1
|
Power D, Elstrott J, Schallek J. Photoreceptor loss does not recruit neutrophils despite strong microglial activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.25.595864. [PMID: 38854151 PMCID: PMC11160676 DOI: 10.1101/2024.05.25.595864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In response to central nervous system (CNS) injury, tissue resident immune cells such as microglia and circulating systemic neutrophils are often first responders. The degree to which these cells interact in response to CNS damage is poorly understood, and even less so, in the neural retina which poses a challenge for high resolution imaging in vivo. In this study, we deploy fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) to study fluorescent microglia and neutrophils in mice. We simultaneously track immune cell dynamics using label-free phase-contrast AOSLO at micron-level resolution. Retinal lesions were induced with 488 nm light focused onto photoreceptor (PR) outer segments. These lesions focally ablated PRs, with minimal collateral damage to cells above and below the plane of focus. We used in vivo (AOSLO, SLO and OCT) imaging to reveal the natural history of the microglial and neutrophil response from minutes-to-months after injury. While microglia showed dynamic and progressive immune response with cells migrating into the injury locus within 1-day after injury, neutrophils were not recruited despite close proximity to vessels carrying neutrophils only microns away. Post-mortem confocal microscopy confirmed in vivo findings. This work illustrates that microglial activation does not recruit neutrophils in response to acute, focal loss of PRs, a condition encountered in many retinal diseases.
Collapse
Affiliation(s)
- Derek Power
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Justin Elstrott
- Department of Translational Imaging, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Gao R, Chen K, Wang Y, Guo R, Zhang X, Wu P, Wang W, Huang Q, Xie X, Yang S, Lv Y, Ren Q, Liu F, Chen S, Ma F, Cheng T, Cheng H. FHL2 deficiency aggravates Candida albicans infection through decreased myelopoiesis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:722-733. [PMID: 39815033 DOI: 10.1007/s11427-024-2645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/06/2024] [Indexed: 01/18/2025]
Abstract
Hematopoiesis is a finely tuned process that generates all blood cell types through self-renewal and differentiation, which is crucial for maintaining homeostasis. Acute infections can prompt a hematopoietic response known as emergency myelopoiesis. In this study, using a Candida albicans (C. albicans) infection model, we demonstrated for the first time that disruption of Fhl2 led to increased fungal burden, heightened inflammatory response and reduced survival rates. Impaired myeloid hematopoiesis and immune cell production were evident, as proved by the decreased numbers of hematopoietic stem and progenitor cells (HSPCs) and granulocytes in the bone marrow of Fhl2-deficient mice. In conclusion, FHL2 regulated emergency myelopoiesis in response to C. albicans, affecting the host's defense against pathogens.
Collapse
Affiliation(s)
- Rongmei Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Kanchao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Yimin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Qingxiang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Xuemei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China.
| |
Collapse
|
3
|
Shen R, Jiang Y, Liu G, Gao S, Sun H, Wu X, Gu J, Wu H, Mo K, Niu X, Ben‐Ami R, Shang W, Zhang J, Wang J, Miao C, Wang Z, Chen W. Single-Cell Landscape of Bronchoalveolar Lavage Fluid Identifies Specific Neutrophils during Septic Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406218. [PMID: 39887584 PMCID: PMC11923989 DOI: 10.1002/advs.202406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/05/2024] [Indexed: 02/01/2025]
Abstract
Sepsis-induced immunosuppression is related to increased susceptibility to secondary infections and death. Lung is the most vulnerable target organ in sepsis, but the understanding of the pulmonary immunosuppression state is still limited. Here, single-cell RNA sequencing of bronchoalveolar lavage fluid (BALF) is performed to map the landscape of immune cells, revealing a neutrophil-driven immunosuppressive program in the lungs of patients with immunosuppressive sepsis. Although immunosuppressive genes are upregulated in different immune cells, only neutrophils dramatically increase in the BALF of patients in immunosuppressive phase of sepsis. Five neutrophil subpopulations in BALF are identified, among which CXCR2+ and CD274 (PD-L1 coding gene)+IL1RN+ neutrophil subpopulations increased significantly during septic immunosuppression. Interestingly, a developmental trajectory from CXCR2+ to CD274+IL1RN+ neutrophil subpopulation is disclosed. Moreover, the therapeutic effect of CXCR2 blockade is observed on the survival of septic mice, along with a decreased number of PD-L1+ neutrophils. Taken together, the CXCR2+ neutrophil subpopulation is discovered as a contributor to immunosuppression in sepsis and identified it as a potential therapeutic target in sepsis treatment.
Collapse
Affiliation(s)
- Rong Shen
- Department of PathologyNanfang HospitalSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdong510515China
| | - Yi Jiang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Guanglong Liu
- Department of PathologyNanfang HospitalSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdong510515China
| | - Shenjia Gao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Hao Sun
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Xinyi Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Jiahui Gu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Han Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Ke Mo
- Experimental Center of BIOQGeneYuanDong International Academy Of Life SciencesHong Kong999077China
| | - Xing Niu
- Experimental Center of BIOQGeneYuanDong International Academy Of Life SciencesHong Kong999077China
| | - Ronen Ben‐Ami
- Infectious Diseases UnitTel Aviv Sourasky Medical CenterFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Wanjing Shang
- Lymphocyte Biology SectionLaboratory of Immune System BiologyNational Institute of Allergy and Infectious Diseases, NIHBethesdaMD20814USA
| | - Jie Zhang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Jun Wang
- Department of Integrative Medicine and NeurobiologySchool of Basic Medical ScienceInstitutes of Integrative MedicineState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Changhong Miao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
| | - Zhizhang Wang
- Department of PathologyNanfang HospitalSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdong510515China
| | - Wankun Chen
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghai200032China
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghai201104China
- Department of AnesthesiologyQingPu Branch of Zhongshan Hospital Affiliated to Fudan UniversityShanghai201700China
| |
Collapse
|
4
|
Quan M, Zhang H, Deng X, Liu H, Xu Y, Song X. Neutrophils, NETs and multiple sclerosis: a mini review. Front Immunol 2025; 16:1487814. [PMID: 39935468 PMCID: PMC11810747 DOI: 10.3389/fimmu.2025.1487814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory and degenerative autoimmune disease characterized by the activation of various inflammatory cells, leads to demyelination and neuronal injury. Neutrophils, often underestimated in MS, are gaining increased attention for their significant functions in MS patients and the experimental autoimmune encephalomyelitis (EAE) animal model. Neutrophils play multiple roles in mediating the pathogenesis of autoimmune diseases, and numerous studies suggest that neutrophils might have a crucial role through neutrophil extracellular trap (NET) formation. Studies on NETs in MS are still in their infancy. In this review, we discuss the clinical perspective on the linkage between neutrophils and MS or EAE, as well as the role of NETs in the pathogenesis of MS/EAE. Further, we analyze the potential mechanisms by which NETs contribute to MS, the protective effects of NETs in MS, and their value as targets for disease intervention. NET formation and/or clearance as a therapeutic approach for MS still requires research in greater depth.
