1
|
Greer JM, Trifilieff E, Pender MP. Correlation Between Anti-Myelin Proteolipid Protein (PLP) Antibodies and Disease Severity in Multiple Sclerosis Patients With PLP Response-Permissive HLA Types. Front Immunol 2020; 11:1891. [PMID: 32973782 PMCID: PMC7473150 DOI: 10.3389/fimmu.2020.01891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/14/2020] [Indexed: 01/30/2023] Open
Abstract
The most prominent pathological features of multiple sclerosis (MS) are demyelination and neurodegeneration. The exact pathogenesis of MS is unknown, but it is generally regarded as a T cell-mediated autoimmune disease. Increasing evidence, however, suggests that other components of the immune system, particularly B cells and antibodies, contribute to the cumulative CNS damage and worsening disability that characterize the disease course in many patients. We have previously described strongly elevated T cell reactivity to an extracellular domain of the most abundant CNS myelin protein, myelin proteolipid protein (PLP) in people with MS. The current paper addresses the question of whether this region of PLP is also a target of autoantibodies in MS. Here we show that serum levels of isotype-switched anti-PLP181-230 specific antibodies are significantly elevated in patients with MS compared to healthy individuals and patients with other neurological diseases. These anti-PLP181-230 antibodies can also live-label PLP-transfected cells, confirming that they can recognize native PLP expressed at the cell surface. Importantly, the antibodies are only elevated in patients who carry HLA molecules that allow strong T cell responses to PLP. In that subgroup of patients, there is a positive correlation between the levels of anti-PLP181-230 antibodies and the severity of MS. These results demonstrate that anti-PLP antibodies have potentially important roles to play in the pathogenesis of MS.
Collapse
Affiliation(s)
- Judith M Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabeth Trifilieff
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Faculté de Médecine, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Michael P Pender
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Alirezaei Z, Pourhanifeh MH, Borran S, Nejati M, Mirzaei H, Hamblin MR. Neurofilament Light Chain as a Biomarker, and Correlation with Magnetic Resonance Imaging in Diagnosis of CNS-Related Disorders. Mol Neurobiol 2020; 57:469-491. [PMID: 31385229 PMCID: PMC6980520 DOI: 10.1007/s12035-019-01698-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
The search for diagnostic and prognostic biomarkers for neurodegenerative conditions is of high importance, since these disorders may present difficulties in differential diagnosis. Biomarkers with high sensitivity and specificity are required. Neurofilament light chain (NfL) is a unique biomarker related to axonal damage and neural cell death, which is elevated in a number of neurological disorders, and can be detected in cerebrospinal fluid (CSF), as well as blood, serum, or plasma samples. Although the NfL concentration in CSF is higher than that in blood, blood measurement may be easier in practice due to its lesser invasiveness, reproducibility, and convenience. Many studies have investigated NfL in both CSF and serum/plasma as a potential biomarker of neurodegenerative disorders. Neuroimaging biomarkers can also potentially improve detection of CNS-related disorders at an early stage. Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) are sensitive techniques to visualize neuroaxonal loss. Therefore, investigating the combination of NfL levels with indices extracted from MRI and DTI scans could potentially improve diagnosis of CNS-related disorders. This review summarizes the evidence for NfL being a reliable biomarker in the early detection and disease management in several CNS-related disorders. Moreover, we highlight the correlation between MRI and NfL and ask whether they can be combined.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Bartos A, Fialová L, Švarcová J. Lower Serum Antibodies Against Tau Protein and Heavy Neurofilament in Alzheimer's Disease. J Alzheimers Dis 2019; 64:751-760. [PMID: 29966192 DOI: 10.3233/jad-180039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Unlike antibodies against amyloid-β, little is known about serum antibodies to neuron-specific cytoskeletal proteins in patients with Alzheimer's disease (AD). OBJECTIVE We aimed to study IgG autoantibodies against tau protein, light (NFL) and heavy subunits (NFH) of neurofilaments in serum of AD patients and elderly controls and to explore the evolution of antineurocytoskeletal antibody levels over time. METHODS Antibodies against three targets (tau, NFL, and NFH) were measured using ELISA in 100 serum samples from 51 cognitively normal elderly controls and 49 patients with AD. Our primary cross-sectional design was further extended to monitor fluctuations over 1-2 years in a subset of individuals. RESULTS The AD patients had lower levels of anti-tau antibodies (p = 0.03) and even lower anti-NFH antibodies (p = 0.005) than those in the control group at baseline. On the contrary, anti-NFL antibodies or total IgG concentrations in serum did not differ. All three antibodies remained stable in both groups except for a selective and significant anti-tau decline in AD patients (p = 0.03). CONCLUSIONS The different responses to these antigens suggest some antibody selectivity in AD. The significant decline was observed for only serum anti-tau antibodies in AD patients over time and it corresponds to lower anti-tau levels in these patients. Our findings indicate a special feature of disease-relevant antigens and humoral autoimmunity in AD.
