinct roles in the process of coordinating chromatin interactions towards the V segments. Our study combines chromatin conformation techniques with data on transcription factor binding to gain unique insights into the functional role of chromatin dynamics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Enhancer Elements, Genetic
- Epistasis, Genetic
- Histones/metabolism
- Immunoglobulin kappa-Chains/genetics
- Immunoglobulin kappa-Chains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Precursor Cells, B-Lymphoid/metabolism
- Protein Processing, Post-Translational
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Transcriptome
- V(D)J Recombination
Collapse
Affiliation(s)
| | | | | | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
| | | | - Petros Kolovos
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
| | | | | | - Frank Grosveld
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
- The Cancer Genomics Center, Erasmus MC Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
- The Cancer Genomics Center, Erasmus MC Rotterdam, The Netherlands
- INSERM UMR967 and French Alternative Energies and Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Berglöf A, Turunen JJ, Gissberg O, Bestas B, Blomberg KEM, Smith CIE. Agammaglobulinemia: causative mutations and their implications for novel therapies. Expert Rev Clin Immunol 2014; 9:1205-21. [DOI: 10.1586/1744666x.2013.850030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Jensen K, Rother MB, Brusletto BS, Olstad OK, Dalsbotten Aass HC, van Zelm MC, Kierulf P, Gautvik KM. Increased ID2 levels in adult precursor B cells as compared with children is associated with impaired Ig locus contraction and decreased bone marrow output. THE JOURNAL OF IMMUNOLOGY 2013; 191:1210-9. [PMID: 23825313 DOI: 10.4049/jimmunol.1203462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Precursor B cell production from bone marrow in mice and humans declines with age. Because the mechanisms behind are still unknown, we studied five precursor B cell subsets (ProB, PreBI, PreBII large, PreBII small, immature B) and their differentiation-stage characteristic gene expression profiles in healthy individual toddlers and middle-aged adults. Notably, the composition of the precursor B cell compartment did not change with age. The expression levels of several transcripts encoding V(D)J recombination factors were decreased in adults as compared with children: RAG1 expression was significantly reduced in ProB cells, and DNA-PKcs, Ku80, and XRCC4 were decreased in PreBI cells. In contrast, TdT was 3-fold upregulated in immature B cells of adults. Still, N-nucleotides, P-nucleotides, and deletions were similar for IGH and IGK junctions between children and adults. PreBII large cells in adults, but not in children, showed highly upregulated expression of the differentiation inhibitor, inhibitor of DNA binding 2 (ID2), in absence of changes in expression of the ID2-binding partner E2A. Further, we identified impaired Ig locus contraction in adult precursor B cells as a likely mechanism by which ID2-mediated blocking of E2A function results in reduced bone marrow B cell output in adults. The reduced B cell production was not compensated by increased proliferation in adult immature B cells, despite increased Ki67 expression. These findings demonstrate distinct regulatory mechanisms in B cell differentiation between adults and children with a central role for transcriptional regulation of ID2.
Collapse
Affiliation(s)
- Kristin Jensen
- Department of Medical Biochemistry, Oslo University Hospital, 0407 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hauser J, Verma-Gaur J, Grundström T. Broad feedback inhibition of pre-B-cell receptor signaling components. Mol Immunol 2013; 54:247-53. [DOI: 10.1016/j.molimm.2012.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022]
|
28
|
DNA-binding factor CTCF and long-range gene interactions in V(D)J recombination and oncogene activation. Blood 2012; 119:6209-18. [DOI: 10.1182/blood-2012-03-402586] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Regulation of V(D)J recombination events at immunoglobulin (Ig) and T-cell receptor loci in lymphoid cells is complex and achieved via changes in substrate accessibility. Various studies over the last year have identified the DNA-binding zinc-finger protein CCCTC-binding factor (CTCF) as a crucial regulator of long-range chromatin interactions. CTCF often controls specific interactions by preventing inappropriate communication between neighboring regulatory elements or independent chromatin domains. Although recent gene targeting experiments demonstrated that the presence of the CTCF protein is not required for the process of V(D)J recombination per se, CTCF turned out to be essential to control order, lineage specificity and to balance the Ig V gene repertoire. Moreover, CTCF was shown to restrict activity of κ enhancer elements to the Ig κ locus. In this review, we discuss CTCF function in the regulation of V(D)J recombination on the basis of established knowledge on CTCF-mediated chromatin loop domains in various other loci, including the imprinted H19-Igf2 locus as well as the complex β-globin, MHC class II and IFN-γ loci. Moreover, we discuss that loss of CTCF-mediated restriction of enhancer activity may well contribute to oncogenic activation, when in chromosomal translocations Ig enhancer elements and oncogenes appear in a novel genomic context.