Collapse
Affiliation(s)
- Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaohong Deng
- Department of Rehabilitation Medicine, Beijing Zhongguancun Hospital, Beijing, China
| | - Huijia Liu
- Department of Internal Medicine, The Military Special Care Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yanqiu Xu
- Department of Neurology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xiujuan Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Wilson TR, Peterson KR, Morris SA, Kuhnell D, Kasper S, Burns KA. Neutrophils initiate proinflammatory immune responses in early endometriosis lesion development. JCI Insight 2025; 10:e186133. [PMID: 39836475 PMCID: PMC11949021 DOI: 10.1172/jci.insight.186133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Endometriosis is a chronic gynecological disease that affects 1 in 10 reproductive-aged women. Most studies investigate established disease; however, the initiation and early events in endometriotic lesion development remain poorly understood. Our study used neutrophils from human menstrual effluent from patients with and without endometriosis for immunophenotyping, and it used a mouse model of endometriosis and a mouse endometriosis cell line to determine the role of neutrophils in the initiating events of endometriosis, including attachment and survival of minced endometrial pieces. In menstrual effluent from women with endometriosis, the ratios of aged and proangiogenic neutrophils increased compared with controls, indicating a potentially permissive proinflammatory microenvironment. In our endometriosis mouse model, knocking down neutrophil recruitment with α-CXCR2 into the peritoneum decreased endometrial tissue adhesion - supported by decreased levels of myeloperoxidase and neutrophil elastase in both developing lesions and peritoneal fluid. Fibrinogen was identified as the preferred substrate for endometrial cell adhesion in an in vitro adhesion assay and in developing lesions in vivo. Together, aged and proangiogenic neutrophils and their secretions likely promote attachment and formation of endometriotic lesions by releasing neutrophil extracellular traps and upregulating fibrinogen expression as a provisional matrix to establish attachment and survival in the development of endometriosis lesions.
Collapse
Affiliation(s)
- Taylor R. Wilson
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Kurt R. Peterson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Stephanie A. Morris
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Damaris Kuhnell
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Susan Kasper
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Katherine A. Burns
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| |
Collapse
|
6
|
Li J, Zhai X, Yu C. Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells. Front Immunol 2025; 15:1505755. [PMID: 39850888 PMCID: PMC11754049 DOI: 10.3389/fimmu.2024.1505755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells. Despite significant advances in both scientific and clinical research, SCI therapy still faces several challenges. These challenges primarily stem from our limited understanding of the spatial dynamics of immune cell distribution and the processes that regulate their interactions within the microenvironment following injury. Therefore, a comprehensive investigation into the spatial dynamics of immune cells following SCI is essential to uncover their mechanisms in neuroinflammation and repair, and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Jian Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China
| | - Xiaolei Zhai
- Department of Neurosurgery, Shuyang Hospital of Traditional Chinese Medicine, Affiliated Shuyang Hospital of Nanjing University of Chinese Medicine, Shuyang, China
| | - Chaochun Yu
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China
| |
Collapse
|
7
|
Wu Y, Cao Z, Liu W, Cahoon JG, Wang K, Wang P, Hu L, Chen Y, Moser M, Vella AT, Ley K, Wen L, Fan Z. Nanoscopy reveals integrin clustering reliant on kindlin-3 but not talin-1. Cell Commun Signal 2025; 23:12. [PMID: 39773732 PMCID: PMC11707915 DOI: 10.1186/s12964-024-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential regulators for the inside-out signaling induced β2 integrin activation. However, their contribution in the inside-out signaling induced β2 integrin clustering is unclear because conventional assays on integrin clustering are usually performed on adhered cells, where integrin-ligand binding concomitantly induces integrin outside-in signaling. METHODS We used flow cytometry and quantitative super-resolution stochastic optical reconstruction microscopy (STORM) to quantify β2 integrin activation and clustering, respectively, in kindlin-3 and talin-1 knockout leukocytes. We also tested whether wildtype or Pleckstrin homology (PH) domain deleted kindlin-3 can rescue the kindlin-3 knockout phenotypes. RESULTS GPCR-triggered inside-out signaling alone can induce β2 integrin clustering. As expected, both kindlin-3 and talin-1 knockout decreases integrin activation. Interestingly, only kindlin-3 but not talin-1 contributes to integrin clustering in the scenario of inside-out-signaling, wherein a critical role of the PH domain of kindlin-3 was highlighted. CONCLUSIONS Since talin was known to facilitate integrin clustering in outside-in-signaling-involved cells, our finding provides a paradigm shift by suggesting that the molecular mechanisms of integrin clustering upon inside-out signaling and outside-in signaling are different. Our data also contradict the conventional assumption that integrin activation and clustering are tightly inter-connected by showing separated regulation of the two during inside-out signaling. Our study provides a new mechanism that shows kindlin-3 regulates β2 integrin clustering and suggests that integrin clustering should be assessed independently, aside from integrin activation, when studying leukocyte adhesion in inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Ziming Cao
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Wei Liu
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Jason G Cahoon
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Kepeng Wang
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Lai Wen
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA.
| | - Zhichao Fan
- Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA.
| |
Collapse
|
8
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Tian H, Yao J, Ba Q, Meng Y, Cui Y, Quan L, Gong W, Wang Y, Yang Y, Yang M, Gao C. Cerebral biomimetic nano-drug delivery systems: A frontier strategy for immunotherapy. J Control Release 2024; 376:1039-1067. [PMID: 39505218 DOI: 10.1016/j.jconrel.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Brain diseases are a significant threat to human health, especially in the elderly, and this problem is growing as the aging population increases. Efficient brain-targeted drug delivery has been the greatest challenge in treating brain disorders due to the unique immune environment of the brain, including the blood-brain barrier (BBB). Recently, cerebral biomimetic nano-drug delivery systems (CBNDSs) have provided a promising strategy for brain targeting by mimicking natural biological materials. Herein, this review explores the latest understanding of the immune microenvironment of the brain, emphasizing the immune mechanisms of the occurrence and progression of brain disease. Several brain targeting systems are summarized, including cell-based, exosome-based, protein-based, and microbe-based CBNDSs, and their immunological mechanisms are highlighted. Moreover, given the rise of immunotherapy, the latest applications of CBNDSs in immunotherapy are also discussed. This review provides a comprehensive understanding of CBNDSs and serves as a guideline for immunotherapy in treating brain diseases. In addition, it provides inspiration for the future of CBNDSs.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qi Ba
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
10
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 PMCID: PMC11648168 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Nishioka Y, Murayama G, Kusaoi M, Takemasa D, Kaneda K, Kuga T, Hagiwara Y, Saito T, Yamaji Y, Suzuki Y, Nagaoka T, Yamaji K, Tamura N. Enhanced therapeutic efficacy of granulocyte/monocyte adsorption in rats with drug-induced colitis : Insights from a downsized bead column and newly formed B cells. Ther Apher Dial 2024. [PMID: 39568103 DOI: 10.1111/1744-9987.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Granulocyte/monocyte adsorption therapy can manage mild-to-moderate inflammatory bowel disease by removing activated granulocytes and monocytes. We evaluated granulocyte/monocyte adsorption using new columns with reduced bead size and theoretically enhanced adsorption. METHODS We assessed granulocyte/monocyte adsorption in rats with colitis by analyzing cell changes and cytokine production. RESULTS Granulocyte/monocyte adsorption with the new columns improved histology in rats with colitis. Contrary to expectations, the adsorption rate of granulocytes/monocytes into the blood did not show a significant improvement. However, flow cytometry showed increased B cells in peripheral blood mononuclear cells and newly formed B cells in the bone marrow, which produced more interleukin-10 than peripheral blood B cells. Newly formed B cells adoptively transferred into colitis rats accumulated at the inflammation site and tended to inhibit intestinal shortening. CONCLUSIONS Newly formed B cells with strong interleukin-10 production may alleviate inflammation. The new columns suggest potential for controlling colitis.
