1
|
Silver ZA, Watkins DI. The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 2017; 69:511-519. [PMID: 28695289 PMCID: PMC5537376 DOI: 10.1007/s00251-017-0997-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Human immunodeficiency virus (HIV) remains among the most significant public health threats worldwide. Despite three decades of research following the discovery of HIV, a preventive vaccine remains elusive. The study of HIV elite controllers has been crucial to elaborate the genetic and immunologic determinants that underlie control of HIV replication. Coordinated studies of elite control in humans have, however, been limited by variability among infecting viral strains, host genotype, and the uncertainty of the timing and route of infection. In this review, we discuss the role of nonhuman primate (NHP) models for the elucidation of the immunologic correlates that underlie control of AIDS virus replication. We discuss the importance of major histocompatibility complex class I (MHC-I) alleles in activating CD8+ T-cell populations that promote control of both HIV and simian immunodeficiency virus (SIV) replication. Provocatively, we make the argument that T-cell subsets recognizing the HIV/SIV viral infectivity factor (Vif) protein may be crucial for control of viral replication. We hope that this review demonstrates how an in-depth understanding of the MHC-I gene products associated with elite control of HIV/SIV, and the epitopes that they present, can provide researchers with a glimpse into the protective immune responses that underlie AIDS nonprogression.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Pahar B, Kenway-Lynch CS, Marx P, Srivastav SK, LaBranche C, Montefiori DC, Das A. Breadth and magnitude of antigen-specific antibody responses in the control of plasma viremia in simian immunodeficiency virus infected macaques. Virol J 2016; 13:200. [PMID: 27903274 PMCID: PMC5131515 DOI: 10.1186/s12985-016-0652-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
Background Increasing evidence suggests an unexpected potential for non-neutralizing antibodies to prevent HIV infection. Consequently, identification of functional linear B-cell epitopes for HIV are important for developing preventative and therapeutic strategies. We therefore explored the role of antigen-specific immune responses in controlling plasma viremia in SIV infected rhesus macaques. Methods Thirteen rhesus macaques were inoculated either intravaginally or intrarectally with SIVMAC251. Peripheral blood CD4+ T-cells were quantified. Plasma was examined for viremia, antigen specific IgG, IgA and IgM binding responses and neutralizing antibodies. Regions containing binding epitopes for antigen-specific IgG, IgM and IgA responses were determined, and the minimum size of linear Envelope epitope responsible for binding antibodies was identified. Results The presence of neutralizing antibodies did not correlate the outcome of the disease. In a few SIV-infected macaques, antigen-specific IgG and IgM responses in plasma correlated with decreased plasma viremia. Early induction and the breadth of antigen-specific IgG responses were found to be significantly correlated with the control of plasma viral load. Immunoglobulin classes share similar functional linear B-cell epitopes. SIV-specific linear envelope B-cell epitopes were found to be 12 amino-acids in length. Conclusions Early induction of combination of peptide-specific IgG responses were found to be responsible for the control of plasma viral load and indicative of disease outcome in SIV-infected rhesus macaques and might be important for the development of therapeutic strategies for control or prevention of HIV/AIDS. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0652-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA. .,Tulane University School of Medicine, New Orleans, 70112, LA, USA.
| | - Carys S Kenway-Lynch
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Preston Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, 70433, LA, USA
| | - Sudesh K Srivastav
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, 70112, LA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, 70433, LA, USA
| |
Collapse
|
3
|
Sun X, Shi Y, Akahoshi T, Fujiwara M, Gatanaga H, Schönbach C, Kuse N, Appay V, Gao GF, Oka S, Takiguchi M. Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation. Cell Rep 2016; 15:2279-2291. [PMID: 27239036 DOI: 10.1016/j.celrep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level.