Collapse
|
29
|
Park H, Staehling K, Tsang M, Appleby MW, Brunkow ME, Margineantu D, Hockenbery DM, Habib T, Liggitt HD, Carlson G, Iritani BM. Disruption of Fnip1 reveals a metabolic checkpoint controlling B lymphocyte development. Immunity 2012; 36:769-81. [PMID: 22608497 DOI: 10.1016/j.immuni.2012.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/01/2011] [Accepted: 02/09/2012] [Indexed: 01/22/2023]
Abstract
The coordination of nutrient and energy availability with cell growth and division is essential for proper immune cell development and function. By using a chemical mutagenesis strategy in mice, we identified a pedigree that has a complete block in B cell development at the pre-B cell stage resulting from a deletion in the Fnip1 gene. Enforced expression of an immunoglobulin transgene failed to rescue B cell development. Whereas essential pre-B cell signaling molecules were activated normally in Fnip1-null pre-B cells, the metabolic regulators AMPK and mTOR were dysregulated, resulting in excessive cell growth and enhanced sensitivity to apoptosis in response to metabolic stress (pre-B cell receptor crosslinking, oncogene activation). These results indicate that Folliculin-interacting protein 1 (Fnip1) is vital for B cell development and metabolic homeostasis and reveal a metabolic checkpoint that may ensure that pre-B cells have sufficient metabolic capacity to support division, while limiting lymphomagenesis caused by deregulated growth.
Collapse
Affiliation(s)
- Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
van der Burg M, van Zelm MC, Driessen GJA, van Dongen JJM. New frontiers of primary antibody deficiencies. Cell Mol Life Sci 2012; 69:59-73. [PMID: 22042269 PMCID: PMC11114824 DOI: 10.1007/s00018-011-0836-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 02/02/2023]
Abstract
Primary antibody deficiencies (PAD) form the largest group of inherited disorders of the immune system. They are characterized by a marked reduction or absence of serum immunoglobulins (Ig) due to disturbed B cell differentiation and by a poor response to vaccination. PAD can be divided into agammaglobulinemia, Ig class switch recombination deficiencies, and idiopathic hypogammaglobulinemia. Over the past 20 years, defects have been identified in 18 different genes, but in many PAD patients the underlying gene defects have not been found. Diagnosis of known PAD and discovery of new PAD is important for good patient care. In this review, we present the effects of genetic defects in the context of normal B cell differentiation, and we discuss how new technical developments can support understanding and discovering new genetic defects in PAD.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Ribeiro de Almeida C, Stadhouders R, de Bruijn MJW, Bergen IM, Thongjuea S, Lenhard B, van Ijcken W, Grosveld F, Galjart N, Soler E, Hendriks RW. The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus. Immunity 2011; 35:501-13. [PMID: 22035845 DOI: 10.1016/j.immuni.2011.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 06/30/2011] [Accepted: 07/27/2011] [Indexed: 10/15/2022]
Abstract
Regulation of immunoglobulin (Ig) V(D)J gene rearrangement is dependent on higher-order chromatin organization. Here, we studied the in vivo function of the DNA-binding zinc-finger protein CTCF, which regulates interactions between enhancers and promoters. By conditional deletion of the Ctcf gene in the B cell lineage, we demonstrate that loss of CTCF allowed Ig heavy chain recombination, but pre-B cell proliferation and differentiation was severely impaired. In the absence of CTCF, the Igκ light chain locus showed increased proximal and reduced distal Vκ usage. This was associated with enhanced proximal Vκ and reduced Jκ germline transcription. Chromosome conformation capture experiments demonstrated that CTCF limits interactions of the Igκ enhancers with the proximal V(κ) gene region and prevents inappropriate interactions between these strong enhancers and elements outside the Igκ locus. Thus, although Ig gene recombination can occur in the absence of CTCF, it is a critical factor determining Vκ segment choice for recombination.
