1
|
Zhou S, Zhao Z, Wang Z, Xu H, Li Y, Xu K, Li W, Yang J. Cancer-associated fibroblasts in carcinogenesis. J Transl Med 2025; 23:50. [PMID: 39806363 PMCID: PMC11727299 DOI: 10.1186/s12967-025-06071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
In contemporary times, cancer poses the most significant threat to human life and safety. Scientists have relentlessly pursued the intricacies of carcinogenesis and explored ways to prevent and treat cancer. Carcinogenesis is a complex, multi-faceted, and multi-stage process, with numerous underlying causes, including inflammation and fibrosis. Cancer-associated fibroblasts (CAFs), however, occupy a pivotal and substantial role within the tumor microenvironment, facilitating carcinogenesis through diverse mechanisms such as creating inflammation, fostering a fibrotic tumor microenvironment, and immunosuppression. In this paper, we introduce the concept of carcinogenesis, explain its causes, describe the characteristics of CAFs and their sources, and highlight the roles and mechanisms of CAFs in promoting carcinogenesis. Ultimately, our aim is to contribute to the development of novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Shufen Zhou
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zekun Zhao
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojun Wang
- Department of Thyroid and Breast Surgery, The DingLi Clinical, The Wenzhou Central Hospital, College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hanzheng Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China.
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Wang ZY, Gao ST, Gou XJ, Qiu FR, Feng Q. IL-1 receptor-associated kinase family proteins: An overview of their role in liver disease. Eur J Pharmacol 2024; 978:176773. [PMID: 38936453 DOI: 10.1016/j.ejphar.2024.176773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.
Collapse
Affiliation(s)
- Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
3
|
Knezović D, Milić Roje B, Vilović K, Franković L, Korac-Prlic J, Terzić J. MyD88 Signaling Accompanied by Microbiota Changes Supports Urinary Bladder Carcinogenesis. Int J Mol Sci 2024; 25:7176. [PMID: 39000291 PMCID: PMC11241070 DOI: 10.3390/ijms25137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.
Collapse
Affiliation(s)
- Dora Knezović
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Blanka Milić Roje
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Lucija Franković
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| |
Collapse
|
4
|
Yu L, Qin JY, Sun C, Peng F, Chen Y, Wang SJ, Tang J, Lin ZW, Wu LJ, Li J, Cao XY, Li WQ, Xie XF, Peng C. Xianglian Pill combined with 5-fluorouracil enhances antitumor activity and reduces gastrointestinal toxicity in gastric cancer by regulating the p38 MAPK/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117988. [PMID: 38428657 DOI: 10.1016/j.jep.2024.117988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perioperative or postoperative adjuvant chemotherapy based on 5-fluorouracil (5-FU) is a common first-line adjuvant therapy for gastric cancer (GC). However, drug resistance and the side effects of 5-FU have reduced its efficacy. Among these side effects, gastrointestinal (GI) toxicity is one of the most common. Xianglian Pill (XLP) is a Chinese patent medicine that is commonly used for the treatment of diarrhoea. It can reduce inflammation and has a protective effect on the intestinal mucosa. Recent studies have shown that many components of XLP can inhibite tumor cell growth. However, the therapeutic effect of XLP in combination with 5-FU on GC is unclear. AIM OF THE STUDY To investigate whether the combination of XLP and 5-FU can enhance anti-GC activity while reducing GI toxicity. MATERIALS AND METHODS XLP was administered orally during intraperitoneal injection of 5-FU in GC mice model. Mice were continuously monitored for diarrhea and xenograft tumor growth. After 2 weeks, the mice were sacrificed and serum was collected to determine interleukin-6 levels. Pathological changes, the expression of pro-inflammatory factors and p38 mitogen-activated protein kinase (MAPK) in GI tissue were determined by Western blot analysis. Pathological changes, apoptosis levels and p38 MAPK expression levels in xenograft tissues were also determined. RESULTS The results showed that XLP could alleviate GI mucosal injury caused by 5-FU, alleviated diarrhea, and inhibited the expression of nuclear factor (NF)-κB and myeloid differentiation primary response-88. Besides, XLP could promote the 5-FU-induced apoptosis of GC cells and enhance the inhibitory effect of 5-FU on tumor xenografts. Further study showed that XLP administration could regulate the expression of p38 MAPK. CONCLUSIONS XLP in combination with 5-FU could alleviate its GI side effects and enhance its inhibitory effect on xenograft tumor. Moreover, these effects were found to be related to the regulation of the p38 MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lei Yu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Jun-Yuan Qin
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Chen Sun
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Fu Peng
- School of Pharmacy, West China School of Pharmacy, Sichuan University, Chengdu, 610075, China.
