1
|
Allergy: Type I, II, III, and IV. Handb Exp Pharmacol 2021; 268:31-41. [PMID: 34255192 DOI: 10.1007/164_2021_510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hypersensitivity reactions are overreactions of the immune system clinically seen as allergic and autoimmune diseases. Gell and Coombs originally described four different types of hypersensitivity reactions almost 60 years ago, and their description still applies in large parts. However, some modifications and extensions have been included in original definition. Especially in allergic diseases, it became clear that often, multiple types of hypersensitivity reaction can occur simultaneously. This improved insight is not only important for a better understanding of hypersensitivity disorders, but is especially of importance for improved diagnostics and directing therapeutic interventions.
Collapse
|
2
|
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Ma B, Wu Y, Chen B, Yao Y, Wang Y, Bai H, Li C, Yang Y, Chen Y. Cyanidin-3-O-β-glucoside attenuates allergic airway inflammation by modulating the IL-4Rα-STAT6 signaling pathway in a murine asthma model. Int Immunopharmacol 2019; 69:1-10. [PMID: 30660871 DOI: 10.1016/j.intimp.2019.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Abstract
Cyanidin-3-O-β-glucoside (Cy-3-g), a typical and abundant monomer of anthocyanins, exhibits a variety of biological activities, such as anti-atherosclerosis, anti-obesity, and anticancer effects. However, to date little is known about its effects on asthma. This study aimed to investigate the efficacy of dietary Cy-3-g on allergic asthma in an animal model. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. The pathological changes of the lung tissues, type 2 helper (Th2)-associated cytokine production in bronchoalveolar lavage fluid (BALF), and the interleukin 4 receptor alpha (IL-4Rα)-signal transducer and activator of transcription 6 (STAT6) signaling pathway activities were assessed. We found that Cy-3-g significantly inhibited OVA-induced inflammatory cell infiltration and mucus hyper-production in lung tissues, reduced the production of interleukin 4 (IL-4), interleukin 5 (IL-5) and interleukin 13 (IL-13) in BALF. Furthermore, Cy-3-g effectively suppressed OVA-induced up-regulation of the IL-4Rα-STAT6 signaling pathway activity of the lung tissues. These results demonstrated that dietary Cy-3-g could attenuate allergic airway inflammation in a murine asthma model, and Cy-3-g might be used as an agent for asthma prevention and/or treatment in the future.
Collapse
Affiliation(s)
- Baihui Ma
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Yinfan Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Binlin Chen
- The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanling Yao
- Department of Nutrition, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanyan Wang
- Department of Food-borne Disease and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Haolei Bai
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China.
| |
Collapse
|
4
|
Venkataramani S, Low S, Weigle B, Dutcher D, Jerath K, Menzenski M, Frego L, Truncali K, Gupta P, Kroe-Barrett R, Ganesan R, Singh S, Erb KJ. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun 2018; 504:19-24. [PMID: 30126632 DOI: 10.1016/j.bbrc.2018.08.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
Abstract
Patients with severe Th2 type asthma often have a steroid resistant phenotype and are prone to acute exacerbations. Current novel therapies have only marginal therapeutic effects. One of the hypotheses for lack of major efficacy in most patients is targeting only one redundant pathway leaving others active. Hence, we have designed and developed novel highly potent bispecific anti-TSLP/IL13 antibodies called Zweimabs (monovalent bispecific) and Doppelmabs (bivalent bispecific) that concurrently inhibits the signaling by these two cytokines.
Collapse
Affiliation(s)
| | - Sarah Low
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Bernd Weigle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Darrin Dutcher
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Kavita Jerath
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Monica Menzenski
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Kris Truncali
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Pankaj Gupta
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Rajkumar Ganesan
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Sanjaya Singh
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Klaus J Erb
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
5
|
Ceresa M, Olivares AL, Noailly J, González Ballester MA. Coupled Immunological and Biomechanical Model of Emphysema Progression. Front Physiol 2018; 9:388. [PMID: 29725304 PMCID: PMC5917021 DOI: 10.3389/fphys.2018.00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a disabling respiratory pathology, with a high prevalence and a significant economic and social cost. It is characterized by different clinical phenotypes with different risk profiles. Detecting the correct phenotype, especially for the emphysema subtype, and predicting the risk of major exacerbations are key elements in order to deliver more effective treatments. However, emphysema onset and progression are influenced by a complex interaction between the immune system and the mechanical properties of biological tissue. The former causes chronic inflammation and tissue remodeling. The latter influences the effective resistance or appropriate mechanical response of the lung tissue to repeated breathing cycles. In this work we present a multi-scale model of both aspects, coupling Finite Element (FE) and Agent Based (AB) techniques that we would like to use to predict the onset and progression of emphysema in patients. The AB part is based on existing biological models of inflammation and immunological response as a set of coupled non-linear differential equations. The FE part simulates the biomechanical effects of repeated strain on the biological tissue. We devise a strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level. We tested our implementation on a public emphysema image database and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.