Collapse
Affiliation(s)
- Claudia Ribeiro de Almeida
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hendriks RW, Bredius RG, Pike-Overzet K, Staal FJ. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets 2011; 15:1003-21. [PMID: 21635151 DOI: 10.1517/14728222.2011.585971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. AREAS COVERED This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. EXPERT OPINION Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
van der Burg M, van Zelm MC, Driessen GJ, van Dongen JJ. Dissection of B-Cell Development to Unravel Defects in Patients with a Primary Antibody Deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 697:183-96. [PMID: 21120727 DOI: 10.1007/978-1-4419-7185-2_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Ta VBT, de Haan AB, de Bruijn MJW, Dingjan GM, Hendriks RW. Pre-B-cell leukemias in Btk/Slp65-deficient mice arise independently of ongoing V(D)J recombination activity. Leukemia 2010; 25:48-56. [PMID: 21030983 DOI: 10.1038/leu.2010.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adapter protein Slp65 and Bruton's tyrosine kinase (Btk) are key components of the precursor-B (pre-B) cell receptor (pre-BCR) signaling pathway. Slp65-deficient mice spontaneously develop pre-B-cell leukemia, expressing high levels of the pre-BCR on their cell surface. As leukemic Slp65-deficient pre-B cells express the recombination activating genes (Rag)1 and Rag2, and manifest ongoing immunoglobulin (Ig) light-chain rearrangement, it has been hypothesized that deregulated recombinase activity contributes to malignant transformation. In this report, we investigated whether Rag-induced DNA damage is involved in oncogenic transformation of Slp65-deficient B cells. We employed Btk/Slp65 double-deficient mice carrying an autoreactive 3-83μδ BCR transgene. When developing B cells in their bone marrow express this BCR, the V(D)J recombination machinery will be activated, allowing for secondary Ig light-chain gene rearrangements to occur. This phenomenon, called receptor editing, will rescue autoreactive B cells from apoptosis. We observed that 3-83μδ transgenic Btk/Slp65 double-deficient mice developed B-cell leukemias expressing both the 3-83μδ BCR and the pre-BCR components λ5/VpreB. Importantly, such leukemias were found at similar frequencies in mice concomitantly deficient for Rag1 or the non-homologous end-joining factor DNA-PKcs. We therefore conclude that malignant transformation of Btk/Slp65 double-deficient pre-B cells is independent of deregulated V(D)J recombination activity.
Collapse
Affiliation(s)
- V B T Ta
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Calmodulin inhibition of E2A stops expression of surrogate light chains of the pre-B-cell receptor and CD19. Mol Immunol 2010; 47:1031-8. [DOI: 10.1016/j.molimm.2009.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 01/03/2023]
|
37
|
Malignant transformation of Slp65-deficient pre-B cells involves disruption of the Arf-Mdm2-p53 tumor suppressor pathway. Blood 2009; 115:1385-93. [PMID: 20008789 DOI: 10.1182/blood-2009-05-222166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The adapter protein Slp65 is a key component of the precursor-B (pre-B) cell receptor. Slp65-deficient mice spontaneously develop pre-B cell leukemia, but the mechanism by which Slp65(-/-) pre-B cells become malignant is unknown. Loss of Btk, a Tec-family kinase that cooperates with Slp65 as a tumor suppressor, synergizes with deregulation of the c-Myc oncogene during lymphoma formation. Here, we report that the presence of the immunoglobulin heavy chain transgene V(H)81X prevented tumor development in Btk(-/-)Slp65(-/-) mice. This finding paralleled the reported effect of a human immunoglobulin heavy chain transgene on lymphoma development in Emu-myc mice, expressing transgenic c-Myc. Because activation of c-Myc strongly selects for spontaneous inactivation of the p19(Arf)-Mdm2-p53 tumor suppressor pathway, we investigated whether disruption of this pathway is a common alteration in Slp65(-/-) pre-B cell tumors. We found that combined loss of Slp65 and p53 in mice transformed pre-B cells very efficiently. Aberrations in p19(Arf), Mdm2, or p53 expression were found in all Slp65(-/-) (n = 17) and Btk(-/-)Slp65(-/-) (n = 32) pre-B cell leukemias analyzed. In addition, 9 of 10 p53(-/-)Slp65(-/-) pre-B cell leukemias manifested significant Mdm2 protein expression. These data indicate that malignant transformation of Slp65(-/-) pre-B cells involves disruption of the p19(Arf)-Mdm2-p53 tumor suppressor pathway.