Collapse
|
4
|
Noskova L, Fialova L, Bartos A, Zima T. Avidity of antineurocytoskeletal antibodies in Alzheimer's disease patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:179-186. [PMID: 28452379 DOI: 10.5507/bp.2017.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/24/2017] [Indexed: 11/23/2022] Open
Abstract
AIMS To optimise the ELISA method for the avidity of IgG antibodies against neurofilament heavy chain (NfH) and to determine the levels and avidity of anti-NfH antibodies in patients with Alzheimer's disease (AD) and a healthy control group. METHODS Various dilutions of sera and concentrations of urea and sodium chloride as chaotropic reagents were tested in the process of the ELISA optimisation. The levels and avidity of anti-NfH antibodies were determined in 30 patients with Alzheimer's disease and 30 age-matched cognitively normal elderly adults. RESULTS Sera dilution 1:200 and urea as a chaotrope in a concentration 6 mol/L were chosen to be the most suitable for the avidity assay of anti-NfH antibodies by ELISA. The results showed no differences in either level or avidity of IgG anti-NfH antibodies between AD patients and cognitively normal persons. The levels of anti-NfH IgG antibodies inversely correlated with their avidities. CONCLUSIONS We optimised the ELISA method for the determination of anti-NfH antibody avidity determination which is suitable for research of anti-NfH antibody avidity in patients with neurological diseases associated with neurocytoskeletal defects. The determination of serum anti-NfH antibody avidity in AD patients seems to have limited diagnostic significance.
Collapse
Affiliation(s)
- Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Lenka Fialova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ales Bartos
- National Institute of Mental Health, Klecany, Czech Republic.,Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
5
|
Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 2017; 27:123-137. [PMID: 27792289 DOI: 10.1111/bpa.12454] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, that is, damage to axons, synapses and nerve cell bodies. While we are equipped with appropriate therapeutic options to prevent immune-cell driven relapses, effective therapeutic options to prevent the progressing neurodegeneration are still missing. In this review article, we will discuss to what extent pathology of the progressive disease stage can be modeled in MS animal models. While acute and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), which are T cell dependent, are aptly suited to model relapsing-remitting phases of MS, other EAE models, especially the secondary progressive EAE stage in Biozzi ABH mice is better representing the secondary progressive phase of MS, which is refractory to many immune therapies. Besides EAE, the cuprizone model is rapidly gaining popularity to study the formation and progression of demyelinating CNS lesions without T cell involvement. Here, we discuss these two non-popular MS models. It is our aim to point out the pathological hallmarks of MS, and discuss which pathological aspects of the disease can be best studied in the various animal models available.
Collapse
Affiliation(s)
- Markus Kipp
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany
| | - Stella Nyamoya
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany.,Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, D-52074, Germany
| | - Tanja Hochstrasser
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany
| | - Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Neuroimmunology Unit, , Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, London, UK
| |
Collapse
|
6
|
Rossetti M, Ranallo S, Idili A, Palleschi G, Porchetta A, Ricci F. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chem Sci 2016; 8:914-920. [PMID: 28572901 PMCID: PMC5452262 DOI: 10.1039/c6sc03404g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
A rationally designed new class of DNA-based nanoswitches allosterically regulated by specific biological targets, antibodies and transcription factors, can load and release a molecular cargo in a controlled fashion.