Collapse
Affiliation(s)
- Mario Ceresa
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andy L Olivares
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jérôme Noailly
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel A González Ballester
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
6
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
7
|
Identification of some novel xanthine-based derivatives with bronchodilator activity. Future Med Chem 2017; 9:1731-1747. [PMID: 28871831 DOI: 10.4155/fmc-2017-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM The discovery of new bronchodilators with higher efficacy than theophylline is an important issue for asthmatic patients. MATERIALS & METHODS Theophylline 2, 8-bromotheophylline 4 and theobromine 6 were reacted with different 2/3-chloro-N-phenylacetamides 1a-d or their propanamide analogs 1e-g to obtain 3a-g, 5a-g and 7a-g, respectively. The target compounds were screened for their in vitro bronchodilator activity using isolated guinea pig tracheal rings precontracted with histamine and compared with their precursors. RESULTS Many compounds exhibited promising activity especially 3d, 3f, 5d, 7d and 7e. 2D-QSAR study resulted in a significant model (N = 24, n = 5, R 2 = 0.848, R 2cvOO = 0.748, R 2cvMO = 0.745, F = 21.215, s 2 = 0.0002) using CODESSA-Pro software. CONCLUSION These compounds can be considered as promising hits for potent bronchodilators that may be useful for further investigations. [Formula: see text].
Collapse
|
8
|
Gallo L, Bucalá V, Ramírez-Rigo MV. Formulation and Characterization of Polysaccharide Microparticles for Pulmonary Delivery of Sodium Cromoglycate. AAPS PharmSciTech 2017; 18:1634-1645. [PMID: 27659025 DOI: 10.1208/s12249-016-0633-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/10/2016] [Indexed: 01/03/2023] Open
Abstract
Sodium cromoglycate (SC) is an antiasthmatic and antiallergenic drug commonly used for chronic inhalation therapy; however, many daily intakes are required due to the fast drug clearance from airways. For these reasons, SC polymeric particles for inhalatory administration with adequate aerosolization and mucoadhesive properties were designed to prolong the drug residence time in the site of action. Sodium carboxymethylcellulose (CMCNa), sodium hyaluronate, and sodium alginate were selected to co-process SC by spray drying. The influence of these polysaccharides on the spray drying process and powder quality was evaluated (among others, morphology, size, moisture content, hygroscopicity, flowability, densities, liquid sorption, and stability). In vitro aerosolization, drug release, and mucoadhesion performance were also studied. Particularly, a novel method to comparatively evaluate the interaction between formulations and mucin solution (mucoadhesion test) was proposed as a rapid methodology to measure adhesion properties of inhalable particles, being the results as indicative of clearance probability. Among all the studied formulations, the powder based on SC and CMCNa exhibited the best mucoadhesion and aerosolization performance, the highest process yield and adequate moisture content, hygroscopicity, and stability. SC-CMCNa formulation arose as a promising inhalatory system to reduce the daily intakes and to increase the patient compliance.
Collapse
|
9
|
Epstein MM, Tilp C, Erb KJ. The Use of Mouse Asthma Models to Successfully Discover and Develop Novel Drugs. Int Arch Allergy Immunol 2017; 173:61-70. [PMID: 28586774 DOI: 10.1159/000473699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The past 20 years have seen a proliferation of scientific data on the pathophysiology of asthma. Most of these data were generated in mice using tool reagents, gene-deficient or transgenic animals. In contrast, studies on disease pathogenesis in patients are scarce. Previously, a good novel antiasthma target for drug development was one that abrogated asthma in mice when it was knocked out, neutralized or induced asthma when it was overexpressed. This type of approach led to many drug candidates that worked in mice but unfortunately failed in patients, thereby demonstrating that the results of experiments in mice are not always predictive of clinical efficacy. Currently, there is active debate about the use of mouse models in drug discovery. In this review, we summarize the obstacles and challenges faced when using experimental mouse models of asthma in drug discovery. We propose that the initial selection of a novel drug target begins with defining the unmet medical need and specific patient population, followed by a thorough evaluation of available human data, and, only then, well-planned and executed mouse asthma experiments. Using this approach, we argue that mouse models lend support for the target when the models are tailored for the specific asthma patient population, and that targeted, reliable, and predictive mouse models can indeed improve and accelerate the drug discovery process.
Collapse
|
10
|
Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L, Chiappori A, Dal Negro RW, Micheletto C, Canonica GW. Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy 2017; 7:6. [PMID: 28293414 PMCID: PMC5345272 DOI: 10.1186/s13601-017-0143-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Background
Bronchial asthma is a heterogeneous disease characterized by three cardinal features: chronic inflammation, variable airflow obstruction, and airway hyperresponsiveness. Asthma has traditionally been defined using nonspecific clinical and physiologic variables that encompass multiple phenotypes and are treated with nonspecific anti-inflammatory therapies. Based on the modulation of airway remodeling after 12 months of anti-immunoglobulin E (IgE) treatment, we identified two phenotypes (omalizumab responder, OR; and non-omalizumab responder, NOR) and performed morphometric analysis of bronchial biopsy specimens. We also found that these two phenotypes were correlated with the presence/absence of galectin-3 (Gal-3) at baseline (i.e., before treatment). The aims of the present study were to investigate the histological and molecular effects of long-term treatment (36 months) with anti-IgE and to analyze the behavior of OR and NOR patients. Methods