Collapse
|
38
|
Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status. Blood 2009; 114:3001-7. [PMID: 19666867 DOI: 10.1182/blood-2009-03-211334] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minimally differentiated acute myeloid leukemia (AML-M0) is defined by immature morphology and expression of early hematologic markers. By gene expression profiling (GEP) and subsequent unsupervised analysis of 35 AML-M0 samples and 253 previously reported AML cases, we demonstrate that AML-M0 cases express a unique signature that is largely separated from other molecular subtypes. Hematologic transcription regulators such as CEBPA, CEBPD, and ETV6, and the differentiation associated gene MPO appeared strongly down-regulated, in line with the primitive state of this leukemia. AML-M0 frequently carries loss-of-function RUNX1 mutation. Unsupervised analyses revealed a subdivision between AML-M0 cases with and without RUNX1 mutations. RUNX1 mutant AML-M0 samples showed a distinct up-regulation of B cell–related genes such as members of the B-cell receptor complex, transcription regulators RUNX3, ETS2, IRF8, or PRDM1, and major histocompatibility complex class II genes. Importantly, prediction with high accuracy of the AML-M0 subtype and prediction of patients carrying RUNX1 mutation within this subtype were possible based on the expression level of only a few transcripts. We propose that RUNX1 mutations in this AML subgroup cause lineage infidelity, leading to aberrant coexpression of myeloid and B-lymphoid genes. Furthermore, our results imply that AML-M0, although originally determined by morphology, constitutes a leukemia subgroup.
Collapse
|
39
|
Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions. Blood 2009; 113:5878-86. [PMID: 19329777 DOI: 10.1182/blood-2009-01-198465] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of the pre-B-cell receptor (pre-BCR) in the bone marrow depends on both tonic and ligand-induced signaling and leads to pre-BII-cell proliferation and differentiation. Using normal mouse bone marrow pre-BII cells, we demonstrate that the ligand-induced pre-BCR activation depends on pre-BCR/galectin-1/integrin interactions leading to pre-BCR clustering at the pre-BII/stromal cell synapse. In contrast, heparan sulfates, shown to be pre-BCR ligands in mice, are not implicated in pre-BCR relocalization. Inhibition of pre-BCR/galectin-1/integrin interactions has functional consequences, since pre-BII-cell proliferation and differentiation are impaired in an in vitro B-cell differentiation assay, without affecting cellular apoptosis. Most strikingly, although galectin-1-deficient mice do not show an apparent B-cell phenotype, the kinetics of de novo B-cell reconstitution after hydroxyurea treatment indicates a specific delay in pre-BII-cell recovery due to a decrease in pre-BII-cell differentiation and proliferation. Thus, although it remains possible that the pre-BCR interacts with other ligands, these results highlight the role played by the stromal cell-derived galectin-1 for the efficient development of normal pre-BII cells and suggest the existence of pre-BII-specific stromal cell niches in normal bone marrow.