Here we demonstrate the rational design of a new class of DNA-based nanoswitches which are allosterically regulated by specific biological targets, antibodies and transcription factors, and are able to load and release a molecular cargo (i.e. doxorubicin) in a controlled fashion. In our first model system we rationally designed a stem-loop DNA-nanoswitch that adopts two mutually exclusive conformations: a “Load” conformation containing a doxorubicin-intercalating domain and a “Release” conformation containing a duplex portion recognized by a specific transcription-factor (here Tata Binding Protein). The binding of the transcription factor pushes this conformational equilibrium towards the “Release” state thus leading to doxorubicin release from the nanoswitch. In our second model system we designed a similar stem-loop DNA-nanoswitch for which conformational change and subsequent doxorubicin release can be triggered by a specific antibody. Our approach augments the current tool kit of smart drug release mechanisms regulated by different biological inputs.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Simona Ranallo
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Giuseppe Palleschi
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Alessandro Porchetta
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| |
Collapse
|
7
|
Douglas JN, Gardner LA, Salapa HE, Lalor SJ, Lee S, Segal BM, Sawchenko PE, Levin MC. Antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory disease. J Neuroinflammation 2016; 13:178. [PMID: 27391474 PMCID: PMC4938923 DOI: 10.1186/s12974-016-0647-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neurodegeneration is believed to be the primary cause of permanent, long-term disability in patients with multiple sclerosis. The cause of neurodegeneration in multiple sclerosis appears to be multifactorial. One mechanism that has been implicated in the pathogenesis of neurodegeneration in multiple sclerosis is the targeting of neuronal and axonal antigens by autoantibodies. Multiple sclerosis patients develop antibodies to the RNA-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which is enriched in neurons. We hypothesized that anti-hnRNP A1 antibodies would contribute to neurodegeneration in an animal model of multiple sclerosis. METHODS Following induction of experimental autoimmune encephalomyelitis (EAE) by direct immunization with myelin oligodendrocyte glycoprotein, mice were injected with anti-hnRNP A1 or control antibodies. Animals were examined clinically, and the central nervous system (CNS) tissues were tested for neurodegeneration with Fluoro-Jade C, a marker of degenerating neural elements. RESULTS Injection of anti-hnRNP A1 antibodies in mice with EAE worsened clinical disease, altered the clinical disease phenotype, and caused neurodegeneration preferentially in the ventral spinocerebellar tract and deep white matter of the cerebellum in the CNS. Neurodegeneration in mice injected with hnRNP A1-M9 antibodies compared to control groups was consistent with "dying back" axonal degeneration. CONCLUSIONS These data suggest that antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in immune-mediated disease of the CNS.
Collapse
Affiliation(s)
- Joshua N. Douglas
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Lidia A. Gardner
- />Research Service, VA Medical Center, Memphis, TN USA
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Hannah E. Salapa
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Stephen J. Lalor
- />Department of Neurology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Sangmin Lee
- />Research Service, VA Medical Center, Memphis, TN USA
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Benjamin M. Segal
- />Department of Neurology, University of Michigan Medical School, Ann Arbor, MI USA
- />Neurology Service, VA Ann Arbor Health Care System, Ann Arbor, MI USA
| | - Paul E. Sawchenko
- />Laboratory of Neuronal Structure & Function, The Salk Institute, La Jolla, CA USA
| | - Michael C. Levin
- />Research Service, VA Medical Center, Memphis, TN USA
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| |
Collapse
|
8
|
Mostafa GA, Al-Ayadhi LY. The possible link between elevated serum levels of epithelial cell-derived neutrophil-activating peptide-78 (ENA-78/CXCL5) and autoimmunity in autistic children. Behav Brain Funct 2015; 11:11. [PMID: 25871636 PMCID: PMC4375929 DOI: 10.1186/s12993-015-0056-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background In autoimmune disorders, the underlying pathogenic mechanism is the formation of antigen-antibody complexes which trigger an inflammatory response by inducing the infiltration of neutrophils. Epithelial cell-derived neutrophil-activating peptide-78 (ENA-78) is a chemokine that recruits and activates neutrophils, thus it could play a pathogenic role in inflammation and autoimmune disorders. Some autistic children have elevated levels of brain specific auto-antibodies. We are the first to evaluate serum expression of ENA-78 and its relation to antineuronal auto-antibodies in autistic children. Methods Serum ENA-78 and antineuronal auto-antibodies were measured by ELISA test in 62 autistic children aged between 4–11 years and 62 health-matched controls. Results Serum levels of ENA-78 were significantly higher in autistic children than healthy controls (P < 0.001). Increased serum levels of ENA-78 have been found in 69.35% of autistic patients. In addition, autistic children had significantly higher percent positivity of serum antineuronal auto-antibodies (64.5%) than healthy controls (6.45%), P < 0.001. There was a significant positive association between the positivity of serum antineuronal auto-antibodies and the elevated levels of serum ENA-78 (P < 0.001) in autistic children. Conclusions Serum levels of ENA-78 were elevated in autistic children and they were significantly associated with the increased levels of serum antineuronal auto-antibodies. However, these data should be treated with caution until further research is conducted to determine the pathogenic role of ENA-78 in autism and its relation to brain specific auto-antibodies that have been found in some autistic children. The possible therapeutic role of ENA-78 antagonist in autistic children should be also studied.