Collapse
Affiliation(s)
- Yujin Nishioka
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Taiga Kuga
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yukitomo Hagiwara
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takumi Saito
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshifumi Suzuki
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Zhang T, Neunaber C, Ye W, Wagner A, Bülow JM, Relja B, Bundkirchen K. Aging Influences Fracture Healing on the Cellular Level and Alters Systemic RANKL and OPG Concentrations in a Murine Model. Adv Biol (Weinh) 2024; 8:e2300653. [PMID: 39164219 DOI: 10.1002/adbi.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Clinical complications frequently follow polytrauma and bleeding fractures, increasing the risk of delayed fracture healing and nonunions, especially in aged patients. Therefore, this study examines age's impact on fracture repair with and without severe bleeding in mice. Young (17-26 weeks) and aged (64-72 weeks) male C57BL/6J mice (n = 72 in total, n = 6 per group) are allocated into 3 groups: the fracture group (Fx) undergoes femur osteotomy stabilized via external fixator, the combined trauma group (THFx) additionally receives pressure-controlled trauma hemorrhage (TH) and Sham animals are implanted with catheter and fixator without blood loss or osteotomy. Femoral bones are evaluated histologically 24 h and 3 weeks post-trauma, while RANKL/OPG and β-CTx are measured systemically via ELISA after 3 weeks. Aging results in less mineralized bone and fewer osteoclasts within the fracture of aged mice in contrast to young groups after three weeks. Systemically, aged animals exhibit increased RANKL and OPG levels after fracture compared to their young counterparts. The RANKL/OPG ratio rises in aged Fx animals compared to young mice, with a similar trend in THFx groups. In conclusion, age has an effect during the later course of fracture healing on the cellular and systemic levels.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Weikang Ye
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Spine Surgery, Yu Huang Ding Hospital, Yu Dong Str. 20, Yan Tai, 264000, China
| | - Alessa Wagner
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Jasmin Maria Bülow
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Borna Relja
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
13
|
Gayathri SL, Bhakat M, Mohanty TK. Thermographic assessment of mastitis progression in sahiwal cattle: Insights into the patterns in the natural course of infection. Microb Pathog 2024; 196:106964. [PMID: 39313135 DOI: 10.1016/j.micpath.2024.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Mastitis is a global concern in the dairy sector, demanding innovative solutions for effective management for quality lifetime milk production. In this study, infrared thermography (IRT) as a non-invasive technology was integrated into routine farm activities for continuous health monitoring of animals. For 30 days, we systematically monitored the udder health status in 40 Sahiwal cows (160 quarters), employing IRT along with the California Mastitis Test (CMT). We also assessed somatic cell count (SCC), microbial identification, and milk quality parameters of representative samples. The thermal imaging data was analyzed, considering both backward propagation from the 0th day to the -10th day and forward propagation from the 0th day to the +10th day. Our findings revealed that on the 0th day, the mean temperatures of the udder surface skin temperature (USST) and teat skin surface temperature (TSST) exhibited differences (p < 0.05) between the quarters affected by sub-clinical mastitis (SCM) and clinical mastitis (CM) in comparison to the healthy quarters, with the highest degree of difference observed. The observed temperature differences between CM and SCM quarters compared to healthy ranged from 1.8 to 3.62 °C and 0.98 to 3.23 °C for USST, and from 1.68 to 3.16 °C and 0.56 to 2.32 °C for TSST, respectively. Furthermore, our observations indicated that both udder and teat quarters responded differently to mastitis. A temperature rise of 1.37 °C in SCM quarters and 1.75 °C in CM quarters was observed between the -10th and -8th day relative to day 0, with the increase being more pronounced in the morning hours. Also, a notable temperature surge occurred during the -2nd and -1st days relative to the 0th day. The log10SCC values and milk quality parameters significantly differed (p < 0.05) between mastitis-affected and healthy samples. In addition, Staphylococcus spp. was identified as the predominant mastitis-causing pathogen in the bacteriological identification conducted in this study. Therefore, IRT efficiently assesses the initiation point of udder infection in Sahiwal cows, aiding in effective udder health management.
Collapse
Affiliation(s)
- S L Gayathri
- Livestock Production Management Division, ICAR- National Dairy Research Institute, Karnal, Haryana-132001, India.
| | - M Bhakat
- Livestock Production Management Division, ICAR- National Dairy Research Institute, Karnal, Haryana-132001, India.
| | - T K Mohanty
- Livestock Production Management Division, ICAR- National Dairy Research Institute, Karnal, Haryana-132001, India.
| |
Collapse
|
14
|
Zhao X, Wang Q, Wang W, Lu S. Increased neutrophil extracellular traps caused by diet-induced obesity delay fracture healing. FASEB J 2024; 38:e70126. [PMID: 39446097 PMCID: PMC11580727 DOI: 10.1096/fj.202401523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Obesity, recognized as a risk factor for nonunion, detrimentally impacts bone health, with significant physical and economic repercussions for affected individuals. Nevertheless, the precise pathomechanisms by which obesity impairs fracture healing remain insufficiently understood. Multiple studies have identified neutrophil granulocytes as key players in the systemic immune response, being the predominant immune cells in early fracture hematomas. This study identified a previously unreported critical period for neutrophil infiltration into the callus. In vivo experiments demonstrated that diet-induced obesity (DIO) mice showed earlier neutrophil infiltration, along with increased formation of neutrophil extracellular traps (NETs), compared to control mice during the endochondral phase of fracture repair. Furthermore, Padi4 knockout was found to reduce NET formation and mitigate the fracture healing delays caused by high-fat diets. Mechanistically, in vitro analyses revealed that NETs, by activating NLRP3 inflammasomes, inhibited the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and concurrently promoted M1-like macrophage polarization. These findings establish a connection between NET formation during the endochondral phase and delayed fracture healing, suggesting that targeting NETs could serve as a promising therapeutic approach for addressing obesity-induced delays in fracture recovery.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Qijun Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shibao Lu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
15
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
16
|
Villar CC, Sloniak MC, de Assis JB, Porto RC, Romito GA. Unveiling sex-disparities and the impact of gender-affirming hormone therapy on periodontal health. FRONTIERS IN DENTAL MEDICINE 2024; 5:1430193. [PMID: 39917660 PMCID: PMC11797946 DOI: 10.3389/fdmed.2024.1430193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction As personalized medicine advances, the need to explore periodontal health across different sexes and gender identities becomes crucial. This narrative review addresses the gap in understanding how biological sex and gender-affirming hormone therapy (GAHT) influence periodontitis risk. Results Research has uncovered significant sex-based immunological disparities driven by X and Y chromosome gene expression and sex-hormones, which may influence susceptibility to periodontitis. Additionally, preliminary findings suggest that GAHT, particularly testosterone therapy in transgender men, could exacerbate pro-inflammatory cytokine production and alter immune cell responses, which may exacerbate inflammatory pathways crucial in the progression of periodontitis. Conversely, the effects of estrogen therapy in transgender women, although less extensively studied, suggest modifications in B cell functionality. These observations highlight the complex role of GAHT in modulating immune responses that are central to the development and exacerbation of periodontal disease. Discussion The review highlights a complex interaction between sex hormones, gene expression patterns, immune responses, and periodontitis risk. While cisgender males show increased susceptibility to periodontitis that could be linked to specific immune pathways, GAHT appears to modify these pathways in transgender individuals, potentially altering their risk and disease progression patterns. Conclusion There is a critical need for more focused research on the direct impacts of GAHT on periodontal health. Understanding the nuances of immune modulation by GAHT will aid in crafting personalized periodontal care for transgender individuals, aligning with the broader goals of inclusive and effective healthcare.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Discipline of Periodontics, Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | - Mariane Cristina Sloniak
- Discipline of Periodontics, Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | - Josiane Betim de Assis