Collapse
|
40
|
Abstract
Pre-B-cell leukemia spontaneously develops in BLNK-deficient mice, and pre-B-cell acute lymphoblastic leukemia cells in children often lack BLNK protein expression, demonstrating that BLNK functions as a tumor suppressor. However, the mechanism by which BLNK suppresses pre-B-cell leukemia, as well as the identification of other genetic alterations that collaborate with BLNK deficiency to cause leukemogenesis, are still unknown. Here, we demonstrate that the JAK3/STAT5 signaling pathway is constitutively activated in pre-B leukemia cells derived from BLNK(-/-) mice, mostly due to autocrine production of IL-7. Inhibition of IL-7R signaling or JAK3/STAT5 activity resulted in the induction of p27(kip1) expression and cell-cycle arrest, accompanied by apoptosis in the leukemia cells. Transgene-derived constitutively active STAT5 (STAT5b-CA) strongly synergized with the loss of BLNK to initiate leukemia in vivo. In the leukemia cells, exogenously expressed BLNK inhibited autocrine JAK3/STAT5 signaling, resulting in p27(kip1) induction, cell-cycle arrest, and apoptosis. BLNK-inhibition of JAK3 was dependent on the binding of BLNK to JAK3. These data indicate that BLNK normally regulates IL-7-dependent proliferation and survival of pre-B cells through direct inhibition of JAK3. Thus, somatic loss of BLNK and concomitant mutations leading to constitutive activation of Jak/STAT5 pathway result in the generation of pre-B-cell leukemia.
Collapse
|
41
|
Karnowski A, Cao C, Matthias G, Carotta S, Corcoran LM, Martensson IL, Skok JA, Matthias P. Silencing and nuclear repositioning of the lambda5 gene locus at the pre-B cell stage requires Aiolos and OBF-1. PLoS One 2008; 3:e3568. [PMID: 18974788 PMCID: PMC2571989 DOI: 10.1371/journal.pone.0003568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/15/2008] [Indexed: 12/30/2022] Open
Abstract
The chromatin regulator Aiolos and the transcriptional coactivator OBF-1 have been implicated in regulating aspects of B cell maturation and activation. Mice lacking either of these factors have a largely normal early B cell development. However, when both factors are eliminated simultaneously a block is uncovered at the transition between pre-B and immature B cells, indicating that these proteins exert a critical function in developing B lymphocytes. In mice deficient for Aiolos and OBF-1, the numbers of immature B cells are reduced, small pre-BII cells are increased and a significant impairment in immunoglobulin light chain DNA rearrangement is observed. We identified genes whose expression is deregulated in the pre-B cell compartment of these mice. In particular, we found that components of the pre-BCR, such as the surrogate light chain genes λ5 and VpreB, fail to be efficiently silenced in double-mutant mice. Strikingly, developmentally regulated nuclear repositioning of the λ5 gene is impaired in pre-B cells lacking OBF-1 and Aiolos. These studies uncover a novel role for OBF-1 and Aiolos in controlling the transcription and nuclear organization of genes involved in pre-BCR function.
Collapse
Affiliation(s)
- Alexander Karnowski
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Chun Cao
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Gabriele Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Lynn M. Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Inga-Lill Martensson
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Jane A. Skok
- Department of Immunology and Molecular Pathology, University College London, London, United Kingdom
- New York University School of Medicine, New York, New York, United States of America
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Guloglu FB, Smith BP, Roman CAJ. Multiple levels of selection responsive to immunoglobulin light chain and heavy chain structures impede the development of Dmu-expressing B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:4098-106. [PMID: 18768866 DOI: 10.4049/jimmunol.181.6.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The truncated/V(H)-less mouse H chain Dmu forms precursor B cell receptors with the surrogate L chain complex that promotes allelic exclusion but not other aspects of pre-B cell development, causing most progenitor B cells expressing this H chain to be eliminated at the pre-B cell checkpoint. However, there is evidence that Dmu-lambda1 complexes can be made and are positively selected during fetal life but cannot sustain adult B lymphopoiesis. How surrogate and conventional L chains interpret Dmu's unusual structure and how that affects signaling outcome are unclear. Using nonlymphoid and primary mouse B cells, we show that secretion-competent lambda1 L chains could associate with both full-length H chains and Dmu, whereas secretion-incompetent lambda1 L chains could only do so with full-length H chains. In contrast, Dmu could not form receptors with a panel of kappa L chains irrespective of their secretion properties. This was due to an incompatibility of Dmu with the kappa-joining and constant regions. Finally, the Dmu-lambda1 receptor was less active than the full-length mouse mu-lambda1 receptor in promoting growth under conditions of limiting IL-7. Thus, multiple receptor-dependent mechanisms operating at all stages of B cell development limit the contribution of B cells with Dmu H chain alleles to the repertoire.