All patients were treated with the monoclonal antibody anti-IgE omalizumab for 36 months. The bronchial biopsy specimens were evaluated using morphometric, eosinophilic, and proteomic analysis (MudPIT). New data were compared with previous data, and unsupervised cluster analysis of protein profiles was performed. Results After 36 months of treatment with omalizumab, reduction of reticular basement membrane (RBM) thickness was confirmed in OR patients (Gal-3-positive at baseline); similarly, the protein profiles (over 500 proteins identified) revealed that, in the OR group, levels of proteins specifically related to fibrosis and inflammation (e.g., smooth muscle and extracellular matrix proteins (including periostin), Gal-3, and keratins decreased by between 5- and 50-fold. Eosinophil levels were consistent with molecular data and decreased by about tenfold less in ORs and increased by twofold to tenfold more in NORs. This tendency was confirmed (p < 0.05) based on both fold change and DAVE algorithms, thus indicating a clear response to anti-IgE treatment in Gal-3-positive patients. Conclusions Our results showed that omalizumab can be considered a disease-modifying treatment in OR. The proteomic signatures confirmed the presence of Gal-3 at baseline to be a biomarker of long-term reduction in bronchial RBM thickness, eosinophilic inflammation, and muscular and fibrotic components in omalizumab-treated patients with severe asthma. Our findings suggest a possible relationship between Gal-3 positivity and improved pulmonary function. Electronic supplementary material The online version of this article (doi:10.1186/s13601-017-0143-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Riccio
- Respiratory Diseases and Allergy Unit, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, CNR, Milan, Italy
| | - Laura De Ferrari
- Respiratory Diseases and Allergy Unit, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, CNR, Milan, Italy
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, CNR, Milan, Italy
| | - Louise Benazzi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, CNR, Milan, Italy
| | - Alessandra Chiappori
- Respiratory Diseases and Allergy Unit, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - Roberto Walter Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology, CESFAR, Verona, Italy
| | | | - Giorgio Walter Canonica
- Respiratory Diseases and Allergy Unit, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy.,Department of Biomedical Sciences, Personalized Medicine Clinic Asthma and Allergy, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
11
|
Koczulla AR, Vogelmeier CF, Garn H, Renz H. New concepts in asthma: clinical phenotypes and pathophysiological mechanisms. Drug Discov Today 2016; 22:388-396. [PMID: 27867084 DOI: 10.1016/j.drudis.2016.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Asthma is among the most common chronic inflammatory diseases worldwide. Recent evidence indicates that the pathogenesis shows a high degree of heterogeneity. Patient subsets have been identified that exhibit different cellular and molecular patterns of dysregulation. A prominent example is eosinophilic Th2-driven asthma. These unique and molecular patterns are termed endotypes. Characterization of endotypes has broad implications for therapeutic interventions. Although ∼80% of asthmatic patients respond well to standard anti-inflammatory therapies, the remaining subset particularly consisting of severe patients requires a more specialized endotype-specific approach. This interrelationship between clinical phenotypes, molecular endotypes and endotype-specific therapies is the focus of this review.
Collapse
Affiliation(s)
- Andreas R Koczulla
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Baldingerstrasse, 35043 Marburg, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Baldingerstrasse, 35043 Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Medical Faculty, Baldingerstrasse, 35043 Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Medical Faculty, Baldingerstrasse, 35043 Marburg, Germany.
| |
Collapse
|
12
|
Porto BN, Stein RT. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing? Front Immunol 2016; 7:311. [PMID: 27574522 PMCID: PMC4983612 DOI: 10.3389/fimmu.2016.00311] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs) arise from the release of granular and nuclear contents of neutrophils in the extracellular space in response to different classes of microorganisms, soluble factors, and host molecules. NETs are composed by decondensed chromatin fibers coated with antimicrobial granular and cytoplasmic proteins, such as myeloperoxidase, neutrophil elastase (NE), and α-defensins. Besides being expressed on NET fibers, NE and MPO also regulate NET formation. Furthermore, histone deimination by peptidylarginine deiminase 4 (PAD4) is a central step to NET formation. NET formation has been widely demonstrated to be an effective mechanism to fight against invading microorganisms, as deficiency in NET release or dismantling NET backbone by bacterial DNases renders the host susceptible to infections. Therefore, the primary role of NETs is to prevent microbial dissemination, avoiding overwhelming infections. However, an excess of NET formation has a dark side. The pathogenic role of NETs has been described for many human diseases, infectious and non-infectious. The detrimental effect of excessive NET release is particularly important to lung diseases, because NETs can expand more easily in the pulmonary alveoli, causing lung injury. Moreover, NETs and its associated molecules are able to directly induce epithelial and endothelial cell death. In this regard, massive NET formation has been reported in several pulmonary diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, respiratory syncytial virus bronchiolitis, influenza, bacterial pneumonia, and tuberculosis, among others. Thus, NET formation must be tightly regulated in order to avoid NET-mediated tissue damage. Recent development of therapies targeting NETs in pulmonary diseases includes DNA disintegration with recombinant human DNase, neutralization of NET proteins, with anti-histone antibodies and protease inhibitors. In this review, we summarize the recent knowledge on the pathophysiological role of NETs in pulmonary diseases as well as some experimental and clinical approaches to modulate their detrimental effects.
Collapse
Affiliation(s)
- Bárbara Nery Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Renato Tetelbom Stein
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Sulaiman I, Lim JCW, Soo HL, Stanslas J. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulm Pharmacol Ther 2016; 40:52-68. [PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
Collapse
Affiliation(s)
- Ibrahim Sulaiman
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hon Liong Soo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Despite that specific immunotherapy can boast being more than a century old, there is still skepticism about its real effectiveness, and therefore it is still used too little in clinical practice. The purpose of this review was to analyze the most recent articles in the literature to highlight scientific evidence for the proper use of allergen immunotherapy (AIT). RECENT FINDINGS In the near future, the concept of medicine for trials will have to be revised and in certain cases abandoned in favor of a personalized medicine, able to use a drug more targeted for the individual patient and not for the disease. SUMMARY For AIT, it will become increasingly important to use products designed properly, standardized and with a well documented effectiveness in clinical studies. We must overcome the disputes of subcutaneous immunotherapy versus sublingual immunotherapy, arrive at the concept of personalized medicine regarding AIT, framing in different phenotypes of asthma patients to use the optimal preparation for each particular patient.