Collapse
Affiliation(s)
- Xiaoming Sun
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mamoru Fujiwara
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Christian Schönbach
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Victor Appay
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; INSERM, Unité Mixte de Recherche 1135, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre d'Immunologie et des Maladies Infectieuses-Paris, 75013 Paris, France
| | - George F Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan; Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
4
|
Sakai K, Chikata T, Brumme ZL, Brumme CJ, Gatanaga H, Gatanag H, Oka S, Takiguchi M. Lack of a significant impact of Gag-Protease-mediated HIV-1 replication capacity on clinical parameters in treatment-naive Japanese individuals. Retrovirology 2015; 12:98. [PMID: 26585907 PMCID: PMC4653850 DOI: 10.1186/s12977-015-0223-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/08/2015] [Indexed: 01/29/2023] Open
Abstract
Background HLA class I-associated escape mutations in HIV-1 Gag can reduce viral replication, suggesting that associated fitness costs could impact HIV-1 disease progression. Previous studies in North American and African cohorts have reported reduced Gag-Protease mediated viral replication capacity (Gag-Pro RC) in individuals expressing protective HLA class I alleles including HLA-B*57:01, B*27:05, and B*81:01. These studies also reported significant positive associations between Gag-Pro RCs and plasma viral load (pVL). However, these HLA alleles are virtually absent in Japan, and the importance of Gag as an immune target is not clearly defined in this population. Results We generated chimeric NL4-3 viruses carrying patient-derived Gag-Protease from 306 treatment-naive Japanese individuals chronically infected with HIV-1 subtype B. We analyzed associations between Gag-Pro RC and clinical markers of HIV-1 infection and host HLA expression. We observed no significant correlation between Gag-Pro RC and pVL in Japan in the overall cohort. However, upon exclusion of individuals expressing Japanese protective alleles HLA-B*52:01 and B*67:01, Gag-Pro RC correlated positively with pVL and negatively with CD4 T-cell count. Our results thus contrast with studies from other global cohorts reporting significantly lower Gag-Pro RC among persons expressing protective HLA alleles, and positive relationships between Gag-Pro RC and pVL in the overall study populations. We also identified five amino acids in Gag-Protease significantly associated with Gag-Pro RC, whose effects on RC were confirmed by site-directed mutagenesis. However, of the four mutations that decreased Gag-Pro RC, none were associated with reductions in pVL in Japan though two were associated with lower pVL in North America. Conclusions These data indicate that Gag fitness does not affect clinical outcomes in subjects with protective HLA class I alleles as well as the whole Japanese population. Moreover, the impact of Gag fitness costs on HIV-1 clinical parameters in chronic infection is likely low in Japan compared to other global populations. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | | | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan. .,National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan. .,Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Katlama C, Deeks SG, Autran B, Martinez-Picado J, van Lunzen J, Rouzioux C, Miller M, Vella S, Schmitz JE, Ahlers J, Richman DD, Sekaly RP. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 2013; 381:2109-17. [PMID: 23541541 PMCID: PMC3815451 DOI: 10.1016/s0140-6736(13)60104-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiretroviral therapy for HIV infection needs lifelong access and strict adherence to regimens that are both expensive and associated with toxic effects. A curative intervention will be needed to fully stop the epidemic. The failure to eradicate HIV infection during long-term antiretroviral therapy shows the intrinsic stability of the viral genome in latently infected CD4T cells and other cells, and possibly a sustained low-level viral replication. Heterogeneity in latently infected cell populations and homoeostatic proliferation of infected cells might affect the dynamics of virus production and persistence. Despite potent antiretroviral therapy, chronic immune activation, inflammation, and immune dysfunction persist, and are likely to have important effects on the size and distribution of the viral reservoir. The inability of the immune system to recognise cells harbouring latent virus and to eliminate cells actively producing virus is the biggest challenge to finding a cure. We look at new approaches to unravelling the complex virus-host interactions that lead to persistent infection and latency, and discuss the rationale for combination of novel treatment strategies with available antiretroviral treatment options to cure HIV.