Collapse
|
9
|
Vitaliti G, Tabatabaie O, Matin N, Ledda C, Pavone P, Lubrano R, Serra A, Di Mauro P, Cocuzza S, Falsaperla R. The usefulness of immunotherapy in pediatric neurodegenerative disorders: A systematic review of literature data. Hum Vaccin Immunother 2015; 11:2749-2763. [PMID: 26266339 PMCID: PMC5391617 DOI: 10.1080/21645515.2015.1061161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/25/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022] Open
Abstract
Immunotherapeutic strategies to treat neurodegenerative disorders have inspired the scientific community. The aim of our review is to address the translational aspects of neuroimmunology to describe the efficacy of immunotherapy in the treatment of pediatric neurodegenerative disorders. In the studies we analyzed IVIG were found to be efficient in the treatment of post-streptococcal neurodegenerative disorders, even if in PANDAS, plasma-exchange (PE) showed a higher efficiency. IVIG were also successfully used in ADEM and Guillan-Barré syndrome. In Sydenham Chorea the use of methylprednisolone was found in most cases as efficient as IVIG, while in Tourette's Syndrome, Colecoxib was successfully used in one patient. Pediatric Multiple Sclerosis seems to respond better to immunosuppressant agents (Mitoxantrone, Cyclophosphamide, Natalizumab), as well as Neuromyelitis optica (Rituximab, Mycofenolate). The importance of this review relies in the attempt to draw standardized guidelines for immunotherapy in pediatric neurodegeneratve disorders.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Acute and Emergency Paediatric and General Paediatric Operative Unit; Policlinico-Vittorio Emanuele Hospital; University of Catania; Catania, Italy
| | | | - Nassim Matin
- School of Medicine; Tehran University of Medical Sciences; Tehran, Iran
| | - Caterina Ledda
- Hygiene and Public Health; Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”; University of Catania; Catania, Italy
| | - Piero Pavone
- Acute and Emergency Paediatric and General Paediatric Operative Unit; Policlinico-Vittorio Emanuele Hospital; University of Catania; Catania, Italy
| | - Riccardo Lubrano
- Pediatric Department; Pediatric Nephrology Operative Unit of the Sapienza University of Rome; Rome, Italy
| | - Agostino Serra
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Paola Di Mauro
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Salvatore Cocuzza
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Raffaele Falsaperla
- Acute and Emergency Paediatric and General Paediatric Operative Unit; Policlinico-Vittorio Emanuele Hospital; University of Catania; Catania, Italy
| |
Collapse
|
10
|
Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult Scler 2014; 20:1806-13. [DOI: 10.1177/1352458514544537] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurodegeneration in multiple sclerosis (MS) is related to inflammation and demyelination. In acute MS lesions and experimental autoimmune encephalomyelitis focal immune attacks damage axons by injuring axonal mitochondria. In progressive MS, however, axonal damage occurs in chronically demyelinated regions, myelinated regions and also at the active edge of slowly expanding chronic lesions. How axonal energy failure occurs in progressive MS is incompletely understood. Recent studies show that oligodendrocytes supply lactate to myelinated axons as a metabolic substrate for mitochondria to generate ATP, a process which will be altered upon demyelination. In addition, a number of studies have identified mitochondrial abnormalities within neuronal cell bodies in progressive MS, leading to a deficiency of mitochondrial respiratory chain complexes or enzymes. Here, we summarise the mitochondrial abnormalities evident within neurons and discuss how these grey matter mitochondrial abnormalities may increase the vulnerability of axons to degeneration in progressive MS. Although neuronal mitochondrial abnormalities will culminate in axonal degeneration, understanding the different contributions of mitochondria to the degeneration of myelinated and demyelinated axons is an important step towards identifying potential therapeutic targets for progressive MS.
Collapse
Affiliation(s)
| | | | - Don J Mahad
- Centre for Neuroregeneration /Centre for Clinical Brain Sciences, University of Edinburgh, UK
| |
Collapse
|
11
|
Lee S, Levin M. Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Res 2014; 3:132. [PMID: 25254102 PMCID: PMC4168748 DOI: 10.12688/f1000research.4436.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 03/22/2024] Open
Abstract
Some somatic single nucleotide variants (SNVs) are thought to be pathogenic, leading to neurological disease. We hypothesized that heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), an autoantigen associated with multiple sclerosis (MS) would contain SNVs. MS patients develop antibodies to hnRNP A1 (293-304), an epitope within the M9 domain (AA (268-305)) of hnRNP A1. M9 is hnRNP A1's nucleocytoplasmic transport domain, which binds transportin-1 (TPNO-1) and allows for hnRNP A1's transport into and out of the nucleus. Genomic DNA sequencing of M9 revealed nine novel SNVs that resulted in an amino acid substitution in MS patients that were not present in controls. SNVs occurred within the TPNO-1 binding domain (hnRNP A1 (268-289)) and the MS IgG epitope (hnRNP A1 (293-304)), within M9. In contrast to the nuclear localization of wild type (WT) hnRNP A1, mutant hnRNP A1 mis-localized to the cytoplasm, co-localized with stress granules and caused cellular apoptosis. Whilst WT hnRNP A1 bound TPNO-1, mutant hnRNP A1 showed reduced TPNO-1 binding. These data suggest SNVs in hnRNP A1 might contribute to pathogenesis of MS.