Collapse
|
15
|
Targeting the JAK-STAT pathway in the treatment of 'Th2-high' severe asthma. Future Med Chem 2016; 8:405-19. [PMID: 26934038 DOI: 10.4155/fmc.16.4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Severe asthma is a heterogeneous disease characterized by reversible airway obstruction, chronic inflammation and airway remodeling. Phenotyping and/or endotyping can lead to a more personalized treatment strategy, improving the efficacy of novel drugs. Atopic asthma is associated with high levels of Th2 cells, implicated in a number of inflammatory responses. Differentiation of these cells from naive T cells occurs primarily via the JAK-STAT signaling pathway. Targeting this pathway through inhibition of activating cytokines (IL-4 and IL-13) and their receptors, the JAKs or the STATs, has been shown to have a therapeutic effect on asthma pathology. There are a number of novel drugs currently in development, which target various pathway components; these include both biologics and small molecules at various stages of development.
Collapse
|
16
|
STRATOS 1 and 2: considerations in clinical trial design for a fully human monoclonal antibody in severe asthma. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.15.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Loxham M, Davies DE, Blume C. Epithelial function and dysfunction in asthma. Clin Exp Allergy 2015; 44:1299-313. [PMID: 24661647 DOI: 10.1111/cea.12309] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/06/2014] [Accepted: 03/19/2014] [Indexed: 12/15/2022]
Abstract
Asthma was previously defined as an allergic Th2-mediated inflammatory immune disorder. Recently, this paradigm has been challenged because not all pathological changes observed in the asthmatic airways are adequately explained simply as a result of Th2-mediated processes. Contemporary thought holds that asthma is a complex immune disorder involving innate as well as adaptive immune responses, with the clinical heterogeneity of asthma perhaps a result of the different relative contribution of these two systems to the disease. Epidemiological studies show that exposure to certain environmental substances is strongly associated with the risk of developing asthma. The airway epithelium is first barrier to interact with, and respond to, environmental agents (pollution, viral infection, allergens), suggesting that it is a key player in the pathology of asthma. Epithelial cells play a key role in the regulation of tissue homeostasis by the modulation of numerous molecules, from antioxidants and lipid mediators to growth factors, cytokines, and chemokines. Additionally, the epithelium is also able to suppress mechanisms involved in, for example, inflammation in order to maintain homeostasis. An intrinsic alteration or defect in these regulation mechanisms compromises the epithelial barrier, and therefore, the barrier may be more prone to environmental substances and thus more likely to exhibit an asthmatic phenotype. In support of this, polymorphisms in a number of genes that are expressed in the bronchial epithelium have been linked to asthma susceptibility, while environmental factors may affect epigenetic mechanisms that can alter epithelial function and response to environmental insults. A detailed understanding of the regulatory role of the airway epithelium is required to develop new therapeutic strategies for asthma that not only address the symptoms but also the underlining pathogenic mechanism(s) and prevent airway remodelling.
Collapse
Affiliation(s)
- M Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, Hampshire, UK
| | | | | |
Collapse
|
18
|
Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, Rogon C, Zeitvogel J, Zhang N, Bille J, Homburg U, Turowska A, Bachert C, Werfel T, Buhl R, Renz J, Garn H, Renz H. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med 2015; 372:1987-95. [PMID: 25981191 DOI: 10.1056/nejmoa1411776] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The most prevalent phenotype of asthma is characterized by eosinophil-dominated inflammation that is driven by a type 2 helper T cell (Th2). Therapeutic targeting of GATA3, an important transcription factor of the Th2 pathway, may be beneficial. We evaluated the safety and efficacy of SB010, a novel DNA enzyme (DNAzyme) that is able to cleave and inactivate GATA3 messenger RNA (mRNA). METHODS We conducted a randomized, double-blind, placebo-controlled, multicenter clinical trial of SB010 involving patients who had allergic asthma with sputum eosinophilia and who also had biphasic early and late asthmatic responses after laboratory-based allergen provocation. A total of 40 patients could be evaluated; 21 were assigned to receive 10 mg of SB010, and 19 were assigned to receive placebo, with each study drug administered by means of inhalation once daily for 28 days. An allergen challenge was performed before and after the 28-day period. The primary end point was the late asthmatic response as quantified by the change in the area under the curve (AUC) for forced expiratory volume in 1 second (FEV1). RESULTS After 28 days, SB010 attenuated the mean late asthmatic response by 34%, as compared with the baseline response, according to the AUC for FEV1, whereas placebo was associated with a 1% increase in the AUC for FEV1 (P=0.02). The early asthmatic response with SB010 was attenuated by 11% as measured by the AUC for FEV1, whereas the early response with placebo was increased by 10% (P=0.03). Inhibition of the late asthmatic response by SB010 was associated with attenuation of allergen-induced sputum eosinophilia and with lower levels of tryptase in sputum and lower plasma levels of interleukin-5. Allergen-induced levels of fractional exhaled nitric oxide and airway hyperresponsiveness to methacholine were not affected by either SB010 or placebo. CONCLUSIONS Treatment with SB010 significantly attenuated both late and early asthmatic responses after allergen provocation in patients with allergic asthma. Biomarker analysis showed an attenuation of Th2-regulated inflammatory responses. (Funded by Sterna Biologicals and the German Federal Ministry of Education and Research; ClinicalTrials.gov number, NCT01743768.).