Collapse
Affiliation(s)
- Christine Katlama
- Department of Infectious Diseases, Pierre et Marie Curie University, Pitié-Salpêtriere Hospital, Paris, France
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Brigitte Autran
- Laboratory Immunity and Infection, UMR-S 945, Pierre et Marie Curie University, Hospital Pitié-Salpêtriere, Paris, France
| | - Javier Martinez-Picado
- AIDS Research Institute Irsi Caixa, ICREA and Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Jan van Lunzen
- University Medical Center Eppendorf, Infectious Diseases Unit, Hamburg, Germany
| | - Christine Rouzioux
- Paris-Descartes University Necker Hospital, Department of Virology, Paris, France
| | - Michael Miller
- Department of West Point Discovery Chemistry, Merck Research Labs, West Point, USA
| | - Stefano Vella
- Department of Pharmacology and Therapeutic Research, Istituto Superiore di Sanità, Rome, Italy
| | - Joern E. Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Ahlers
- Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, USA
| | - Douglas D. Richman
- VA San Diego Healthcare System and Departments of Pathology and Medicine, Center for AIDS Research, University of California, San Diego, California, USA
| | - Rafick P. Sekaly
- Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, USA
| |
Collapse
|
6
|
|
7
|
Levitz L, Koita OA, Sangare K, Ardito MT, Boyle CM, Rozehnal J, Tounkara K, Dao SM, Koné Y, Koty Z, Buus S, Moise L, Martin WD, De Groot AS. Conservation of HIV-1 T cell epitopes across time and clades: validation of immunogenic HLA-A2 epitopes selected for the GAIA HIV vaccine. Vaccine 2012; 30:7547-60. [PMID: 23102976 DOI: 10.1016/j.vaccine.2012.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
Abstract
HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vaccine. Regions of the viral genome conserved in sequence and across time may represent the "Achilles' heel" of HIV. In this study, highly conserved T-cell epitopes were selected using immunoinformatics tools combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally validated for HLA binding and immunogenicity with PBMCs from HIV-infected patients in Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an IFNγ response in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as HLA-A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time, clades, and geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine.
Collapse
Affiliation(s)
- Lauren Levitz
- EpiVax, Inc., Providence, Rhode Island, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Belyakov IM. Improved SIV DNA vaccine can be effectively used as a boost for Ad5 in prime-boost immunization strategy. Expert Rev Vaccines 2012; 11:787-90. [PMID: 22913256 DOI: 10.1586/erv.12.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the study under evaluation, optimized SIV DNA were used to boost T-cell responses induced by a highly immunogenic SIV Ad5-prime in Chinese rhesus macaques. A regular prime-boost regimen (SIV DNA-prime and rAd boost) and naive macaques were used as the control. After vaccination, the animals were challenged intrarectally with SIVmac251, and partial protection was observed in the macaques immunized by the Ad5-prime DNA-boost regimen. SIV-specific T-cell responses in the enzyme-linked immunospot assay were significantly higher in the Ad5-prime DNA-boost, compared with the responses in the control macaques. Viral control correlated with the generation of HLA-DR+ T cells 2 weeks after the viral challenge. Further studies using prime and boost strategies and alternative routes of vaccination (including a simultaneous approach) are warranted to fully explore the potential of prime and boost regimens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Igor M Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Department of Internal Medicine, Graduate Program in Immunology, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB, Room 4039, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Ono T, Yamaguchi Y, Oguma T, Takayama E, Takashima Y, Tadakuma T, Miyahira Y. Actively induced antigen-specific CD8+ T cells by epitope-bearing parasite pre-infection but not prime/boost virus vector vaccination could ameliorate the course of Plasmodium yoelii blood-stage infection. Vaccine 2012; 30:6270-8. [PMID: 22902783 DOI: 10.1016/j.vaccine.2012.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 12/16/2022]
Abstract
The lack of MHC molecules on red blood cells (RBCs) has led to questions regarding the immunological function of CD8(+) T cells against malarial blood-stage (MBS). However, several recent reports contradicting with this concept have suggested that they play an important role in the course of MBS infection. The present study generated genetically engineered murine malaria, Plasmodium yoelii, which expresses a well-defined Trypanosoma cruzi-derived, H-2K(b)-restricted CD8(+) T cell epitope, ANYNFTLV. Prime/boost vaccination by the use of recombinant adenovirus and recombinant modified vaccinia virus Ankara (MVA), which induced an enhanced number of ANYNFTLV-specific CD8(+) T cells, failed to prevent a pathological outcome to occur upon ANYNFTLV-expressing murine MBS infection. This outcome did not change even with the combination of passive transfer of an appreciable number of in vitro-expanded ANYNFTLV-specific CD8(+) T cells. In contrast, the pre-infection of mice with T. cruzi, which intrinsically bears the same CD8(+) T cell epitope significantly improved the survival of ANYNFTLV-expressing malaria-infected mice but not that of control malaria-infected ones. This protective effect was abrogated by the use of a CD8(+) T cell-depleting monoclonal antibody. Although the protective effect was observed only in certain situations, the actively induced antigen-specific CD8(+) T cells could ameliorate the pathologies caused by the MBS. This is the first study to implicate that the active induction of antigen-specific CD8(+) T cells should be included in the development of a vaccine against MBS.