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Renata Cassiano Porto
- Discipline of Periodontics, Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | - Giuseppe Alexandre Romito
- Discipline of Periodontics, Department of Stomatology, University of São Paulo School of Dentistry, São Paulo, Brazil
| |
Collapse
|
17
|
Anees M, Jawed K, Ali Z, Khan AM, Siddiqui NA. Association of neutrophil-to-lymphocyte ratio and hemodialysis access failure in patients with end stage renal disease: A systematic review and meta-analysis. J Vasc Access 2024:11297298241276560. [PMID: 39252475 DOI: 10.1177/11297298241276560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
This systematic review and meta-analysis aimed to assess the association of neutrophil-to-lymphocyte ratio (NLR) with an elevated risk of vascular access failure in end-stage renal disease (ESRD) patients undergoing hemodialysis. A comprehensive database search of MEDLINE (via PubMed), Scopus, and Cochrane Central was performed. Studies reporting the values of NLR in both functional and non-functional AVF groups in ESRD patients were selected. Quality assessment was performed using the Modified Newcastle-Ottawa scale for observational studies. Meta-analysis was performed using an inverse variance random effects model. Seven observational studies met the inclusion criteria, including 1313 participants with 554 cases and 759 controls. Pooled results showed significantly high NLR levels in patients with non-functional arteriovenous fistula (AVF) compared to functional AVF (SMD = 1.19, 95% CI = 0.74-1.65, p < 0.001). Subgroup analysis confirmed the consistency of the association between NLR and AVF failure across study design (SMD = 1.76, 95% CI = 0.78-2.73, p = 0.0004 in prospective vs SMD = 0.87, 95% CI = 0.42-1.32, p = 0.0001 in retrospective studies), etiology (SMD = 1.63, 95% CI = 0.75-2.52, p = 0.0003 in stenosis or thrombosis; and SMD = 0.80, 95% CI = 0.27-1.34, p = 0.003 in failure to mature of AVF), and NLR measurement timing (SMD = 0.98, 95% CI = 0.42-1.54, p = 0.0006 in preoperative vs SMD = 1.58, 95% CI = 0.47-2.69, p = 0.005 in postoperative NLR). The pooled odds ratio revealed high NLR values as a significant predictor of AVF failure in ESRD patients (OR = 3.91, 95% CI = 1.91-7.98, p = 0.0002). The pooled sensitivity and specificity were 89.72% (95% CI = 77.51%-95.67%) and 72.95% (95% CI = 63.82%-80.47%), respectively. The high NLR is a useful and predictive marker for AVF failure in hemodialysis patients. Future studies should prioritize larger cohort studies to validate and reinforce these observations.
Collapse
Affiliation(s)
| | - Kinza Jawed
- Aga Khan University Hospital, Karachi, Pakistan
| | - Zuhaib Ali
- Aga Khan University Hospital, Karachi, Pakistan
| | | | | |
Collapse
|
18
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
19
|
Wang Y, Shou X, Wu Y, Li D. Immuno-inflammatory pathogenesis in ischemic heart disease: perception and knowledge for neutrophil recruitment. Front Immunol 2024; 15:1411301. [PMID: 39050842 PMCID: PMC11266024 DOI: 10.3389/fimmu.2024.1411301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Traditional Chinese Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xintian Shou
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
21
|
Liu S, Chen Y, Jiang Y, Du J, Guo L, Xu J, Liu Y, Liu Y. The bidirectional effect of neutrophils on periodontitis model in mice: A systematic review. Oral Dis 2024; 30:2865-2875. [PMID: 37927000 DOI: 10.1111/odi.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To evaluate the regulatory role of neutrophils as the first line of host immune defense in the periodontal microenvironment of mice. METHODS A systematic search was performed using PubMed, Web of Science, and ScienceDirect databases for articles published between 2012 and 2023. In this review, articles investigating the effect of neutrophils on alveolar bone resorption in a mouse model of periodontitis were selected and evaluated according to eligibility criteria. Important variables that may influence outcomes were analyzed. RESULTS Eleven articles were included in this systematic review. The results showed that because of their immune defense functions, the functional homeostasis of local neutrophils is critical for periodontal health. Neutrophil deficiency aggravates alveolar bone loss. However, several studies have shown that excessive neutrophil infiltration is positively correlated with alveolar bone resorption caused by periodontitis in mice. Therefore, the homeostasis of neutrophil function needs to be considered in the treatment of periodontitis. CONCLUSIONS Pooled analysis suggests that neutrophils play a bidirectional role in periodontal tissue remodeling in mouse periodontitis models. Therefore, targeted regulation of local neutrophil function provides a novel strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Ji J, Zhong H, Wang Y, Liu J, Tang J, Liu Z. Chemerin attracts neutrophil reverse migration by interacting with C-C motif chemokine receptor-like 2. Cell Death Dis 2024; 15:425. [PMID: 38890311 PMCID: PMC11189533 DOI: 10.1038/s41419-024-06820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Neutrophil reverse migration (rM) is a recently identified phenomenon in which neutrophils migrate away from the inflammatory site back into the vasculature following initial infiltration, which involved in the resolution of loci inflammatory response or dissemination of inflammation. Present study was aimed to explore the mechanisms in neutrophil rM. By scRNA-seq on the white blood cells in acute lung injury model, we found rM-ed neutrophils exhibited increased gene expression of C-C motif chemokine receptor-like 2 (Ccrl2), an atypical chemokine receptor. Furthermore, an air pouch model was established to directly track rM-ed neutrophils in vivo. Air pouches were generated by 3 ml filtered sterile air injected subcutaneously for 3 days, and then LPS (2 mg/kg) was injected into the pouches to mimic the inflammatory state. For the rM-ed neutrophil tracking system, cell tracker CMFDA were injected into the air pouch to stain the inflammatory loci cells, and after 6 h, stained cells in blood were regarded as the rM-ed neutrophil. Based on this tracking system, we confirmed that rM-ed neutrophils showed increased CCRL2. We also found that the concentrations of the CCRL2 ligand chemerin in plasma was increased in the late stage. Neutralizing chemerin decreased the rM-ed neutrophil ratio in the blood. These results suggest that circulating chemerin attracts neutrophils to leave inflammatory sites by interacting with CCRL2, which might involve in the dissemination of inflammation.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Hanhui Zhong
- Department of Anesthesia, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yawen Wang
- Department of Anesthesia, The Third Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Tang
- Department of Anesthesia, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
23
|
ELKasar AO, Hussien FZ, Abdel-Hamied HE, Saleh IG, Mahgoup EM, El-Arabey AA, Abd-Allah AR. Effect of lithium on chemotherapy-induced neutropenia in Egyptian breast cancer patients; a prospective clinical study. Cancer Chemother Pharmacol 2024; 93:541-554. [PMID: 38324036 DOI: 10.1007/s00280-023-04620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/06/2023] [Indexed: 02/08/2024]
Abstract
PURPOSE Myelosuppressive chemotherapy-induced neutropenia (CIN) remains a major limitation of cancer treatment efficacy, necessitating very expensive supportive care. Lithium carbonate, an inexpensive drug, can increase the number of neutrophils, possibly providing an efficacious and cost-effective alternative for treating CIN. The aim of this study was to determine whether lithium therapy can attenuate chemotherapy-induced neutropenia and leukopenia in breast cancer patients. METHODS A total of 50 breast cancer patients were enrolled in this prospective, interventional, randomized, controlled, and single-blind study. The patients were divided into two groups: a control group (group 1, N = 25 patients) and a lithium-treated (treatment) group (group 2, N = 25 patients). Group 1 patients were further subclassified into a non-neutropenic control group (N = 16) and a neutropenic control (N = 9) based on the subsequent development of severe neutropenia, or not. The control group received 4 cycles of doxorubicin or epirubicin plus cyclophosphamide followed by 2 cycles of paclitaxel. The treatment group received the same regimen as the control group as well as oral lithium carbonate throughout the chemotherapy cycles. RESULTS The results showed that the absolute neutrophil count (ANC) was increased in the lithium-treated group, while it was markedly reduced in both the non-neutropenic and neutropenic control groups (by 55.56% and 65.42% post-4 chemotherapy cycles, and by 19.57% and 39.90% post-6 cycles, respectively). The same pattern of alterations was observed for the total white blood cell count in both the control and treatment groups. In addition, the incidence and period prevalence were greatly reduced in the lithium-treated group compared to non-neutropenic and neutropenic control groups. CONCLUSION Lithium therapy ameliorated chemotherapy-induced leukopenia and neutropenia in breast cancer patients. This may provide a new strategy for cost-effective treatment of CIN, particularly in Egyptian cancer patients.