Collapse
Affiliation(s)
- F Betul Guloglu
- The School of Graduate Studies, Program in Molecular and Cellular Biology, State University of New York-Downstate Medical Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
43
|
Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 2008; 28:499-508. [PMID: 18356083 DOI: 10.1016/j.immuni.2008.02.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 11/23/2022]
Abstract
The pre-B cell receptor (pre-BCR) plays a crucial role in the development of immature B cells. Although certain aspects of proximal pre-BCR signaling have been studied, the intermediate signal transducers and the distal transcription modulators are poorly characterized. Here, we demonstrate that deletion of both Erk1 and Erk2 kinases was associated with defective pre-BCR-mediated cell expansion as well as a block in the transition of pro-B to pre-B cells. Phosphorylation of transcription factors Elk1 and CREB was mediated by Erk, and a dominant-negative mutation in the Erk-mediated phosphorylation sites of Elk1 or CREB suppressed pre-BCR-mediated cell expansion as well as expression of genes including Myc, which is involved in the cell-cycle progression. Together, our results identify a crucial role for Erk kinases in regulating B cell development by initiating transcriptional regulatory network and thereby pre-BCR-mediated cell expansion.
Collapse
|
44
|
Habib T, Park H, Tsang M, de Alborán IM, Nicks A, Wilson L, Knoepfler PS, Andrews S, Rawlings DJ, Eisenman RN, Iritani BM. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J Cell Biol 2007; 179:717-31. [PMID: 17998397 PMCID: PMC2080907 DOI: 10.1083/jcb.200704173] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 10/22/2007] [Indexed: 12/15/2022] Open
Abstract
Deregulated expression of the Myc family of transcription factors (c-, N-, and L-myc) contributes to the development of many cancers by a mechanism believed to involve the stimulation of cell proliferation and inhibition of differentiation. However, using B cell-specific c-/N-myc double-knockout mice and E(mu)-myc transgenic mice bred onto genetic backgrounds (recombinase-activating gene 2-/- and Btk-/- Tec-/-) whereby B cell development is arrested, we show that Myc is necessary to stimulate both proliferation and differentiation in primary B cells. Moreover, Myc expression results in sustained increases in intracellular Ca2+ ([Ca2+]i), which is required for Myc to stimulate B cell proliferation and differentiation. The increase in [Ca2+]i correlates with constitutive nuclear factor of activated T cells (NFAT) nuclear translocation, reduced Ca2+ efflux, and decreased expression of the plasma membrane Ca2+-adenosine triphosphatase (PMCA) efflux pump. Our findings demonstrate a revised model whereby Myc promotes both proliferation and differentiation, in part by a remarkable mechanism whereby Myc amplifies Ca2+ signals, thereby enabling the concurrent expression of Myc- and Ca2+-regulated target genes.