Collapse
Affiliation(s)
- Takeshi Ono
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Demberg T, Robert-Guroff M. Controlling the HIV/AIDS epidemic: current status and global challenges. Front Immunol 2012; 3:250. [PMID: 22912636 PMCID: PMC3418522 DOI: 10.3389/fimmu.2012.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, Section on Immune Biology of Retroviral Infection, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
11
|
De Groot AS, Levitz L, Ardito MT, Skowron G, Mayer KH, Buus S, Boyle CM, Martin WD. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes. Hum Vaccin Immunother 2012; 8:987-1000. [PMID: 22777092 DOI: 10.4161/hv.20528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two major obstacles confronting HIV vaccine design have been the extensive viral diversity of HIV-1 globally and viral evolution driven by escape from CD8(+) cytotoxic T-cell lymphocyte (CTL)-mediated immune pressure. Regions of the viral genome that are not able to escape immune response and that are conserved in sequence and across time may represent the "Achilles' heel" of HIV and would be excellent candidates for vaccine development. In this study, T-cell epitopes were selected using immunoinformatics tools, combining HLA-A3 binding predictions with relative sequence conservation in the context of global HIV evolution. Twenty-seven HLA-A3 epitopes were chosen from an analysis performed in 2003 on 10,803 HIV-1 sequences, and additional sequences were selected in 2009 based on an expanded set of 43,822 sequences. These epitopes were tested in vitro for HLA binding and for immunogenicity with PBMCs of HIV-infected donors from Providence, Rhode Island. Validation of these HLA-A3 epitopes conserved across time, clades, and geography supports the hypothesis that epitopes such as these would be candidates for inclusion in our globally relevant GAIA HIV vaccine constructs.
Collapse
|
12
|
Kitchen SG, Levin BR, Bristol G, Rezek V, Kim S, Aguilera-Sandoval C, Balamurugan A, Yang OO, Zack JA. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog 2012; 8:e1002649. [PMID: 22511873 PMCID: PMC3325196 DOI: 10.1371/journal.ppat.1002649] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/02/2012] [Indexed: 01/08/2023] Open
Abstract
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy. There is a desperate need for the development of new therapeutic strategies to eradicate HIV infection. HIV actively subverts the potent natural immune responses against it, particularly cellular cytotoxic T lymphocyte (CTL) responses. The development of a therapy that allows long-lived immune self-containment of HIV and restoration of these CTL responses by the host would be ideal. Through genetic manipulation of human blood-forming stem cells, we introduced a molecule– an HIV-targeting T cell receptor (TCR)–that allowed the generation of functional HIV-specific CTLs following differentiation within human tissues in a humanized mouse model. To assess if these newly developed, HIV-specific CTLs can allow active suppression of HIV replication, we infected these mice with HIV. We found that the development of genetically modified, HIV-specific CTLs in these mice results in the presence of a functional antiviral CTL response in vivo that significantly lowers viral replication following HIV infection. These results have strong implications for the use of this technology to engineer the human immune response to combat viral infections and suggest that genetic engineering via HSCs may allow tailoring of the immune response to target and eradicate HIV.
Collapse
Affiliation(s)
- Scott G Kitchen
- Division of Hematology-Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Isakov D, Dzutsev A, Berzofsky JA, Belyakov IM. Lack of IL-7 and IL-15 signaling affects interferon-γ production by, more than survival of, small intestinal intraepithelial memory CD8+ T cells. Eur J Immunol 2012; 41:3513-28. [PMID: 21928282 DOI: 10.1002/eji.201141453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival of antigen-specific CD8(+) T cells in peripheral lymphoid organs during viral infection is known to be dependent predominantly on IL-7 and IL-15. However, little is known about a possible influence of tissue environmental factors on this process. To address this question, we studied survival of memory antigen-specific CD8(+) T cells in the small intestine. Here, we show that 2 months after vaccinia virus infection, B8R(20-27) /H2-K(b) tetramer(+) CD8(+) T cells in the small intestinal intraepithelial (SI-IEL) layer are found in mice deficient in IL-15 expression. Moreover, SI-IEL and lamina propria lymphocytes do not express the receptor for IL-7 (IL-7Rα/CD127). In addition, after in vitro stimulation with B8R(20-27) peptide, SI-IEL cells do not produce high amounts of IFN-γ neither at 5 days nor at 2 months postinfection (p.i.). Importantly, the lack of IL-15 was found to shape the functional activity of antigen-specific CD8(+) T cells, by narrowing the CTL avidity repertoire. Taken together, these results reveal that survival factors, as well as the functional activity, of antigen-specific CD8(+) T cells in the SI-IEL compartments may markedly differ from their counterparts in peripheral lymphoid tissues.