Collapse
Affiliation(s)
- Norbert Krug
- From the Fraunhofer Institute for Toxicology and Experimental Medicine (N.K., J.M.H.) and the Department of Dermatology and Allergy, Hannover Medical School (J.Z., T.W.), Hannover, Pulmonary Research Institute at Lung Clinic Grosshansdorf, Grosshansdorf (A.-M.K.), Institut für klinische Forschung Pneumologie, Clinical Research Center Respiratory Medicine, Frankfurt (O.K.), Insaf Respiratory Research Institute, Wiesbaden (K.M.B.), Inamed, Gauting (D.K., W.T.), Pulmonary Department, Medical Clinic, University Hospital Mainz, Mainz (S.K., R.B.), Charité Research Organization, Berlin (S.I.), FGK Clinical Research, Munich (C.R.), Sterna Biologicals (J.B., U.H., A.T., J.R.) and Institute of Laboratory Medicine, Philipps University Marburg, a member of Universities Giessen and Marburg Lung Center (H.G., H.R.), Marburg - all in Germany; Upper Airways Research Laboratory, University Hospital Ghent, Ghent, Belgium (N.Z., C.B.); and the Division of Ear, Nose, and Throat Diseases, Clintec, Karolinska Institute, Stockholm (N.Z., C.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Holtzman MJ, Byers DE, Alexander-Brett J, Wang X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 2014; 14:686-98. [PMID: 25234144 PMCID: PMC4782595 DOI: 10.1038/nri3739] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases.
Collapse
Affiliation(s)
- Michael J Holtzman
- 1] Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA. [2] Department of Cell Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Jennifer Alexander-Brett
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Xinyu Wang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
20
|
Mauri P, Riccio AM, Rossi R, Di Silvestre D, Benazzi L, De Ferrari L, Dal Negro RW, Holgate ST, Canonica GW. Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol Lett 2014; 162:2-10. [PMID: 25194755 DOI: 10.1016/j.imlet.2014.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022]
Abstract
Asthma is a chronic inflammatory disease. Reticular basement membrane (RBM) thickening is considered feature of airway remodelling (AR) particularly in severe asthma (SA). Omalizumab, mAb to IgE is effective in SA and can modulate AR. Herein we describe protein profiles of bronchial biopsies to detect biomarkers of anti-IgE effects on AR and to explain potential mechanisms/pathways. We defined the bronchial biopsy protein profiles, before and after treatment. Unsupervised clustering of baseline proteomes resulted in very good agreement with the morphometric analysis of AR. Protein profiles of omalizumab responders (ORs) were significantly different from those of non-omalizumab responders (NORs). The major differences between ORs and NORs lied to smooth muscle and extra cellular matrix proteins. Notably, an IgE-binding protein (galectin-3) was reliable, stable and predictive biomarker of AR modulation. Omalizumab down-regulated bronchial smooth muscle proteins in SA. These findings suggest that omalizumab may exert disease-modifying effects on remodelling components.
Collapse
Affiliation(s)
- Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases Unit, Dpt. of Internal Medicine, University of Genoa, IRCCS-IST AOU San Martino, Genoa, Italy
| | - Rossana Rossi
- Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | | | - Louise Benazzi
- Institute for Biomedical Technologies (ITB-CNR), Milan, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases Unit, Dpt. of Internal Medicine, University of Genoa, IRCCS-IST AOU San Martino, Genoa, Italy
| | | | - Stephen T Holgate
- Inflammation, Infection and Immunity Division, Sir Henry Wellcome Laboratories, Mail Point 810, Level F, South Block, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Giorgio Walter Canonica
- Allergy and Respiratory Diseases Unit, Dpt. of Internal Medicine, University of Genoa, IRCCS-IST AOU San Martino, Genoa, Italy.
| |
Collapse
|
21
|
Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 2014; 188:1294-302. [PMID: 24200404 DOI: 10.1164/rccm.201212-2318oc] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE IL-17 signaling has been implicated in development and persistence of asthma. Cytokine-targeted strategies blocking IL-17 receptor signaling may be beneficial in asthma treatment. OBJECTIVES To determine efficacy and safety of brodalumab, a human anti-IL-17 receptor A monoclonal antibody, in subjects with inadequately controlled moderate to severe asthma taking regular inhaled corticosteroids. METHODS Three hundred two subjects were randomized to brodalumab (140, 210, or 280 mg) or placebo. Primary endpoint was change in Asthma Control Questionnaire (ACQ) score from baseline to Week 12. Secondary endpoints included FEV1, symptom scores, and symptom-free days. Prespecified subgroup analyses were conducted to identify potential responsive subpopulations. Analyses included randomized subjects receiving one or more doses of investigational product using last-observation-carried-forward imputation. MEASUREMENTS AND MAIN RESULTS Demographics and baseline characteristics were generally balanced among groups (n = 302; n = 226 brodalumab). For the overall study population, no treatment differences were observed. Nine prespecified subgroups were examined without corrections for multiple testing. In only the high-reversibility subgroup (post-bronchodilator FEV1 improvement ≥ 20%; n = 112) was an ACQ change with nominal significance noted; ACQ responses were nominally significant in the 210-mg group (estimated treatment difference, 0.53) but not significant in the higher 280-mg group (estimated treatment difference, 0.38). Adverse events, generally balanced among groups, were most commonly asthma, upper respiratory tract infection, and injection site reaction. CONCLUSIONS Inhibition of IL-17 receptor A did not produce a treatment effect in subjects with asthma. The results of the high-reversibility subgroup analysis are of uncertain significance, requiring further study of brodalumab in this asthma subpopulation. Clinical trial registered with www.clinicaltrials.gov (NCT01199289).