Collapse
Affiliation(s)
- Tania Habib
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
van Loo PF, Dingjan GM, Maas A, Hendriks RW. Surrogate-light-chain silencing is not critical for the limitation of pre-B cell expansion but is for the termination of constitutive signaling. Immunity 2007; 27:468-80. [PMID: 17869135 DOI: 10.1016/j.immuni.2007.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/18/2007] [Accepted: 07/20/2007] [Indexed: 11/28/2022]
Abstract
The pre-B cell receptor (pre-BCR), composed of immunoglobulin mu heavy chain and the surrogate light chain (SLC) proteins lambda5 and Vpreb, signals for proliferation and maturation of developing pre-B cells. It has been assumed that pre-B cells stop cycling by the pre-BCR-mediated downregulation of SLC transcription. We generated transgenic mice expressing SLC throughout B cell development and, remarkably, found that enforced SLC expression had no effect on pre-B cell proliferation or differentiation. However, in the presence of conventional immunoglobulin light chains, SLC components had the capacity to induce constitutive BCR internalization, secondary immunoglobulin light-chain rearrangement, and a severe developmental arrest of immature B cells, dependent on the adaptor protein Slp65. Residual B cells in the spleen showed increased expression of surface CD5, which is a negative regulator of BCR signaling, and differentiated spontaneously into IgM+ plasma cells. Thus, the silencing of SLC genes is not essential for the limitation of pre-B cell proliferation, but is required for the prevention of constitutive activation of B cells.
Collapse
Affiliation(s)
- Pieter Fokko van Loo
- Department of Immunology, Erasmus Medical Center Rotterdam, P.O. Box 2040, NL-3000 CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
46
|
Fawaz LM, Sharif-Askari E, Hajoui O, Soussi-Gounni A, Hamid Q, Mazer BD. Expression of IL-9 receptor alpha chain on human germinal center B cells modulates IgE secretion. J Allergy Clin Immunol 2007; 120:1208-15. [PMID: 17919707 DOI: 10.1016/j.jaci.2007.08.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND IL-9 has been shown to affect the differentiation pathway of different cell types. However, its potential role in the maturation pathway of antigen-driven B-cell differentiation and its functional effects remain unknown. OBJECTIVE To characterize IL-9 receptor alpha chain (IL-9R alpha) expression on human tonsillar B cells at different maturational stages, and to assess its effect on IgE production. METHODS Freshly purified human tonsillar B cells were fractionated into 3 populations: low-density (LD), medium-density, and high-density cells. Expression levels of IL-9R alpha were determined by using immunohistochemistry and flow cytometry. IL-9R alpha(high)-expressing cells were stimulated with IL-9 in the presence or absence of IL-4, and IgE release was measured by ELISA. RESULTS IL-9R alpha was expressed on human LD tonsillar B cells, with an ability to transduce signals through activation of signal transducer and activator of transcription 3 and 5. Although IL-9 was unable to induce IgE secretion by itself, it potentiated IL-4-mediated IgE production from LD cells. Moreover, increased IgE was paralleled by an upregulation of IL-9R alpha and CD27, with the latter a memory B-cell marker implicated in increased IgE secretion. CONCLUSION These results highlight a crucial role for IL-9 in modulating T-cell-dependent B-cell differentiation and establish a new paradigm for understanding the synergistic role of T(H)2 cytokines and their modulatory effect on B-cell maturation and IgE production. CLINICAL IMPLICATIONS IL-9 appears to be involved in memory B-cell differentiation and T(H)2-mediated allergic diseases such as asthma.