Collapse
Affiliation(s)
- Dmitry Isakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
14
|
Overcoming limitations in the systems vaccinology approach: a pathway for accelerated HIV vaccine development. Curr Opin HIV AIDS 2012; 7:58-63. [PMID: 22156843 DOI: 10.1097/coh.0b013e32834ddd31] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There remains a pressing need for an efficacious vaccine to combat HIV. The burgeoning fields of systems biology and innate immunity, as harnessed in systems vaccinology, promise to accelerate the discovery process and meet this need. RECENT FINDINGS The tools of systems biology are increasingly employed to define innate immune responses to vaccination and thereby unmask early signaling events that control induced adaptive immunity. These studies involve a wide array of measurements, including transcriptomics and proteomics, and a wide array of biological systems, from in-vitro stimulated murine innate immune cells to whole blood collected from vaccinated human donors. Each measurement and each system offers unique insights as well as special limitations and challenges. SUMMARY A holistic consideration of the models available for intensive HIV systems vaccinology analysis identifies a suite of interlocking opportunities and constraints. Although the murine system enables detailed mechanistic analysis, vaccine efficacy cannot be assessed in this model. Systems analysis of blood donated by vaccinated humans permits identification of immunogenicity signatures and biomarkers, but deriving direct mechanisms from these indirect measurements is precarious. The goals of HIV systems vaccinology may be best met by judicious integration of in vitro, in vivo (murine and nonhuman primate), and human clinical analyses.
Collapse
|
15
|
Abstract
For the last decade, we have focused on guanylyl cyclase C (GUCY2C) as a potentially ideal target antigen for colorectal cancer immunotherapy. GUCY2C is expressed only in intestinal epithelial cells and by nearly 100% of colorectal cancers. We have developed and tested a recombinant adenoviral vector possessing GUCY2C (Ad5-GUCY2C) as a candidate vaccine for colorectal cancer patients. Murine studies have revealed that this vaccine is safe and effective against GUCY2C-expressing targets, and Ad5-GUCY2C is poised for phase I clinical testing in colorectal cancer patients with minimal residual disease. Moreover, we are developing second-generation GUCY2C-targeted therapeutics, including the use of chimeric antigen receptor (CAR)-expressing T cells, for treatment of patients with advanced colorectal cancer for whom Ad5-GUCY2C immunization is not appropriate. Thus, a family of GUCY2C-targeted immunotherapeutics may bridge the gap in effective treatments for the 500,000 patients worldwide who die annually from colorectal cancer.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 348A, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
16
|
For protection from HIV-1 infection, more might not be better: a systematic analysis of HIV Gag epitopes of two alleles associated with different outcomes of HIV-1 infection. J Virol 2011; 86:1166-80. [PMID: 22072744 DOI: 10.1128/jvi.05721-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of women in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remains uninfected despite repeated high-risk exposure (HIV-exposed, seronegative [HESN]) through active sex work. This HESN phenotype is associated with several alleles of human leukocyte antigens (HLAs) and specific CD8(+) and CD4(+) T cell responses to HIV-1. The associations of HLA alleles with differential HIV-1 infection are most likely due to their different abilities to present antigen and the different immune responses they induce. The characteristics of epitopes of HLA alleles associated with different outcomes of HIV-1 infection might therefore point to a vital clue for developing an effective vaccine. In this study, we systematically analyzed HIV-1 clade A and D Gag CD8(+) T cell epitopes of two HLA class I alleles associated with different outcomes of HIV-1 infection. Binding affinity and off-rates of the identified epitopes were determined. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays with patient peripheral blood mononuclear cells (PBMCs) validated the epitopes. Epitope-specific CD8(+) T cells were further phenotyped for memory markers with tetramer staining. Our study showed that the protective allele A*01:01 recognizes only three Gag epitopes. By contrast, B*07:02, the allele associated with susceptibility, binds 30 epitope variants. These two alleles differ most importantly in the spectrum of Gag epitopes they can present and not in affinity, off-rates, the location of the epitopes, or epitope-specific Tem/Tcm frequencies. The binding of more epitopes and strong IFN-gamma ELISpot responses are associated with susceptibility to HIV-1 infection, while more focused antigen recognition of multiple subtypes is protective. Rational vaccine design should take these observations into account.