| | - Yan Chen
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Su-Juan Wang
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Jun Tang
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Zi-Wei Lin
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Liu-Jun Wu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Jing Li
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Xiao-Yu Cao
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Wen-Qing Li
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Xiao-Fang Xie
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China.
| |
Collapse
|
5
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
6
|
Xu Y, Wang J, He Z, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. A review on the effect of COX-2-mediated mechanisms on development and progression of gastric cancer induced by nicotine. Biochem Pharmacol 2024; 220:115980. [PMID: 38081368 DOI: 10.1016/j.bcp.2023.115980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Smoking is a documented risk factor for cancer, e.g., gastric cancer. Nicotine, the principal tobacco alkaloid, would exert its role of contribution to gastric cancer development and progression through nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-ARs), which then promote cancer cell proliferation, migration and invasion. As a key isoenzyme in conversion of arachidonic acid to prostaglandins, cyclooxygenase-2 (COX-2) has been demonstrated to have a wide range of effects in carcinogenesis and tumor development. At present, many studies have reported the effect of nicotine on gastric cancer by binding to nAChR, as well as indirectly stimulating β-AR to mediate COX-2-related pathways. This review summarizes these studies, and also proposes more potential COX-2-mediated mechanisms. These events might contribute to the growth and progression of gastric cancer exposed to nicotine through tobacco smoke or cigarette substitutes. Also, this review article has therefore the potential not only to make a significant contribution to the treatment and prognosis of gastric cancer for smokers but also to the clinical application of COX-2 antagonists. In addition, this work also discusses the considerable challenges of this field with special reference to the future perspective of COX-2-mediated mechanisms in development and progression of gastric cancer induced by nicotine.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Juan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
7
|
Garg S, Sharma N, Bharmjeet, Das A. Unraveling the intricate relationship: Influence of microbiome on the host immune system in carcinogenesis. Cancer Rep (Hoboken) 2023; 6:e1892. [PMID: 37706437 PMCID: PMC10644337 DOI: 10.1002/cnr2.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cancer is an outcome of various disrupted or dysregulated metabolic processes like apoptosis, growth, and self-cell transformation. Human anatomy harbors trillions of microbes, and these microbes actively influence all kinds of human metabolic activities, including the human immune response. The immune system which inherently acts as a sentinel against microbes, curiously tolerates and even maintains a distinct normal microflora in our body. This emphasizes the evolutionarily significant role of microbiota in shaping our adaptive immune system and even potentiating its function in chronic ailments like cancers. Microbes interact with the host immune cells and play a part in cancer progression or regression by modulating immune cells, producing immunosuppressants, virulence factors, and genotoxins. RECENT FINDINGS An expanding plethora of studies suggest and support the evidence of microbiome impacting cancer etiology. Several studies also indicate that the microbiome can supplement various cancer therapies, increasing their efficacy. The present review discusses the relationship between bacterial and viral microbiota with cancer, discussing different carcinogenic mechanisms influenced by prokaryotes with special emphasis on their immunomodulatory axis. It also elucidates the potential of the microbiome in transforming the efficacy of immunotherapeutic treatments. CONCLUSION This review offers a thorough overview of the complex interaction between the human immune system and the microbiome and its impact on the development of cancer. The microbiome affects the immune responses as well as progression of tumor transformation, hence microbiome-based therapies can vastly improve the effectiveness of cancer immunotherapies. Individual variations of the microbiome and its dynamic variability in every individual impacts the immune modulation and cancer progression. Therefore, further research is required to understand these underlying processes in detail, so as to design better microbiome-immune system axis in the treatment of cancer.