Collapse
Affiliation(s)
- Lama M Fawaz
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Schuh W, Meister S, Herrmann K, Bradl H, Jäck HM. Transcriptome analysis in primary B lymphoid precursors following induction of the pre-B cell receptor. Mol Immunol 2007; 45:362-75. [PMID: 17681603 DOI: 10.1016/j.molimm.2007.06.154] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/08/2007] [Accepted: 06/17/2007] [Indexed: 10/23/2022]
Abstract
Pre-BCR signals are part of a checkpoint where early precursor (pre-) B cells with a pairing Ig muH chain (muHC) are clonally expanded before they differentiate into IgL-rearranging, resting pre-B cells. A pre-BCR consists of two muHCs, two surrogate L chains and the signal transducer Igalpha/Igbeta. The molecular circuits by which the pre-BCR controls proliferation and differentiation of pre-B cells are poorly characterized. Therefore, we identified the differential transcriptome by genome-wide expression profiling in progenitor (pro-) B cells from a Rag2-deficient mouse, in which the expression of a transgenic muHC and thus a pre-BCR as well as pre-BCR-mediated clonal expansion can be controlled by tetracycline (muHC-inducible mouse). This analysis revealed that pre-BCR signals upregulate components of the BCR signalosome, open the IgL chain (LC) locus and induce the krüppel-like transcription factor KLF2, a key regulator of quiescence and lymphocyte migration. Hence, pre-BCR signals establish the molecular network for BCR signaling even before the production of an IgLC and induce the expression of KLF2, a candidate for controlling clonal expansion and migration of functional pre-B cells.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Glückstrasse 6, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
48
|
Bradl H, Vettermann C, Schuh W, Meister S, Jäck HM. The pre-B cell receptor and its ligands – it takes two to tango. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200500055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Lim JH, Cho SJ, Park SK, Kim J, Cho D, Lee WJ, Kang CJ. Stage-specific expression of two neighboring Crlz1 and IgJ genes during B cell development is regulated by their chromatin accessibility and histone acetylation. THE JOURNAL OF IMMUNOLOGY 2007; 177:5420-9. [PMID: 17015728 DOI: 10.4049/jimmunol.177.8.5420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IgJ gene is expressed in the plasma cell stage. However, its neighboring charged amino acid-rich leucine zipper 1 (Crlz1) gene, which is mapped 30 kb upstream of the IgJ gene in mice, is shown to be expressed in the pre-B cell stage. These stage-specific expressions of two neighboring genes are found to be regulated by their chromatin accessibility and acetylation. Hypersensitive site 1 on the IgJ promoter is opened in the plasma cells, whereas hypersensitive sites 9/10 on the Crlz1 promoter are opened in the pre-B cells. Furthermore, H3 and H4 histones toward the chromatin of the Crlz1 gene are found to be hyperacetylated, especially on H3, in the pre-B cells, whereas those toward the chromatin of the IgJ gene are found to be hyperacetylated in the plasma cells. Consistently, the hyperacetylation of H3 and H4 toward the chromatin of the IgJ gene but not the Crlz1 gene is induced by an IL-2 treatment of BCL1, which is a model cell line for studying the terminal differentiation of B cells.
Collapse
Affiliation(s)
- Jung-Hyun Lim
- Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi-do, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Song H, Zhang J, Chiang YJ, Siraganian RP, Hodes RJ. Redundancy in B Cell Developmental Pathways: c-Cbl Inactivation Rescues Early B Cell Development through a B Cell Linker Protein-Independent Pathway. THE JOURNAL OF IMMUNOLOGY 2007; 178:926-35. [PMID: 17202354 DOI: 10.4049/jimmunol.178.2.926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deficiency in the adaptor protein B cell linker protein (BLNK) results in a substantial but incomplete block in B cell development, suggesting that alternative pathways exist for B lineage differentiation. Another adaptor protein, c-Cbl, plays a negative regulatory role in several BCR-signaling pathways. We therefore investigated the role of c-Cbl during B cell development and addressed the possibility that redundancies in pathways for B cell differentiation could be further revealed by eliminating negative effects mediated by c-Cbl. Strikingly, c-Cbl inactivation reversed a number of the critical defects in early B cell differentiation that are seen in BLNK-deficient mice. c-Cbl(-/-)BLNK(-/-) mice exhibited normalized down-regulation of pre-BCR and CD43, up-regulation of MHC class II, and augmented L chain rearrangement, resulting in a successful transition from pre-B cells to immature B cells. c-Cbl inactivation also reversed the potentially tumor-predisposing hyperproliferative response of BLNK(-/-) pre-B cells to IL-7. Pre-BCR cross-linking induced enhanced and prolonged tyrosine phosphorylation in c-Cbl(-/-)BLNK(-/-) pre-BCR(+) pre-B cells compared with c-Cbl(+/-)BLNK(-/-) cells, including elevated phosphorylation of Lyn, Syk, Btk, and phospholipase C-gamma2. Our studies suggest that some, but not all, pre-BCR-triggered developmental events can be mediated by BLNK-independent pathways that are negatively regulated by c-Cbl, and further suggest that different events during early B cell development require different strength or duration of pre-BCR signaling.
Collapse
Affiliation(s)
- Haifeng Song
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|