Collapse
Affiliation(s)
- Ahmed O ELKasar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt
| | - Fatma Z Hussien
- Department of Clinical Oncology and Nuclear Medicine, Oncology Center, Faculty of Medicine, Tanta University Hospital, Tanta, Egypt
| | - Hala E Abdel-Hamied
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ibrahim G Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt
| | - Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt.
| | - Amr A El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt
| | - Adel R Abd-Allah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
24
|
Liu C, Liu X, Xin H, Li X. Associations of inflammatory cytokines with palmoplantar pustulosis: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1387210. [PMID: 38882664 PMCID: PMC11176421 DOI: 10.3389/fmed.2024.1387210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Variations in circulatory cytokine levels have been observed during the onset and course of palmoplantar pustulosis (PPP); however, whether these changes are due to etiological or secondary factors is unclear. To clarify the causal relationship, we conducted a summarized-level bidirectional Mendelian randomization (MR) analysis in this study. Methods A FinnGen biobank genome-wide association study (GWAS) of 212,766 individuals (524 PPP patients and 212,242 controls) provided summary data for PPP, whereas genetic instrumental variables (IVs) linked to circulation cytokine levels were gathered from a GWAS of 14,824 European individuals. The inverse-variance weighted (IVW), weighted median (WME), simple mode, and MR-Egger methods were used to ascertain the changes in PPP pathogenic cytokine taxa. Sensitivity analysis, which included horizontal pleiotropy analysis, was then conducted. The reliability of the results was assessed using the leave-one-out approach and the MR Steiger test, which evaluated the strength of a causal relationship. To evaluate the reverse causality between PPP and circulating cytokine levels, a reverse MR analysis was carried out. Results Our study demonstrated positive associations between C-X-C motif chemokine 6 (CXCL6) and PPP (odds ratio, OR 1.257, 95%CI: 1.001-1.570, p = 0.043). C-C motif chemokine 19 (CCL19) and interleukin-6 (IL-6) were suggested to be protectively associated with the development of PPP (OR: 0.698,95% CI: 0.516-0.944, p = 0.020; OR: 0.656, 95%CI:0.437-0.985, p = 0.042). The results were steady after sensitivity and heterogeneity analyses. Conclusion At the genetic prediction level, we identified causally connected inflammation-related variables that contributed to the onset and development of PPP. The therapeutic options for some refractory PPP have expanded due to tailored cytokine therapy, generating fresh concepts for PPP diagnostics and mechanism investigation.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
25
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Nagarkatti PS, Nagarkatti M. 6-Formylindolo[3,2-b]carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells. J Leukoc Biol 2024; 115:1070-1083. [PMID: 38366630 PMCID: PMC11135611 DOI: 10.1093/jleuko/qiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024] Open
Abstract
FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.
Collapse
Affiliation(s)
- Alkeiver S Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Bryan L Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| |
Collapse
|
26
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
27
|
Ji HZ, Liu B, Ren M, Li S, Zheng JF, Liu TY, Yu HH, Sun Y. The CXCLs-CXCR2 axis modulates the cross-communication between tumor-associated neutrophils and tumor cells in cervical cancer. Expert Rev Clin Immunol 2024; 20:559-569. [PMID: 38224014 DOI: 10.1080/1744666x.2024.2305808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.
Collapse
Affiliation(s)
- Hai-Zhou Ji
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Bin Liu
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Mi Ren
- Department of Oncological Nursing, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Sang Li
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Jian-Feng Zheng
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Tong-Yu Liu
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Hui-Hui Yu
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Yang Sun
- Department of Gynecology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol 2024; 31:307-324. [PMID: 38167824 DOI: 10.1111/iju.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Human prostate cancer is a heterogenous malignancy that responds poorly to immunotherapy targeting immune checkpoints. The immunosuppressive tumor microenvironment that is typical of human prostate cancer has been the main obstacle to these treatments. The effectiveness of these therapies is also hindered by acquired resistance, leading to slow progress in prostate cancer immunotherapy. Results from the highly anticipated late-stage clinical trials of PD-1/PD-L1 immune checkpoint blockade in patients with advanced prostate cancer have highlighted some of the obstacles to immunotherapy. Despite the setbacks, there is much that has been learned about the mechanisms that drive resistance, and new strategies are being developed and tested. Here, we review the status of immune checkpoint blockade and the immunosuppressive tumor microenvironment and discuss factors contributing to innate and adaptive resistance to immune checkpoint blockade within the context of prostate cancer. We then examine current strategies aiming to overcome these challenges as well as prospects.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
29
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
30
|
Akkaya-Ulum YZ, Sen B, Akbaba TH, Balci-Peynircioglu B. InflammamiRs in focus: Delivery strategies and therapeutic approaches. FASEB J 2024; 38:e23528. [PMID: 38441434 DOI: 10.1096/fj.202302028r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.
Collapse
Affiliation(s)
- Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basak Sen
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
31
|
Zerbe CS, Holland SM. Functional neutrophil disorders: Chronic granulomatous disease and beyond. Immunol Rev 2024; 322:71-80. [PMID: 38429865 PMCID: PMC10950525 DOI: 10.1111/imr.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Since their description by Metchnikoff in 1905, phagocytes have been increasingly recognized to be the entities that traffic to sites of infection and inflammation, engulf and kill infecting organisms, and clear out apoptotic debris all the while making antigens available and accessible to the lymphoid organs for future use. Therefore, phagocytes provide the gateway and the first check in host protection and immune response. Disorders in killing and chemotaxis lead not only to infection susceptibility, but also to autoimmunity. We aim to describe chronic granulomatous disease and the leukocyte adhesion deficiencies as well as myeloperoxidase deficiency and G6PD deficiency as paradigms of critical pathways.