Collapse
Affiliation(s)
- Saksham Garg
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Nikita Sharma
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Bharmjeet
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Asmita Das
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| |
Collapse
|
8
|
Liu M, Hu Z, Wang C, Zhang Y. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori. J Mol Med (Berl) 2023; 101:767-781. [PMID: 37195446 DOI: 10.1007/s00109-023-02332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Helicobacter pylori-induced chronic gastritis represents a well-established risk factor for gastric cancer (GC). However, the mechanism by which chronic inflammation caused by H. pylori induces the development of GC is unclear. H. pylori can influence host cell signalling pathways to induce gastric disease development and mediate cancer promotion and progression. Toll-like receptors (TLRs), as pattern recognition receptors (PRRs), play a key role in the gastrointestinal innate immune response, and their signalling has been implicated in the pathogenesis of an increasing number of inflammation-associated cancers. The core adapter myeloid differentiation factor-88 (MyD88) is shared by most TLRs and functions primarily in H. pylori-triggered innate immune signalling. MyD88 is envisioned as a potential target for the regulation of immune responses and is involved in the regulation of tumourigenesis in a variety of cancer models. In recent years, the TLR/MyD88 signalling pathway has received increasing attention for its role in regulating innate and adaptive immune responses, inducing inflammatory activation and promoting tumour formation. In addition, TLR/MyD88 signalling can manipulate the expression of infiltrating immune cells and various cytokines in the tumour microenvironment (TME). In this review, we discuss the pathogenetic regulatory mechanisms of the TLR/MyD88 signalling cascade pathway and its downstream molecules in H. pylori infection-induced-associated GC. The focus is to elucidate the immunomolecular mechanisms of pathogen recognition and innate immune system activation of H. pylori in the TME of inflammation-associated GC. Ultimately, this study will provide insight into the mechanism of H. pylori-induced chronic inflammation-induced GC development and provide thoughts for GC prevention and treatment strategies.
Collapse
Affiliation(s)
- Meiqi Liu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Zhizhong Hu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Chengkun Wang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| | - Yang Zhang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
9
|
Zheng S, Hu C, Lin H, Li G, Xia R, Zhang X, Su D, Li Z, Zhou Q, Chen R. circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. J Exp Clin Cancer Res 2022; 41:71. [PMID: 35189958 PMCID: PMC8862589 DOI: 10.1186/s13046-021-02237-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by clusters of cancer cells surrounded by a dense desmoplastic stroma. However, little is known about stromal cell heterogeneity in the pancreatic tumor microenvironment. Methods We conducted circRNA profiling in primary fibroblasts by high-throughput sequencing and detected circCUL2 levels in PDAC tissues by qRT–PCR. We subsequently investigated the effect of circCUL2 on inflammatory cancer-associated fibroblast (iCAF) activation, heterogeneity and protumor activity by ELISA, flow cytometry, colony formation and transwell assays in vitro and by xenograft models in vivo. The regulatory effect of circCUL2 on miR-203a-3p/MyD88/IL6 was examined by RNA pulldown, FISH, and luciferase reporter assays. Results We identified that circCUL2 was specifically expressed in cancer-associated fibroblasts (CAFs) but not in cancer cells. Moreover, the enrichment of circCUL2 in tumor tissues was significantly correlated with the poor prognosis of PDAC patients. Upregulation of circCUL2 expression in normal fibroblasts (NFs) induced the iCAF phenotype, and then iCAFs promoted PDAC progression through IL6 secretion in vitro. Furthermore, circCUL2-transduced NFs promoted tumorigenesis and metastasis of PDAC cells in vivo, which was blocked by an anti-IL6 antibody. Mechanistically, circCUL2 functioned as a ceRNA and modulated the miR-203a-3p/MyD88/NF-κB/IL6 axis, thereby further activating the STAT3 signaling pathway in pancreatic cancer cells to induce PDAC progression. Conclusions We showed that the circCUL2/miR-203a-5p/MyD88/NF-κB/IL6 axis contributes to the induction of iCAFs and established a distinct fibroblast niche for PDAC progression, which could help the development of strategies that selectively target tumor-promoting CAFs in PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02237-6.