Collapse
Affiliation(s)
- Sangmin Lee
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael Levin
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
12
|
Lee S, Levin M. Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Res 2014; 3:132. [PMID: 25254102 PMCID: PMC4168748 DOI: 10.12688/f1000research.4436.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Some somatic single nucleotide variants (SNVs) are thought to be pathogenic, leading to neurological disease. We hypothesized that heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), an autoantigen associated with multiple sclerosis (MS) would contain SNVs. MS patients develop antibodies to hnRNP A1 (293-304), an epitope within the M9 domain (AA (268-305)) of hnRNP A1. M9 is hnRNP A1's nucleocytoplasmic transport domain, which binds transportin-1 (TPNO-1) and allows for hnRNP A1's transport into and out of the nucleus. Genomic DNA sequencing of M9 revealed nine novel SNVs that resulted in an amino acid substitution in MS patients that were not present in controls. SNVs occurred within the TPNO-1 binding domain (hnRNP A1 (268-289)) and the MS IgG epitope (hnRNP A1 (293-304)), within M9. In contrast to the nuclear localization of wild type (WT) hnRNP A1, mutant hnRNP A1 mis-localized to the cytoplasm, co-localized with stress granules and caused cellular apoptosis. Whilst WT hnRNP A1 bound TPNO-1, mutant hnRNP A1 showed reduced TPNO-1 binding. These data suggest SNVs in hnRNP A1 might contribute to pathogenesis of MS.
Collapse
Affiliation(s)
- Sangmin Lee
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael Levin
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
13
|
Levin MC, Lee S, Gardner LA, Shin Y, Douglas JN, Cooper C. Autoantibodies to Non-myelin Antigens as Contributors to the Pathogenesis of Multiple Sclerosis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2013; 4:10.4172/2155-9899.1000148. [PMID: 24363960 PMCID: PMC3866957 DOI: 10.4172/2155-9899.1000148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For years, investigators have sought to prove that myelin antigens are the primary targets of autoimmunity in multiple sclerosis (MS). Recent experiments have begun to challenge this assumption, particularly when studying the neurodegenerative phase of MS. T-lymphocyte responses to myelin antigens have been extensively studied, and are likely early contributors to the pathogenesis of MS. Antibodies to myelin antigens have a much more inconstant association with the pathogenesis of MS. Recent studies indicate that antibodies to non-myelin antigens such as neurofilaments, neurofascin, RNA binding proteins and potassium channels may contribute to the pathogenesis of MS. The purpose of this review is to analyze recent studies that examine the role that autoantibodies to non-myelin antigens might play in the pathogenesis of MS.
Collapse
Affiliation(s)
- Michael C. Levin
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lidia A. Gardner
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N. Douglas
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chelsea Cooper
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Fialová L, Bartos A, Švarcová J, Zimova D, Kotoucova J. Serum and cerebrospinal fluid heavy neurofilaments and antibodies against them in early multiple sclerosis. J Neuroimmunol 2013; 259:81-7. [DOI: 10.1016/j.jneuroim.2013.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/14/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022]
|
15
|
Lindner M, Ng JKM, Hochmeister S, Meinl E, Linington C. Neurofascin 186 specific autoantibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis. Exp Neurol 2013; 247:259-66. [PMID: 23688679 DOI: 10.1016/j.expneurol.2013.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/24/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022]
Abstract
Axonal injury is considered the major cause of chronic disability in multiple sclerosis (MS) patients, however the mechanisms behind remain still unclear. Recently, it was demonstrated that autoantibodies against Neurofascin, a cell adhesion molecule within the adult nervous system, can contribute to the development of axonal pathology in some patients. We compared the ability of the two different isoforms of Neurofascin, Nfasc155 and Nfasc186, to induce a pathogenic antibody response in the Dark Agouti (DA) rat. Animals were immunized with recombinant proteins prior to induction of experimental autoimmune encephalomyelitis (EAE) by adoptive transfer of activated MOG-specific T cells. Only Nfasc186 induced an axopathic autoantibody response in vivo, despite extensive cross reactivity between the two isoforms as shown by ELISA and flow cytometry. In this case, using transfected cell lines failed to differentiate between pathogenic and non-pathogenic responses. These findings have important implications with respect to the usage of cell based assays as an approach to detect pathologically relevant autoantibodies in clinical samples.