Collapse
Affiliation(s)
- William W Busse
- 1 University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | | | | |
Collapse
|
22
|
Burrowes KS, De Backer J, Smallwood R, Sterk PJ, Gut I, Wirix-Speetjens R, Siddiqui S, Owers-Bradley J, Wild J, Maier D, Brightling C. Multi-scale computational models of the airways to unravel the pathophysiological mechanisms in asthma and chronic obstructive pulmonary disease (AirPROM). Interface Focus 2014; 3:20120057. [PMID: 24427517 DOI: 10.1098/rsfs.2012.0057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
THE RESPIRATORY SYSTEM COMPRISES SEVERAL SCALES OF BIOLOGICAL COMPLEXITY: the genes, cells and tissues that work in concert to generate resultant function. Malfunctions of the structure or function of components at any spatial scale can result in diseases, to the detriment of gas exchange, right heart function and patient quality of life. Vast amounts of data emerge from studies across each of the biological scales; however, the question remains: how can we integrate and interpret these data in a meaningful way? Respiratory disease presents a huge health and economic burden, with the diseases asthma and chronic obstructive pulmonary disease (COPD) affecting over 500 million people worldwide. Current therapies are inadequate owing to our incomplete understanding of the disease pathophysiology and our lack of recognition of the enormous disease heterogeneity: we need to characterize this heterogeneity on a patient-specific basis to advance healthcare. In an effort to achieve this goal, the AirPROM consortium (Airway disease Predicting Outcomes through patient-specific computational Modelling) brings together a multi-disciplinary team and a wealth of clinical data. Together we are developing an integrated multi-scale model of the airways in order to unravel the complex pathophysiological mechanisms occurring in the diseases asthma and COPD.
Collapse
Affiliation(s)
- K S Burrowes
- Department of Computer Science , University of Oxford , Parks Road, Oxford OX1 3QD , UK
| | | | - R Smallwood
- Kroto Research Institute , University of Sheffield , Sheffield , UK
| | - P J Sterk
- Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - I Gut
- Centro Nacional de Analysis Genómica, Fundacio Privada Parc Cientific de Barcelona , Barcelona , Spain
| | | | - S Siddiqui
- Institute for Lung Health , University of Leicester , Leicester , UK
| | - J Owers-Bradley
- School of Physics and Astronomy, University of Nottingham , Nottingham , UK
| | - J Wild
- Unit of Academic Radiology , University of Sheffield , Sheffield , UK
| | - D Maier
- Biomax Informatics AG , Munich , Germany
| | - C Brightling
- Institute for Lung Health , University of Leicester , Leicester , UK
| |
Collapse
|
23
|
Špulák M, Pourová J, Vopršálová M, Mikušek J, Kuneš J, Vacek J, Ghavre M, Gathergood N, Pour M. Novel bronchodilatory quinazolines and quinoxalines: synthesis and biological evaluation. Eur J Med Chem 2014; 74:65-72. [PMID: 24445313 DOI: 10.1016/j.ejmech.2013.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/27/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022]
Abstract
A series of heterocyclic derivatives analogous to (-)vasicinone, in which the vasicinone C-ring was replaced with alkyl chain terminated by tertiary amine was prepared. N3, C4-O, C4-S or C4-N were used as the sites of attachment. The 4-[3-(1-piperidyl)propylsulfanyl]derivatives displayed bronchodilatory effect at low micromolar concentrations on isolated rat trachea, and low toxicity both on Balb/c 3T3 mouse fibroblast cells and in mice.
Collapse
Affiliation(s)
- Marcel Špulák
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic.
| | - Marie Vopršálová
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic
| | - Jiří Mikušek
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Mukund Ghavre
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic
| | - Nicholas Gathergood
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Milan Pour
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
24
|
Noninvasive Biomarkers That Predict Treatment Benefit from Biologic Therapies in Asthma. Ann Am Thorac Soc 2013; 10 Suppl:S206-13. [DOI: 10.1513/annalsats.201303-047aw] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Holgate ST. Stratified approaches to the treatment of asthma. Br J Clin Pharmacol 2013; 76:277-91. [PMID: 23163316 DOI: 10.1111/bcp.12036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/28/2012] [Indexed: 01/01/2023] Open
Abstract
While asthma is a chronic inflammatory disorder that is managed with inhaled controller and reliever drugs, there remains a large unmet need at the severe end of the disease spectrum. Here, a novel stratified approach to its treatment is reviewed, based upon identification of causal pathways, with a focus on biologics. A systematic search of the literature was made using Medline, and publications were selected on the basis of their relevance to the topic. Despite strong preclinical data for many of the more recently identified asthma targets, especially those relating to the T-helper 2 allergic pathway, clinical trials with specific biologics in moderate to severe asthma as a group have been disappointing. However, subgroup analyses based upon pathway-specific biomarkers suggest specific endotypes that are responsive. Application of hypothesis-free analytical approaches (the 'omics') to well-defined phenotypes is leading to the stratification of asthma along causal pathways. Refinement of this approach is likely to be the future for diagnosing and treating this group of diseases, as well as helping to define new causal pathways. The identification of responders and nonresponders to targeted asthma treatments provides a new way of looking at asthma diagnosis and management, especially with biologics that are costly. The identification of novel biomarkers linked to well-phenotyped patients provides a stratified approach to disease management beyond simple disease severity and involving causal pathways. In order to achieve this effectively, a closer interaction will be required between industry (therapeutic and diagnostic), academia and health workers.