Collapse
|
10
|
Tang Y, Tang Z, Yang J, Liu T, Tang Y. MicroRNA-7-5p Inhibits Migration, Invasion and Metastasis of Intrahepatic Cholangiocarcinoma by Inhibiting MyD88. J Clin Transl Hepatol 2021; 9:809-817. [PMID: 34966644 PMCID: PMC8666375 DOI: 10.14218/jcth.2021.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor derived from intrahepatic bile duct epithelial cells. Accumulating studies report that microRNAs are widely involved in tumor migration and metastasis by regulation of target genes. miR-7-5p has been confirmed to inhibit tumor metastasis and to be related to prognosis for several malignant tumors. Our study investigated the underlying functions of miR-7-5p in ICC. METHODS The expression of miR-7-5p in ICC tissues but also in ICC cell lines was analyzed by real-time PCR. By analyzing the relationship between the clinicopathological parameters of 60 ICC patients and the expression level of miR-7-5p, the effect of miR-7-5p on the prognosis was clarified. After transfected with miR-7-5p mimics or miR-7-5p inhibitor, cell counting kit-8 assay was applied to evaluate the cells proliferation, flow cytometry was applied to analyze the cells apoptosis, wound healing assay and transwell chamber assay were applied to analyze the cell invasion and migration. A luciferase reporter assay was identified the relationship of miR-7-5p and myeloid differentiation factor 88 (MyD88). Western blotting was used to analyze the proteins expression. And immunochemistry was performed to determine the expression of MYD88 in ICC tissues. RESULTS Our data showed the expression of miR-7-5p was down-regulated not only in ICC tissues but also in ICC cell lines compared with normal controls. Low expression of miR-7-5p was notably associated with poor prognosis in ICC patients. miR-7-5p negatively regulated cell proliferation, migration, invasion and apoptosis in ICC cells. We further verified that MyD88 was a novel target of miR-7-5p and was significantly overexpressed in ICC tissues. Overexpression of MyD88 counteracted the effects of miR-7-5p in ICC cells. CONCLUSIONS The present findings suggest that miR-7-5p plays a pivotal role in ICC invasion by regulating MyD88. Ampliative insight into the key factors of ICC invasion may result in the development of new treatment options for ICC.
Collapse
Affiliation(s)
| | | | | | | | - Yuntian Tang
- Correspondence to: Yuntian Tang, Department of Hepatobiliary Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China. ORCID: https://orcid.org/0000-0001-7658-870X. Tel/Fax: +86-771-218-6308, E-mail:
| |
Collapse
|
11
|
Yuan Q, Zhang J, Liu Y, Chen H, Liu H, Wang J, Niu M, Hou L, Wu Z, Chen Z, Zhang J. MyD88 in myofibroblasts regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. J Pathol 2021; 256:414-426. [PMID: 34927243 DOI: 10.1002/path.5856] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 11/06/2022]
Abstract
Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). MyD88 controls the expression of several key modifier genes in liver tumorigenesis; however, whether and how MyD88 in myofibroblasts contributes to the development of fibrosis-associated liver cancer remain elusive. Here, we used an established hepatocarcinogenesis mouse model involving apparent liver fibrogenesis, in which MyD88 was selectively depleted in myofibroblasts. Myofibroblast MyD88-deficient (Fib-MyD88 KO) mice developed significantly fewer and smaller liver tumor nodules. MyD88 deficiency in myofibroblasts attenuated liver fibrosis and aerobic glycolysis in hepatocellular carcinoma tissues. Mechanistically, MyD88 signaling in myofibroblasts increased the secretion of CCL20, which promoted aerobic glycolysis in cancer cells. This process was dependent on the CCR6 receptor and ERK/PKM2 signaling. Furthermore, liver tumor growth was greatly relieved when the mice were treated with a CCR6 inhibitor. Our data revealed a critical role for MyD88 in myofibroblasts in the promotion of hepatocellular carcinoma by affecting aerobic glycolysis in cancer cells and might provide a potential molecular therapeutic target for HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Jie Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Yu Liu
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Haiqiang Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Haiyang Liu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinyan Wang
- Department of Immunology, Basic School of Medicine, China Medical University, Shenyang, P. R. China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhinan Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China.,Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, P. R. China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| |