Collapse
Affiliation(s)
- Maren Lindner
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
16
|
Bartos A, Fialová L, Švarcová J, Ripova D. Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. J Neuroimmunol 2012; 252:100-5. [DOI: 10.1016/j.jneuroim.2012.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 01/24/2023]
|
17
|
The relationship between the increased frequency of serum antineuronal antibodies and the severity of autism in children. Eur J Paediatr Neurol 2012; 16:464-8. [PMID: 22226851 DOI: 10.1016/j.ejpn.2011.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/05/2011] [Accepted: 12/18/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Autism may involve an autoimmune pathogenesis. Immunotherapy may have a role in autistic children who have brain auto-antibodies. AIM This study aimed to investigate the frequency of serum antineuronal auto-antibodies, as indicators of the presence of autoimmunity to brain, in a group of autistic children. We are the first to measure the relationship between these antibodies and the degree of the severity of autism. METHODS Serum antineuronal antibodies were measured, by indirect immunofluorescence technique, in 80 autistic children, aged between 6 and 12 years, in comparison to 80 healthy-matched children. The severity of autism was assessed by using the Childhood Autism Rating Scale. RESULTS Autistic children had significantly higher percent positivity of serum antineuronal antibodies (62.5%) than healthy controls (5%), P<0.001. The frequency of the positivity of serum antineuronal antibodies was significantly higher in children with severe autism (87.5%) than children with mild to moderate autism (25%), P<0.001. Similarly, the frequency of the positivity of these antibodies was significantly higher in female children with autism (90%) than male autistic children (53.3%), P=0.001. CONCLUSIONS Serum antineuronal antibodies were found in a subgroup of autistic children and they were significantly correlated to the severity of autism. Thus, autism may be, in part, one of the pediatric autoimmune neuropsychiatric disorders. Further wide-scale studies are warranted to shed light on the etiopathogenic role of antineuronal antibodies in autism. The role of immunotherapy in autistic patients, who are seropositive for antineuronal antibodies, should also be studied.
Collapse
|
18
|
Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, Dick HB, Pfeiffer N, Grus FH. Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 2012; 7:e40616. [PMID: 22848388 PMCID: PMC3406064 DOI: 10.1371/journal.pone.0040616] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/11/2012] [Indexed: 12/25/2022] Open
Abstract
Background Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats. Methodology/Principal Findings Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.007) and a lower number of Brn3+retinal ganglion cells (p = 0.0001) after six weeks. The autoreactive antibody development against retina and optic nerve was examined throughout the study. The levels of autoreactive antibodies continuously increased up to 6 weeks (retina: p = 0.004; optic nerve: p = 0.000003). Additionally, antibody deposits were detected in the retina (p = 0.02). After 6 weeks a reactive gliosis (GFAP density: RGA: 174.7±41.9; CO: 137.6±36.8, p = 0.0006; %GFAP+ area: RGA: 8.5±3.4; CO: 5.9±3.6, p = 0.006) as well as elevated level of Iba1+ microglia cells (p = 0.003) was observed in retinas of RGA animals. Conclusions/Significance Our findings suggest that these antibodies play a substantial role in mechanisms leading to retinal ganglion cell death. This seems to lead to glia cell activation as well as the invasion of microglia, which might be associated with debris clearance.
Collapse
Affiliation(s)
- Stephanie C Joachim
- Experimental Eye Research Institute, Ruhr University Eye Hospital, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, Chan A, Stroet A, Olsson T, Willison H, Barnett SC, Meinl E, Linington C. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. ACTA ACUST UNITED AC 2012; 135:1819-33. [PMID: 22561643 PMCID: PMC3359756 DOI: 10.1093/brain/aws105] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments.
Collapse
Affiliation(s)
- Christina Elliott
- Institute of Immunology, Immunity and Infection, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Increased intrathecal high-avidity anti-tau antibodies in patients with multiple sclerosis. PLoS One 2011; 6:e27476. [PMID: 22140442 PMCID: PMC3226623 DOI: 10.1371/journal.pone.0027476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Background Antibodies against tau protein indicate an interaction between the immune system and the neurocytoskeleton and therefore may reflect axonal injury in multiple sclerosis (MS). Methodology/Principal Findings The levels and avidities of anti-tau IgG antibodies were measured using ELISA in paired cerebrospinal fluid (CSF) and serum samples obtained from 49 MS patients and 47 controls. Anti-tau antibodies were significantly elevated intrathecally (p<0.0001) in the MS group. The CSF anti-tau antibody levels were lower in MS patients receiving therapy than those without treatment (p<0.05). The avidities of anti-tau antibodies were higher in the CSF than in the serum (MS group p<0.0001; controls p<0.005). Anti-tau avidities in the CSF were elevated in MS patients in comparison with controls (p<0.05), but not in serum. Conclusions MS patients have higher levels of intrathecal anti-tau antibodies. Anti-tau antibodies have different avidities in different compartments with the highest values in the CSF of MS patients.