Collapse
|
26
|
EGF-induced bronchial epithelial cells drive neutrophil chemotactic and anti-apoptotic activity in asthma. PLoS One 2013; 8:e72502. [PMID: 24039773 PMCID: PMC3770689 DOI: 10.1371/journal.pone.0072502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Chronic damage and repair of the bronchial epithelium are features of asthma. We have previously reported that ex vivo stimulation of normal bronchial epithelial cells with epidermal growth factor (EGF), a key factor of epithelial repair, enhances the mechanisms of neutrophil accumulation, thereby promoting neutrophil defences during acute injury but potentially enhancing inflammation in chronic airway diseases. We have now sought to (i) determine whether this EGF-dependent pro-neutrophil activity is increased in asthma, where EGF and its epithelial receptor are over-expressed, and (ii) elucidate some of the mechanisms underlying this asthmatic epithelial-neutrophil interaction. Primary bronchial epithelial cells (PBEC) from healthy subjects, mild asthmatics and moderate-to-severe asthmatics (Mod/Sev) were stimulated with EGF, a model that mimics a repairing epithelium. Conditioned culture media (EGF-CM) were assessed for neutrophil chemotactic and anti-apoptotic activities and inflammatory mediator production. EGF induced the epithelium to produce soluble mediators with neutrophil chemotactic (p<0.001) and pro-survival (p = 0.021) activities which were related to the clinical severity of asthma (trend p = 0.010 and p = 0.009, respectively). This was associated with enhanced IL-6, IL-8, GM-CSF and TNF-α release, and cytokine-neutralising experiments using EGF-CM from Mod/Sev asthmatics demonstrated a role for GM-CSF in neutrophil survival (p<0.001). Pre-treatment of neutrophils with specific inhibitors of the myeloid-restricted class I phosphatidylinositol-3-OH kinase (PI(3)K) isoforms showed that the EGF-CM from Mod/Sev asthmatics depended on the γ (p<0.021) but not δ isoforms, while neutrophil survival required multiple class I PI(3)Ks. The EGF-induced chemotactic, but not pro-survival activity, involved RhoA signaling in neutrophils (p = 0.012). EGF whose activity is upregulated in asthma induces ex vivo the epithelium from asthmatic patients to produce pro-neutrophil activities; these are related to asthma severity and, in moderate-to-severe asthmatics, involves class IB PI(3)Kγ signaling, providing a potential therapeutic target for neutrophilic forms of asthma.
Collapse
|
27
|
Mogie G, Shanks K, Nkyimbeng-Takwi EH, Smith E, Davila E, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP. Neuroimmune semaphorin 4A as a drug and drug target for asthma. Int Immunopharmacol 2013; 17:568-75. [PMID: 23994348 DOI: 10.1016/j.intimp.2013.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Neuroimmune semaphorin 4A (Sema4A) has been shown to play an important costimulatory role in T cell activation and regulation of Th1-mediated diseases such as multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), and experimental autoimmune myocarditis (EAM). Sema4A has three functional receptors, Tim-2 expressed on CD4+ T cells, Th2 cells in particular, and Plexin B1 and D1 predominantly expressed on epithelial and endothelial cells, correspondingly. We recently showed that Sema4A has a complex expression pattern in lung tissue in a mouse model of asthma. We and others have shown that corresponding Plexin expression can be found on immune cells as well. Moreover, we demonstrated that Sema4A-deficient mice displayed significantly higher lung local and systemic allergic responses pointing to its critical regulatory role in the disease. To determine the utility of Sema4A as a novel immunotherapeutic, we introduced recombinant Sema4A protein to the allergen-sensitized WT and Sema4A(-/-) mice before allergen challenge. We observed significant reductions in the allergic inflammatory lung response in Sema4A-treated mice as judged by tissue inflammation including eosinophilia and mucus production. Furthermore, we demonstrated that in vivo administration of anti-Tim2 Ab led to a substantial upregulation of allergic inflammation in WT mouse lungs. These data highlight the potential to develop Sema4A as a new therapeutic for allergic airway disease.
Collapse
Affiliation(s)
- G Mogie
- Center for Vascular and Inflammatory Diseases, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Asthma is one of the most common conditions seen in clinical practice and carries both a significant disease burden in terms of patient morbidity and a high economic burden in both direct and indirect costs. Despite this, it remains a comparatively poorly understood disease, with only modest advances in treatment over the past decade. Corticosteroids remain the cornerstone of therapy. Both patient compliance with medications and physician adherence to evidence-based guidelines are often poor, and a high percentage of patients continue to have inadequately controlled disease even with optimal therapy. Following a contextual overview of the current treatment guidelines, this review focuses on novel asthma therapies, beginning with the introduction of the leukotriene receptor antagonist zafirlukast in the 1990s, continuing through advanced endoscopic therapy and into cytokine-directed biologic agents currently in development. Along with clinically relevant biochemistry and pharmacology, the evidence supporting the place of these therapies in current guidelines will be highlighted along with data comparing these agents with more conventional treatment. A brief discussion of other drugs, such as those developed for unrelated conditions and subsequently examined as potential asthma therapies, is included.