Collapse
Affiliation(s)
- Christa S Zerbe
- Laboratory of Clinical Immunology, National Institutes of Allergy and Infectious Disease, The National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
33
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
34
|
Wang Y, Zhang C, Liu T, Yu Z, Wang K, Ying J, Wang Y, Zhu T, Li J, Hu XL, Zhou Y, Lu G. Malat1 regulates PMN-MDSC expansion and immunosuppression through p-STAT3 ubiquitination in sepsis. Int J Biol Sci 2024; 20:1529-1546. [PMID: 38385073 PMCID: PMC10878150 DOI: 10.7150/ijbs.92267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during sepsis and contribute to the development of persistent inflammation-immunosuppression-catabolism syndrome. However, the underlying mechanism remains unclear. Exploring the mechanisms of MDSCs generation may provide therapeutic targets for improving immune status in sepsis. Here, a sepsis mouse model is established by cecal ligation and perforation. Bone marrow cells at different sepsis time points are harvested to detect the proportion of MDSCs and search for differentially expressed genes by RNA-sequence. In lethal models of sepsis, polymorphonuclear-MDSCs (PMN-MDSCs) decrease in early but increase and become activated in late sepsis, which is contrary to the expression of metastasis-associated lung adenocarcinoma transcript 1 (Malat1). In vivo, Malat1 inhibitor significantly increases the mortality in mice with late sepsis. And in vitro, Malat1 down-regulation increases the proportion of PMN-MDSCs and enhanced its immunosuppressive ability. Mechanistically, Malat1 limits the differentiation of PMN-MDSCs by accelerating the degradation of phosphorylated STAT3. Furthermore, Stattic, an inhibitor of STAT3 phosphorylation, improves the survival of septic mice by inhibiting PMN-MDSCs. Overall, the study identifies a novel insight into the mechanism of sepsis-induced MDSCs and provides more evidence for targeting MDSCs in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaodong Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Tingyan Liu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Zhenhao Yu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Kexin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayun Ying
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Jingjing Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xiuchuan Lucas Hu
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Yufeng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- Fujian Key Laboratory of Neonatal Diseases, Fujian, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Cao Z, Garcia MJ, Sklar LA, Wandinger-Ness A, Fan Z. A Flow Cytometry-Based High-Throughput Technique for Screening Integrin-Inhibitory Drugs. J Vis Exp 2024:10.3791/64401. [PMID: 38372326 PMCID: PMC11172413 DOI: 10.3791/64401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
This protocol aims to establish a method for identifying small molecular antagonists of β2 integrin activation, utilizing conformational-change-reporting antibodies and high-throughput flow cytometry. The method can also serve as a guide for other antibody-based high-throughput screening methods. β2 integrins are leukocyte-specific adhesion molecules that are crucial in immune responses. Neutrophils rely on integrin activation to exit the bloodstream, not only to fight infections but also to be involved in multiple inflammatory diseases. Controlling β2 integrin activation presents a viable approach for treating neutrophil-associated inflammatory diseases. In this protocol, a monoclonal antibody, mAb24, which specifically binds to the high-affinity headpiece of β2 integrins, is utilized to quantify β2 integrin activation on isolated primary human neutrophils. N-formylmethionyl-leucyl-phenylalanine (fMLP) is used as a stimulus to activate neutrophil β2 integrins. A high-throughput flow cytometer capable of automatically running 384-well plate samples was used in this study. The effects of 320 chemicals on β2 integrin inhibition are assessed within 3 h. Molecules that directly target β2 integrins or target molecules in the G protein-coupled receptor-initiated integrin inside-out activation signaling pathway can be identified through this approach.
Collapse
Affiliation(s)
- Ziming Cao
- Department of Immunology, School of Medicine, UConn Health
| | - Matthew J Garcia
- Center for Molecular Discovery, University of New Mexico Health Sciences Center
| | - Larry A Sklar
- Center for Molecular Discovery, University of New Mexico Health Sciences Center; Comprehensive Cancer Center, University of New Mexico Health Sciences Center; Department of Pathology, University of New Mexico Health Sciences Center; Autophagy, Inflammation, & Metabolism (AIM) Center, University of New Mexico
| | - Angela Wandinger-Ness
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center; Department of Pathology, University of New Mexico Health Sciences Center
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health;
| |
Collapse
|
36
|
Xia X, Li Y, Xiao X, Zhang Z, Mao C, Li T, Wan M. Chemotactic Micro/Nanomotors for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306191. [PMID: 37775935 DOI: 10.1002/smll.202306191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.
Collapse
Affiliation(s)
- Xue Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
37
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Gao SJ, Liu L, Li DY, Liu DQ, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Interleukin-17: A Putative Novel Pharmacological Target for Pathological Pain. Curr Neuropharmacol 2024; 22:204-216. [PMID: 37581321 PMCID: PMC10788884 DOI: 10.2174/1570159x21666230811142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 08/16/2023] Open
Abstract
Pathological pain imposes a huge burden on the economy and the lives of patients. At present, drugs used for the treatment of pathological pain have only modest efficacy and are also plagued by adverse effects and risk for misuse and abuse. Therefore, understanding the mechanisms of pathological pain is essential for the development of novel analgesics. Several lines of evidence indicate that interleukin-17 (IL-17) is upregulated in rodent models of pathological pain in the periphery and central nervous system. Besides, the administration of IL-17 antibody alleviated pathological pain. Moreover, IL-17 administration led to mechanical allodynia which was alleviated by the IL-17 antibody. In this review, we summarized and discussed the therapeutic potential of targeting IL-17 for pathological pain. The upregulation of IL-17 promoted the development of pathological pain by promoting neuroinflammation, enhancing the excitability of dorsal root ganglion neurons, and promoting the communication of glial cells and neurons in the spinal cord. In general, the existing research shows that IL-17 is an attractive therapeutic target for pathologic pain, but the underlying mechanisms still need to be investigated.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
39
|
Cetin N, Kocaturk E, Tufan AK, Kiraz ZK, Alatas O. Diagnostic Values of Immature Granulocytes Detected by the Sysmex XN 9000 Hematology Analyzer in Children with Urinary Tract Infections. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:S133-S141. [PMID: 38995281 DOI: 10.4103/sjkdt.sjkdt_33_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Immature granulocytes (IGs) are used as markers of infection and systemic inflammation. We aimed to investigate the diagnostic value of IGs in children with urinary tract infections (UTIs). Children with their first UTIs were included in this observational study. Blood samples were obtained before antibiotic therapy. The blood analysis was repeated 2 weeks after the treatment ended. In total, 194 children (95 with febrile UTI, 58 with cystitis, and 41 controls) were included. The percentage of IGs (IG%) and IG count (IGC) measured at the time of admission were higher in the patients with febrile UTI than in the patients with cystitis and the controls (P = 0.000). The IGC and IG% after treatment were higher in patients with renal scarring than in those without scarring (P = 0.012 and P = 0.021, respectively). Cox's regression analysis showed the significant associations of renal scarring with both IGC and IG% (hazard ratio: 8.181, P = 0.002; hazard ratio: 5.106, P = 0.033, respectively). Both IGC and IG% were positively associated with severe vesicoureteral reflux (VUR) [odds ratio (OR): 22.235, P = 0.025; OR: 15.597, P = 0.038, respectively]. In conclusion, the IG% and IGC, which can be easily measured in a routine complete blood count without the need for additional effort, could be used as biomarkers for predicting febrile UTI, renal scarring, and severe VUR in children.