Collapse
|
17
|
Ghunaim H, Kumar A, Torres J, Diaz-Mitoma F, Azizi A. An immunological comparison between lipidated and non-lipidated multivalent HIV-1 peptides representing Gp120 and Gag hypervariable regions. Vaccine 2011; 29:5950-8. [DOI: 10.1016/j.vaccine.2011.06.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
18
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Stem cell-based strategies for treating HIV-infected individuals represent a novel approach toward reconstituting the ravaged immune system with the ultimate aim of clearing the virus from the body. Genetic modification of human hematopoietic stem cells to produce cells that are either resistant to infection, cells that produce lower amounts of infectious virus, or cells that specifically target the immune response against the virus are currently the dominant strategies under development. This review focuses on the understanding of stem cell-based approaches that are under investigation and the rationale behind such approaches. RECENT FINDINGS Significant progress has recently been made utilizing stem cell-based approaches to treat HIV infection. Ideally, a successful strategy would result in immune clearance of the virus from the body as well long-term restoration of overall immune responses to successfully combat everyday environmental antigens. Two recent clinical trails illustrate how new advances in stem cell-based approaches may propel this field forward to clinical reality: one that demonstrates that large-scale gene therapy trials can be performed in a conventional, reproducible manner; and one that demonstrates the utilization of a multipronged approach using lentiviral-based gene therapy vectors. These clinical trails serve as the foundation for the development of other technologies, discussed here, that are currently in preclinical development. SUMMARY Recent advances using stem cell-based approaches to treat HIV infection have provided the impetus for a renewed and expanded interest in the development of new cell-based strategies to treat HIV infection as well as a variety of other diseases.
Collapse
Affiliation(s)
- Scott G Kitchen
- Division of Hematology/Oncology, Department of Medicine, The UCLA AIDS Institute, Los Angeles, California, USA
| | | |
Collapse
|
20
|
Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development. Curr Top Microbiol Immunol 2011; 354:157-79. [PMID: 21203884 DOI: 10.1007/82_2010_119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural transmission of human immunodeficiency virus type 1 (HIV-1) occurs through gastrointestinal and vaginal mucosa. These mucosal tissues are major reservoirs for initial HIV replication and amplification, and the sites of rapid CD4(+) T cell depletion. In both HIV-infected humans and SIV-infected macaques, massive loss of CD4(+) CCR5(+) memory T cells occurs in the gut and vaginal mucosa within the first 10-14 days of infection. Induction of local HIV-specific immune responses by vaccines may facilitate effective control of HIV or SIV replication at these sites. Vaccines that induce mucosal responses, in particular CD8(+) cytotoxic T lymphocytes (CTL), have controlled viral replication at mucosal sites and curtailed systemic dissemination. Thus, there is strong justification for development of next generation vaccines that induce mucosal immune effectors against HIV-1 including CD8(+) CTL, CD4(+) T helper cells and secretory IgA. In addition, further understanding of local innate mechanisms that impact early viral replication will greatly inform future vaccine development. In this review, we examine the current knowledge concerning mucosal AIDS vaccine development. Moreover, we propose immunization strategies that may be able to elicit an effective immune response that can protect against AIDS as well as other mucosal infections.