Collapse
|
29
|
Roscioli E, Hamon R, Lester S, Murgia C, Grant J, Zalewski P. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways. Biometals 2013; 26:205-27. [PMID: 23460081 DOI: 10.1007/s10534-013-9618-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/25/2013] [Indexed: 11/25/2022]
Abstract
Integrity of the airway epithelium (AE) is important in the context of inhaled allergens and noxious substances, particularly during asthma-related airway inflammation where there is increased vulnerability of the AE to cell death. Apoptosis involves a number of signaling pathways which activate procaspases leading to cleavage of critical substrates. Understanding the factors which regulate AE caspases is important for development of strategies to minimize AE damage and airway inflammation, and therefore to better control asthma. One such factor is the essential dietary metal zinc. Zinc deficiency results in enhanced AE apoptosis, and worsened airway inflammation. This has implications for asthma, where abnormalities in zinc homeostasis have been observed. Zinc is thought to suppress the steps involved in caspase-3 activation. One target of zinc is the family of inhibitor of apoptosis proteins (IAPs) which are endogenous regulators of caspases. More studies are needed to identify the roles of IAPs in regulating apoptosis in normal and inflamed airways and to study their interaction with labile zinc ions. This new information will provide a framework for future clinical studies aimed at monitoring and management of airway zinc levels as well as minimising airway damage and inflammation in asthma.
Collapse
Affiliation(s)
- Eugene Roscioli
- Discipline of Medicine, The Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, 5011, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Saban DR, Calder V, Kuo CH, Reyes NJ, Dartt DA, Ono SJ, Niederkorn JY. New twists to an old story: novel concepts in the pathogenesis of allergic eye disease. Curr Eye Res 2013; 38:317-30. [PMID: 23281793 DOI: 10.3109/02713683.2012.747617] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The prevalence of allergy is rising globally at a very significant rate, which is currently at 20-40% of individuals in westernized nations. In the eye, allergic conditions can take on the acute form such as in seasonal and perennial allergic conjunctivitis, or a more severe and debilitating chronic form such as in vernal and atopic keratoconjunctivitis. Indeed, some key aspects of allergic eye disease pathophysiology are understood, such as the role of mast cells in the acute allergic reaction, and the contribution of eosinophils in late-onset and chronic allergy. However, recent developments in animal models and clinical studies have uncovered new and important roles for previously underappreciated players, including chemokine receptors on ocular surface dendritic cells such as CCR7, the contribution of conjunctival epithelium to immunity, histamine and leukotriene receptors on conjunctival goblet cells and a role for mast cells in late-onset manifestations. Furthermore, recent work in animal models has delineated the contribution of IL-4 in the increased incidence of corneal graft rejection in hosts with allergic conjunctivitis. Recent studies such as these mean that conventional paradigms and concepts should be revisited. The aim of this review is to highlight some of the most recent advances and insights on newly appreciated players in the pathogenesis of allergic eye disease.
Collapse
Affiliation(s)
- Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Arron JR, Scheerens H, Matthews JG. Redefining approaches to asthma: developing targeted biologic therapies. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:1-49. [PMID: 23433454 DOI: 10.1016/b978-0-12-404717-4.00001-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic respiratory disorder canonically associated with type 2 airway inflammation as characterized by elevated levels of eosinophils, immunoglobulin E, and cytokines including interleukin (IL) 4, IL5, IL9, and IL13 and tumor necrosis factor (TNF) α. However, mounting evidence has shown that considerable heterogeneity exists in human asthma in terms of the nature and intensity of airway inflammation. While many asthma patients achieve acceptable control of symptoms with standard-of-care therapies such as β₂-adrenergic agonists and inhaled corticosteroids, a minority remains symptomatic despite maximal standard-of-care therapy and constitutes a significant unmet medical need. A growing number of investigational therapeutics under clinical development for asthma are biologic therapies that specifically target mediators of type 2 airway inflammation. In this chapter, we consider the biological functions of therapeutic targets in asthma and data from clinical trials of biologic agents directed against these targets. We discuss recent clinical trial results in terms of four key components of drug development: target selection, molecule selection, outcome selection, and patient selection, with particular attention paid to the emerging role of biomarkers in clinical development for asthma.
Collapse
|
32
|
Abstract
There is a need for improved therapies for severe asthma. Lebrikizumab, a humanized monoclonal antibody that binds to interleukin (IL)-13, is under development for the treatment of poorly controlled asthma. This article reviews the potential role of IL-13 in the pathogenesis of asthma, the efficacy and safety of lebrikizumab in humans, and progress in patient selection for lebrikizumab therapy. IL-13 is a T-helper (Th2) cell-derived cytokine implicated in inflammatory responses in asthma, including serum immunoglobulin-E synthesis, mucus hypersecretion, and subepithelial fibrosis. Blocking the pro-inflammatory effects of IL-13 with lebrikizumab has the potential to improve asthma control. Published data on the efficacy and safety of lebrikizumab in the treatment of asthma are relatively limited. The late asthmatic response after inhaled allergen challenge is reduced by almost 50%, following treatment with lebrikizumab. In a Phase II study performed in 219 adults with poorly controlled asthma despite inhaled corticosteroids (MILLY trial), lebrikizumab produced an improvement in prebronchodilator forced expiratory volume in 1 second of 5.5% compared with placebo at 12 weeks, but had no effects on other efficacy end points. Adverse effects were similar to placebo, except that musculoskeletal side effects occurred slightly more often with lebrikizumab. Stratifying patients into a high Th2 phenotype using serum periostin, which is upregulated in lung epithelial cells by IL-13, may identify individuals responsive to blockade of IL-13. In the MILLY trial, lebrikizumab treatment was associated with greater improvement in lung function in patients with elevated serum periostin levels compared with those with low periostin levels. Two large Phase III randomized controlled trials in patients with uncontrolled asthma are underway to establish the safety and efficacy of lebrikizumab when administered over a 52-week period. These studies will also help to determine whether identifying patients with a Th2 high inflammatory phenotype using serum periostin allows a personalized approach to the treatment of asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity, and Inflammation, University of Glasgow and Respiratory Medicine, Gartnavel General Hospital, Glasgow, UK
| | | | | |
Collapse
|