Collapse
Affiliation(s)
- Nuran Cetin
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Evin Kocaturk
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asli Kavaz Tufan
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Zeynep Kusku Kiraz
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ozkan Alatas
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
40
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Du J, Meng X, Ni T, Xiong B, Han Z, Zhu Y, Tu J, Sun H. Mechanism of Innate Immune Response Induced by Albizia julibrissin Saponin Active Fraction Using C2C12 Myoblasts. Vaccines (Basel) 2023; 11:1576. [PMID: 37896979 PMCID: PMC10610972 DOI: 10.3390/vaccines11101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Albizia julibrissin saponin active fraction (AJSAF), is a prospective adjuvant with dual Th1/Th2 and Tc1/Tc2 potentiating activity. Its adjuvant activity has previously been proven to be strictly dependent on its spatial co-localization with antigens, highlighting the role of local innate immunity in its mechanisms. However, its potential targets and pathways remain unclear. Here, its intracellular molecular mechanisms of innate immune response were explored using mouse C2C12 myoblast by integrative analysis of the in vivo and in vitro transcriptome in combination with experimental validations. AJSAF elicited a temporary cytotoxicity and inflammation towards C2C12 cells. Gene set enrichment analysis demonstrated that AJSAF regulated similar cell death- and inflammatory response-related genes in vitro and in vivo through activating second messenger-MAPK-CREB pathways. AJSAF markedly enhanced the Ca2+, cAMP, and reactive oxygen species levels and accelerated MAPK and CREB phosphorylation in C2C12 cells. Furthermore, Ca2+ chelator, CREB inhibitor, and MAPK inhibitors dramatically blocked the up-regulation of IL-6, CXCL1, and COX2 in AJSAF-treated C2C12 cells. Collectively, these results demonstrated that AJSAF induced innate immunity via Ca2+-MAPK-CREB pathways. This study is beneficial for insights into the molecular mechanisms of saponin adjuvants.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
| | - Xiang Meng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
| | - Tiantian Ni
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
| | - Beibei Xiong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
| | - Ziyi Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
| | - Yongliang Zhu
- Laboratory of Gastroenterology Department, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou 310009, China;
| | - Jue Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.D.); (X.M.); (T.N.); (B.X.); (Z.H.); (J.T.)
| |
Collapse
|
42
|
Yang N, Yang K, Pan S, He Q, Jin J. Progress in the application of the neutrophil-to-lymphocyte ratio in dialysis-related complications. Ren Fail 2023; 45:2259996. [PMID: 37791567 PMCID: PMC10552595 DOI: 10.1080/0886022x.2023.2259996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is a novel predictive biomarker that reflects systemic inflammatory status and is routinely measured in blood tests. Owing to its ease of use and affordability, it is being increasing used as a prognostic indicator of cardiovascular disease, tumors, autoimmune disorders, and kidney disease. In recent years, a number of studies have demonstrated the clinical utility of the NLR in identifying and predicting complications associated with hemodialysis and peritoneal dialysis, including cardiovascular disease and infection. This review aimed to provide a new perspective on the application of the NLR as a valuable tool enabling clinicians to better assess the occurrence and prognosis of complications in patients undergoing dialysis.
Collapse
Affiliation(s)
- Nan Yang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Kaibi Yang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shujun Pan
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Li X, Ni J, Qing H, Quan Z. The Regulatory Mechanism of Rab21 in Human Diseases. Mol Neurobiol 2023; 60:5944-5953. [PMID: 37369821 DOI: 10.1007/s12035-023-03454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Rab proteins are important components of small GTPases and play crucial roles in regulating intracellular transportation and cargo delivery. Maintaining the proper functions of Rab proteins is essential for normal cellular activities such as cell signaling, division, and survival. Due to their vital and irreplaceable role in regulating intracellular vesicle transportation, accumulated researches have shown that the abnormalities of Rab proteins and their effectors are closely related to human diseases. Here, this review focused on Rab21, a member of the Rab family, and introduced the structures and functions of Rab21, as well as the regulatory mechanisms of Rab21 in human diseases, including neurodegenerative diseases, cancer, and inflammation. In summary, we described in detail the role of Rab21 in human diseases and provide insights into the potential of Rab21 as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Xinjian Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
44
|
Ghosh S, Ghosh R, Sawoo R, Dutta P, Bishayi B. Impact of dual neutralization of TNF-α and IL-1β along with Gentamicin treatment on the functions of blood and splenic neutrophils and its role on improvement of S. aureus induced septic arthritis. Int Immunopharmacol 2023; 123:110766. [PMID: 37572502 DOI: 10.1016/j.intimp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Researches of recent past years have emphasized potential of antibiotics to improve septic arthritis but as multi-drug resistant strains like MRSA are emerging fast, new alternative therapeutic advances are high in demand. This study aims to figure out the role of neutrophils in regulating inflammatory responses of S. aureus induced septic arthritis while using TNF-α Ab or IL-1β Ab along with antibiotic gentamicin or both in combination. In this study, role of anti-oxidant enzymes were investigated and correlated with generated ROS level. While expression of TLR2, TNFR2, MMP2, RANKL, SAPK/JNK in the spleen were evaluated through western blot. Serum activity of IL-8, IL-10, IL-12, OPG, OPN, CRP was assessed using ELISA. Flow cytometry study evaluated inflamed neutrophil population. Results have shown TNF-α neutralization along with gentamicin was able to reduce arthritic swelling prominently. While combination therapy effectively reduced blood neutrophil ROS activity, arginase activity, MPO activity along with spleen bacterial burden. Serum OPG, CRP, IL-10 level got reduced while serum OPN, IL-8 and IL-12 level enhanced in treatment groups, showing mitigation of inflammatory damage. Overall, it is a novel work that observed how antibiotic and antibody therapy enhanced neutrophil function positively to combat sepsis. This study may not be fully applicable in clinical trials as it is performed with animal model. Clinical trials include crystalline and inflammatory arthritides, trauma, neoplasm. Interdisciplinary collaboration between radiology, orthopaedic surgery and knowledge of animal system responses may give better idea to find proper therapeutic approach in future research works.
Collapse
Affiliation(s)
- Sharmistha Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
45
|
Irie K, Azuma T, Tomofuji T, Yamamoto T. Exploring the Role of IL-17A in Oral Dysbiosis-Associated Periodontitis and Its Correlation with Systemic Inflammatory Disease. Dent J (Basel) 2023; 11:194. [PMID: 37623290 PMCID: PMC10453731 DOI: 10.3390/dj11080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Oral microbiota play a pivotal role in maintaining homeostasis, safeguarding the oral cavity, and preventing the onset of disease. Oral dysbiosis has the potential to trigger pro-inflammatory effects and immune dysregulation, which can have a negative impact on systemic health. It is regarded as a key etiological factor for periodontitis. The emergence and persistence of oral dysbiosis have been demonstrated to mediate inflammatory pathology locally and at distant sites. The heightened inflammation observed in oral dysbiosis is dependent upon the secretion of interleukin-17A (IL-17A) by various innate and adaptive immune cells. IL-17A has been found to play a significant role in host defense mechanisms by inducing antibacterial peptides, recruiting neutrophils, and promoting local inflammation via cytokines and chemokines. This review seeks to present the current knowledge on oral dysbiosis and its prevention, as well as the underlying role of IL-17A in periodontitis induced by oral dysbiosis and its impact on systemic inflammatory disease.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Preventive Dentistry and Dental Public Health, Kanagawa Dental University, Yokosuka 238-8580, Japan;
| | - Tetsuji Azuma
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan; (T.A.); (T.T.)
| | - Takaaki Tomofuji
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan; (T.A.); (T.T.)