Collapse
|
21
|
Wills S, Rossi CC, Bennett J, Martinez-Cerdeño V, Ashwood P, Amaral DG, Van de Water J. Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism. Mol Autism 2011; 2:5. [PMID: 21521495 PMCID: PMC3108923 DOI: 10.1186/2040-2392-2-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction and deficits in verbal and nonverbal communication, together with the presence of repetitive behaviors or a limited repertoire of activities and interests. The causes of autism are currently unclear. In a previous study, we determined that 21% of children with autism have plasma autoantibodies that are immunoreactive with a population of neurons in the cerebellum that appear to be Golgi cells, which are GABAergic interneurons. Methods We have extended this analysis by examining plasma immunoreactivity in the remainder of the brain. To determine cell specificity, double-labeling studies that included one of the calcium-binding proteins that are commonly colocalized in GABAergic neurons (calbindin, parvalbumin or calretinin) were also carried out to determine which GABAergic neurons are immunoreactive. Coronal sections through the rostrocaudal extent of the macaque monkey brain were reacted with plasma from each of seven individuals with autism who had previously demonstrated positive Golgi cell staining, as well as six negative controls. In addition, brain sections from adult male mice were similarly examined. Results In each case, specific staining was observed for neurons that had the morphological appearance of interneurons. By double-labeling sections with plasma and with antibodies directed against γ-aminobutyric acid (GABA), we determined that all autoantibody-positive neurons were GABAergic. However, not all GABAergic neurons were autoantibody-positive. Calbindin was colabeled in several of the autoantibody-labeled cells, while parvalbumin colabeling was less frequently observed. Autoantibody-positive cells rarely expressed calretinin. Sections from the mouse brain processed similarly to the primate sections also demonstrated immunoreactivity to interneurons distributed throughout the neocortex and many subcortical regions. Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain. Conclusions These results suggest that the earlier report of autoantibody immunoreactivity to specific cells in the cerebellum extend to other regions of the brain. Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons. The potential impact of these autoantibodies on GABAergic disruption with respect to the etiology of autism is discussed herein.
Collapse
Affiliation(s)
- Sharifia Wills
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA.,NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, CA 95616, USA
| | - Christy C Rossi
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Veronica Martinez-Cerdeño
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA.,NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, CA 95616, USA
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA.,The M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA 95817 USA.,NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is traditionally considered an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) with much knowledge available to support this view. However, this characterization implies that the primary event is an aberrant immune response directed at CNS antigens, promoting inflammation and later driving progressive axo-glial degeneration. Trials with potent anti-inflammatory agents and detailed neuropathological studies raise questions about this sequence of events. This hypothetical paper argues that MS may be primarily a "cytodegenerative" disease, possibly first involving the oligodendrocyte/myelin unit. Liberation of autoantigens secondarily recruits an immune response, the force of which heavily depends on the host's immune predisposition. Thus, the spectrum of MS from highly aggressive Marburg type, to primary progressive disease with little inflammatory burden, is governed by a "convolution" between the underlying cytodegeneration and the host's immune predilection. Clinical heterogeneity may be a reflection of a variable immune response, whereas in reality, the "real MS" may be a homogeneous degenerative process analogous to well known primary neurodegenerative diseases.
Collapse
|
23
|
Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129:154-69. [PMID: 20561356 PMCID: PMC2814458 DOI: 10.1111/j.1365-2567.2009.03225.x] [Citation(s) in RCA: 1001] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 01/01/2023] Open
Abstract
Neurodegeneration, the slow and progressive dysfunction and loss of neurons and axons in the central nervous system, is the primary pathological feature of acute and chronic neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury and multiple sclerosis. Despite different triggering events, a common feature is chronic immune activation, in particular of microglia, the resident macrophages of the central nervous system. Apart from the pathogenic role of immune responses, emerging evidence indicates that immune responses are also critical for neuroregeneration. Here, we review the impact of innate and adaptive immune responses on the central nervous system in autoimmune, viral and other neurodegenerative disorders, and discuss their contribution to either damage or repair. We also discuss potential therapies aimed at the immune responses within the central nervous system. A better understanding of the interaction between the immune and nervous systems will be crucial to either target pathogenic responses, or augment the beneficial effects of immune responses as a strategy to intervene in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, VU University Medical Centre De Boelelaan, Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
24
|
Deb C, LaFrance-Corey RG, Zoecklein L, Papke L, Rodriguez M, Howe CL. Demyelinated axons and motor function are protected by genetic deletion of perforin in a mouse model of multiple sclerosis. J Neuropathol Exp Neurol 2009; 68:1037-48. [PMID: 19680139 PMCID: PMC2767116 DOI: 10.1097/nen.0b013e3181b5417e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Axon injury is a major determinant of the loss of neurological function in patients with multiple sclerosis. It is unclear, however, whether damage to axons is an obligatory consequence of demyelination or whether it is an independent process that occurs in the permissive environment of demyelinated lesions. Previous investigations into the role of CD8 T cells and perforin in the Theiler murine encephalomyelitis virus model of multiple sclerosis have used mouse strains resistant to Theiler murine encephalomyelitis virus infection. To test the role of CD8 T cells in axon injury, we established a perforin-deficient mouse model on the H-2 major histocompatibility complex background thereby removing confounding factors related to viral biology in this Theiler murine encephalomyelitis virus-susceptible strain. This permitted direct comparison of clinical and pathological parameters between perforin-competent and perforin-deficient mice. The extent of demyelination was indistinguishable between perforin-competent and perforin-deficient H-2 mice, but chronically infected perforin-deficient mice exhibited preservation of motor function and spinal axons despite the presence of spinal cord demyelination. Thus, demyelination is necessary but insufficient for axon injury in this model; the absence of perforin protects axons without impacting demyelination. These results suggest that perforin is a key mediator of axon injury and lend additional support to the hypothesis that CD8 T cells are primarily responsible for axon damage in multiple sclerosis.