Collapse
|
21
|
Mendiratta S, Vajpayee M, Mojumdar K, Chauhan NK, Sreenivas V. Polyfunctional analysis of Gag and Nef specific CD8+ T-cell responses in HIV-1 infected Indian individuals. Vaccine 2010; 29:1150-8. [PMID: 21172377 DOI: 10.1016/j.vaccine.2010.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/29/2010] [Accepted: 12/04/2010] [Indexed: 12/21/2022]
Abstract
Polyfunctional CD8+ T-cells have been described as most competent in controlling viral replication. We studied the impact of antigen persistence on the polyfunctional immune responses of CD8+ T-lymphocytes to HIV Gag and Nef peptides and polyclonal stimuli in 40 ART naïve HIV infected individuals and analyzed the alterations in T-cell functionality in early and late stages of infection. Significantly elevated level of global response and polyfunctional profile of CD8+ T-cells were observed to polyclonal stimulation, than HIV specific antigens in chronically infected individuals. However no key differences were observed in CD8+ T-cell functional profile in any of the 15 unique subsets for Gag and Nef specific antigens. The subjects in early stage of infection (defined as a gap of 6 months or less between seroconversion and enrolment and with no apparent clinical symptoms) had a higher degree of response functionality (4+ or 3+ different functions simultaneously) than in the late stage infection (defined as time duration since seroconversion greater than 6 months). The data suggest that persistence of antigen during chronic infection leads to functional impairment of HIV specific responses.
Collapse
Affiliation(s)
- Sanjay Mendiratta
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
22
|
Hamilton SE, Schenkel JM, Akue AD, Jameson SC. IL-2 complex treatment can protect naive mice from bacterial and viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6584-90. [PMID: 21037095 PMCID: PMC3016939 DOI: 10.4049/jimmunol.1001215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IL-2 complexes have substantial effects on the cellular immune system, and this approach is being explored for therapeutic application in infection and cancer. However, the impact of such treatments on subsequent encounter with pathogens has not been investigated. In this study, we report that naive mice treated with a short course of IL-2 complexes show enhanced protection from newly encountered bacterial and viral infections. IL-2 complex treatment expands both the NK and CD8 memory cell pool, including a recently described population of preexisting memory-phenotype T cells responsive to previously unencountered foreign Ags. Surprisingly, prolonged IL-2 complex treatment decreased CD8 T cell function and protective immunity. These data reveal the impact of cytokine complex treatment on the primary response to infection.
Collapse
Affiliation(s)
- Sara E. Hamilton
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Center for Immunology, Minneapolis, MN, 55454, USA
| | - Jason M. Schenkel
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Center for Immunology, Minneapolis, MN, 55454, USA
| | - Adovi D. Akue
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Center for Immunology, Minneapolis, MN, 55454, USA
| | - Stephen C. Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Center for Immunology, Minneapolis, MN, 55454, USA
| |
Collapse
|
23
|
Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:150-60. [PMID: 21084461 DOI: 10.1128/cvi.00341-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV/AIDS continue to devastate populations worldwide. Recent studies suggest that vaccines that induce beneficial immune responses in the mucosal compartment may improve the efficacy of HIV vaccines. Adenovirus serotype 5 (Ad5)-based vectors remain a promising platform for the development of effective vaccines. In an effort to improve the efficacy of Ad5-based vaccines, even in the presence of preexisting Ad5 immunity, we evaluated the potential for an Ad5-based HIV vaccine to induce antigen-specific immune responses following sublingual (s.l.) administration, a route not previously tested in regard to Ad-based vaccines. s.l. vaccination with an Ad5-based HIV-Gag vaccine resulted in a significant induction of Gag-specific cytotoxic T-lymphocyte (CTL) responses in both the systemic and the mucosal compartment. We also show that s.l. immunization not only avoided preexisting Ad5 immunity but also elicited a broad repertoire of antigen-specific CTL clones. Additionally, we confirm for the first time that oral delivery of a vaccine expressing a potent Toll-like receptor (TLR) agonist can stimulate innate immune responses through induction of cytokines and chemokines and activation of NK cells, NKT cells, and macrophages in vivo. These results positively correlated with improved antigen-specific CTL responses. These results could be achieved both in Ad5-naïve mice and in mice with preexisting immunity to Ad5. The simplicity of the s.l. vaccination regimen coupled with augmentation of TLR-dependent pathways active in the oral cavity makes s.l. delivery a promising method for HIV vaccine development specifically, as well as for many other vaccine applications in general.
Collapse
|