| | - Tatsuo Yamamoto
- Department of Preventive Dentistry and Dental Public Health, Kanagawa Dental University, Yokosuka 238-8580, Japan;
| |
Collapse
|
46
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
47
|
Zhang H, Hu YM, Wang YJ, Zhou Y, Zhu ZJ, Chen MH, Wang YJ, Xu H, Wang YH. Macrophage migration inhibitory factor facilitates astrocytic production of the CCL2 chemokine following spinal cord injury. Neural Regen Res 2023; 18:1802-1808. [PMID: 36751809 PMCID: PMC10154479 DOI: 10.4103/1673-5374.363184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation. Overproduced chemokines are responsible for the migratory process of the leukocytes, but the regulatory mechanism underlying the production of chemokines from resident cells of the spinal cord has not been fully elucidated. We examined the protein levels of macrophage migration inhibitory factor and chemokine C-C motif chemokine ligand 2 in a spinal cord contusion model at different time points following spinal cord injury. The elevation of macrophage migration inhibitory factor at the lesion site coincided with the increase of chemokine C-C motif chemokine ligand 2 abundance in astrocytes. Stimulation of primary cultured astrocytes with different concentrations of macrophage migration inhibitory factor recombinant protein induced chemokine C-C motif chemokine ligand 2 production from the cells, and the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine attenuated the stimulatory effect. Further investigation into the underlying mechanism on macrophage migration inhibitory factor-mediated astrocytic production of chemokine C-C motif chemokine ligand 2 revealed that macrophage migration inhibitory factor activated intracellular JNK signaling through binding with CD74 receptor. Administration of the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine following spinal cord injury resulted in the reduction of chemokine C-C motif chemokine ligand 2-recruited microglia/macrophages at the lesion site and remarkably improved the hindlimb locomotor function of rats. Our results have provided insights into the functions of astrocyte-activated chemokines in the recruitment of leukocytes and may be beneficial to develop interventions targeting chemokine C-C motif chemokine ligand 2 for neuroinflammation after spinal cord injury.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Ming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying-Jie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhen-Jie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Min-Hao Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Yong-Jun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - You-Hua Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
48
|
Lee HL, Tsai YC, Pikatan NW, Yeh CT, Yadav VK, Chen MY, Tsai JT. Tumor-Associated Macrophages Affect the Tumor Microenvironment and Radioresistance via the Upregulation of CXCL6/CXCR2 in Hepatocellular Carcinoma. Biomedicines 2023; 11:2081. [PMID: 37509721 PMCID: PMC10377183 DOI: 10.3390/biomedicines11072081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma is the sixth most diagnosed malignancy and the fourth most common cause of cancer-related mortality globally. Despite progress in the treatment of liver cancer, nonsurgical treatments remain unsatisfactory, and only 15% of early-stage cases are surgically operable. Radiotherapy (RT) is a non-surgical treatment option for liver cancer when other traditional treatment methods are ineffective. However, RT has certain limitations, including eliciting poor therapeutic effects in patients with advanced and recurrent tumors. Tumor-associated macrophages (TAMs) are major inflammatory cells in the tumor microenvironment that are key to tumor development, angiogenesis, invasion, and metastasis, and they play an essential role in RT responses. METHODS We used big data analysis to determine the potential of targeting CXCL6/CXCR2. We enrolled 50 patients with liver cancer who received RT at our hospital. Tumor tissue samples were examined for any relationship between CXCL6/CXCR2 activity and patient prognosis. Using a cell coculture system (Transwell), we cocultured Huh7 liver cancer cells and THP-1 monocytes with and without CXCL6/CXCR2 small interfering RNA for 72 h. RESULTS The overexpression of CXCL6/CXCR2 was highly correlated with mortality. Our tissue study indicated a positive correlation between CXCL6/CXCR2 and M2-TAMs subsets. The coculture study demonstrated that THP-1 monocytes can secrete CXCL6, which acts on the CXCR2 receptor on the surface of Huh7 cells and activates IFN-g/p38 MAPK/NF-κB signals to promote the epithelial-mesenchymal transition and radio-resistance. CONCLUSIONS Modulating the TAM/CXCL6/CXCR2 tumor immune signaling axis may be a new treatment strategy for the effective eradication of radiotherapy-resistant hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yi-Chieh Tsai
- Department of Radiation Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Narpati Wesa Pikatan
- Division of Urology, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Jo-Ting Tsai
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| |
Collapse
|
49
|
Witt H, Yan Z, Henann D, Franck C, Reichner J. Mechanosensitive traction force generation is regulated by the neutrophil activation state. Sci Rep 2023; 13:11098. [PMID: 37423937 DOI: 10.1038/s41598-023-37997-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2023] [Indexed: 07/11/2023] Open
Abstract
The generation of traction forces by neutrophils regulates many crucial effector functions responsible for host defense, such as attachment, spreading, migration, phagocytosis, and NETosis. The activation state of the cell is a strong determinant of the functional efficacy of the neutrophil; however, the effect of activation on traction force production has not yet been determined experimentally. Previously, the mapping of cellular-generated forces produced by human neutrophils via a Traction Force Microscopy (TFM) method has required a three-dimensional imaging modality to capture out-of-plane forces, such as confocal or multiphoton techniques. A method newly developed in our laboratories can capture out-of-plane forces using only a two-dimensional imaging modality. This novel technique-combined with a topology-based single particle tracking algorithm and finite element method calculations-can construct high spatial frequency three-dimensional traction fields, allowing for traction forces in-plane and out-of-plane to the substrate to now be differentially visualized and quantified with a standard epifluorescence microscope. Here we apply this technology to determine the effect of neutrophil activation on force generation. Sepsis is a systemic inflammatory response that causes dysregulated neutrophil activation in vivo. We found that neutrophils from septic patients produced greater total forces than neutrophils from healthy donors and that the majority of this dysregulation occurred in-plane to the substrate. Ex vivo activation of neutrophils from healthy donors showed differential consequences depending on activation stimuli with mechanosensitive force decreases observed in some cases. These findings demonstrate the feasibility of epifluorescence-based microscopy in mapping traction forces to ask biologically significant questions regarding neutrophil function.
Collapse
Affiliation(s)
- Hadley Witt
- Graduate Program in Pathobiology, Brown University, Providence, RI, 02912, USA.
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, 02903, USA.
| | - Zicheng Yan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - David Henann
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jonathan Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
50
|
Reis LR, Souza Junior DR, Tomasin R, Bruni-Cardoso A, Di Mascio P, Ronsein GE. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis. Redox Biol 2023; 64:102784. [PMID: 37356135 DOI: 10.1016/j.redox.2023.102784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of DNA coated with cytotoxic proteins and histones released by activated neutrophils through a process called NETosis. NETs release occurs through a sequence of highly organized events leading to chromatin expansion and rupture of nuclear and cellular membranes. In calcium ionophore-induced NETosis, the enzyme peptidylargine deiminase 4 (PAD4) mediates chromatin decondensation through histone citrullination, but the biochemical pathways involved in this process are not fully understood. Here we use live-imaging microscopy and proteomic studies of the neutrophil cellular fractions to investigate the early events in ionomycin-triggered NETosis. We found that before ionomycin-stimulated neutrophils release NETs, profound biochemical changes occur in and around their nucleus, such as, cytoskeleton reorganization, nuclear redistribution of actin-remodeling related proteins, and citrullination of actin-ligand and nuclear structural proteins. Ionomycin-stimulated neutrophils rapidly lose their characteristic polymorphic nucleus, and these changes are promptly communicated to the extracellular environment through the secretion of proteins related to immune response. Therefore, our findings revealed key biochemical mediators in the early process that subsequently culminates with nuclear and cell membranes rupture, and extracellular DNA release.
Collapse
Affiliation(s)
- Lorenna Rocha Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Rebeka Tomasin
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|