Collapse
Affiliation(s)
- Chandra Deb
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | | | - Laurie Zoecklein
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Louisa Papke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Charles L. Howe
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Department of Neuroscience, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Department of Translational Immunovirology and Biodefense Program, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Department of Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| |
Collapse
|
25
|
Somers K, Govarts C, Stinissen P, Somers V. Multiplexing approaches for autoantibody profiling in multiple sclerosis. Autoimmun Rev 2009; 8:573-9. [DOI: 10.1016/j.autrev.2009.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 02/01/2009] [Indexed: 01/19/2023]
|
26
|
Harrer MD, von Büdingen HC, Stoppini L, Alliod C, Pouly S, Fischer K, Goebels N. Live imaging of remyelination after antibody-mediated demyelination in an ex-vivo model for immune mediated CNS damage. Exp Neurol 2009; 216:431-8. [DOI: 10.1016/j.expneurol.2008.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Huizinga R, Hintzen RQ, Assink K, van Meurs M, Amor S. T-cell responses to neurofilament light protein are part of the normal immune repertoire. Int Immunol 2009; 21:433-41. [PMID: 19240089 DOI: 10.1093/intimm/dxp011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system in which axonal damage and degeneration contribute significantly to the progressive irreversible neurological disability. Similar to pathogenic myelin autoimmunity, autoimmune responses to neuronal antigens may contribute to axonal damage and irreversible disability in MS. Auto-antibodies to the axonal cytoskeletal protein neurofilament light (NF-L) are associated with cerebral atrophy in MS and we have recently reported that NF-L autoimmunity is pathogenic in mice. However, the T-cell response to NF-L in MS patients has not been examined. Here, we identify and characterize T-cell proliferative responses to NF-L as compared with myelin oligodendrocyte glycoprotein (MOG) in MS patients and healthy controls. Using a carboxyfluorescein succinimidyl ester dilution assay, we show that while responses to MOG are dominated by CD3(+)CD4(+) T cells, responses to NF-L were observed in both CD3(+)CD4(+) and CD3(+)CD8(+) T-cell populations. Both MOG- and NF-L-reactive cells expressed CD45RO(+), indicative of a memory phenotype. Moreover, in contrast to MOG stimulation which predominantly induced IFN-gamma, both T(h)1- and T(h)2-type T-cell responses to NF-L were observed as indicated by the induction of IFN-gamma, tumor necrosis factor-alpha as well as IL-4. The finding of T-cell responses to NF-L in MS patients may reflect transient activation of pathogenic potential but their presence also in healthy controls indicates that these cells are part of the normal immune repertoire.
Collapse
Affiliation(s)
- Ruth Huizinga
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KPH, Boddeke HWGM, Höpken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, 't Hart BA, Amor S, Laman JD, Boven LA. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med (Berl) 2008; 87:273-86. [PMID: 19050840 DOI: 10.1007/s00109-008-0421-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 11/08/2008] [Accepted: 11/10/2008] [Indexed: 12/25/2022]
Abstract
Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked.
Collapse
Affiliation(s)
- Marloes van Zwam
- Department of Immunology, Erasmus MC, CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huizinga R, Gerritsen W, Heijmans N, Amor S. Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments. Neurobiol Dis 2008; 32:461-70. [DOI: 10.1016/j.nbd.2008.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/08/2008] [Accepted: 08/13/2008] [Indexed: 11/28/2022] Open
|
30
|
Abstract
Neurodegeneration develops in association with inflammation and demyelination in multiple sclerosis. Available data suggest that the progressive neuroaxonal loss begins in the earliest stages of the disease and underlies the accumulation of clinical disability. The loss of neurons and their processes is driven by a complex molecular mechanism involving cellular and humoral immune histotoxicity, demyelination, reduced neurotrophic support, metabolic impairment, and altered intracellular processes. Here we survey available data concerning the role of autoreactive immunoglobulins in neurotoxicity. A better understanding of molecular pathways leading to immune-mediated neurodegeneration may have key importance in the successful treatment of the disease.
Collapse
|