Collapse
|
12
|
Tsuda M, Noguchi M, Kurai T, Ichihashi Y, Ise K, Wang L, Ishida Y, Tanino M, Hirano S, Asaka M, Tanaka S. Aberrant expression of MYD88 via RNA-controlling CNOT4 and EXOSC3 in colonic mucosa impacts generation of colonic cancer. Cancer Sci 2021; 112:5100-5113. [PMID: 34626022 PMCID: PMC8645755 DOI: 10.1111/cas.15157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
In 2020, the worldwide incidence and mortality of colorectal cancer (CRC) were third and second, respectively. As the 5‐y survival rate is low when CRC is diagnosed at an advanced stage, a reliable method to predict CRC susceptibility is important for preventing the onset and development and improving the prognosis of CRC. Therefore, we focused on the normal colonic mucosa to investigate changes in gene expression that may induce subsequent genetic alterations that induce malignant transformation. Comprehensive gene expression profiling in the normal mucosa adjacent to colon cancer (CC) compared with tissue from non‐colon cancer patients was performed. PCR arrays and qRT‐PCR revealed that the expression of 5 genes involved in the immune response, including MYD88, was increased in the normal mucosa of CC patients. The expression levels of MYD88 were strikingly increased in precancerous normal mucosa specimens, which harbored no somatic mutations, as shown by immunohistochemistry. Microarray analysis identified 2 novel RNA‐controlling molecules, EXOSC3 and CNOT4, that were significantly upregulated in the normal mucosa of CC patients and were clearly visualized in the nuclei. Forced expression of EXOSC3 and CNOT4 in human colonic epithelial cells increased the expression of IFNGR1, MYD88, NFκBIA, and STAT3 and activated ERK1/2 and JNK in 293T cells. Taken together, these results suggested that, in the inflamed mucosa, EXOSC3‐ and CNOT4‐mediated RNA stabilization, including that of MYD88, may trigger the development of cancer and can serve as a potential predictive marker and innovative treatment to control cancer development.
Collapse
Affiliation(s)
- Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Misa Noguchi
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsuyoshi Kurai
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Ichihashi
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Koki Ise
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yusuke Ishida
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Mishie Tanino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Parveen A, Bohnert KR, Tomaz da Silva M, Wen Y, Bhat R, Roy A, Kumar A. MyD88-mediated signaling intercedes in neurogenic muscle atrophy through multiple mechanisms. FASEB J 2021; 35:e21821. [PMID: 34325487 DOI: 10.1096/fj.202100777rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle atrophy is a debilitating complication of many chronic disease states and disuse conditions including denervation. However, molecular and signaling mechanisms of muscle wasting remain less understood. Here, we demonstrate that the levels of several toll-like receptors (TLRs) and their downstream signaling adaptor, myeloid differentiation primary response 88 (MyD88), are induced in skeletal muscle of mice in response to sciatic nerve denervation. Muscle-specific ablation of MyD88 mitigates denervation-induced skeletal muscle atrophy in mice. Targeted ablation of MyD88 suppresses the components of ubiquitin-proteasome system, autophagy, and FOXO transcription factors in skeletal muscle during denervation. We also found that specific inhibition of MyD88 reduces the activation of canonical nuclear factor-kappa (NF-κB) pathway and expression of receptors for inflammatory cytokines in denervated muscle. In contrast, inhibition of MyD88 stimulates the activation of non-canonical NF-κB signaling in denervated skeletal muscle. Ablation of MyD88 also inhibits the denervation-induced increase in phosphorylation of AMPK without having any effect on the phosphorylation of mTOR. Moreover, targeted ablation of MyD88 inhibits the activation of a few components of the unfolded protein response (UPR) pathways, especially X-box protein 1 (XBP1). Importantly, myofiber-specific ablation of XBP1 mitigates denervation-induced skeletal muscle atrophy in mice. Collectively, our experiments suggest that TLR-MyD88 signaling mediates skeletal muscle wasting during denervation potentially through the activation of canonical NF-κB signaling, AMPK and UPR pathways.
Collapse
Affiliation(s)
- Arshiya Parveen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Kyle R Bohnert
- Kinesiology Department, St. Ambrose University, Davenport, IA, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Yefei Wen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Raksha Bhat
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
14
|
Tartey S, Neale G, Vogel P, Malireddi RKS, Kanneganti TD. A MyD88/IL1R Axis Regulates PD-1 Expression on Tumor-Associated Macrophages and Sustains Their Immunosuppressive Function in Melanoma. Cancer Res 2021; 81:2358-2372. [PMID: 33619117 PMCID: PMC11645125 DOI: 10.1158/0008-5472.can-20-3510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Macrophages are critical mediators of tissue homeostasis, cell proliferation, and tumor metastasis. Tumor-associated macrophages (TAM) are generally associated with tumor-promoting immunosuppressive functions in solid tumors. Here, we examined the transcriptional landscape of adaptor molecules downstream of Toll-like receptors in human cancers and found that higher expression of MYD88 correlated with tumor progression. In murine melanoma, MyD88, but not Trif, was essential for tumor progression, angiogenesis, and maintaining the immunosuppressive phenotype of TAMs. In addition, MyD88 expression in myeloid cells drove melanoma progression. The MyD88/IL1 receptor (IL1R) axis regulated programmed cell death (PD)-1 expression on TAMs by promoting recruitment of NF-κBp65 to the Pdcd1 promoter. Furthermore, a combinatorial immunotherapy approach combining the MyD88 inhibitor with anti-PD-1 blockade elicited strong antitumor effects. Thus, the MyD88/IL1R axis maintains the immunosuppressive function of TAMs and promotes tumor growth by regulating PD-1 expression. SIGNIFICANCE: These findings indicate that MyD88 regulates TAM-immunosuppressive activity, suggesting that macrophage-mediated immunotherapy combining MYD88 inhibitors with PD-1 blockade could result in better treatment outcomes in a wide variety of cancers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2358/F1.large.jpg.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | |
Collapse
|
15
|
Aberrant Expression of TLR2, TLR7, TLR9, Splicing Variants of TLR4 and MYD88 in Chronic Lymphocytic Leukemia Patients. J Clin Med 2021; 10:jcm10040867. [PMID: 33669782 PMCID: PMC7922273 DOI: 10.3390/jcm10040867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Functional toll-like receptors (TLRs) could modulate anti-tumor effects by activating inflammatory cytokines and the cytotoxic T-cells response. However, excessive TLR expression could promote tumor progression, since TLR-induced inflammation might stimulate cancer cells expansion into the microenvironment. Myd88 is involved in activation NF-κB through TLRs downstream signaling, hence in the current study we provided, for the first time, a complex characterization of expression of TLR2, TLR4, TLR7, TLR9, and MYD88 as well as their splicing forms in two distinct compartments of the microenvironment of chronic lymphocytic leukemia (CLL): peripheral blood and bone marrow. We found correlations between MYD88 and TLRs expressions in both compartments, indicating their relevant cooperation in CLL. The MYD88 expression was higher in CLL patients compared to healthy volunteers (HVs) (0.1780 vs. 0.128, p < 0.0001). The TLRs expression was aberrant in CLL compared to HVs. Analysis of survival curves revealed a shorter time to first treatment in the group of patients with low level of TLR4(3) expression compared to high level of TLR4(3) expression in bone marrow (13 months vs. 48 months, p = 0.0207). We suggest that TLRs expression is differentially regulated in CLL but is similarly shared between two distinct compartments of the microenvironment.
Collapse
|
16
|
MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization. Cell Rep 2021; 34:108724. [PMID: 33535045 DOI: 10.1016/j.celrep.2021.108724] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The signal adaptor MyD88, an essential component of TLR signaling, plays an important role in gut-microbiome interactions. However, its contribution to colitis-associated cancer (CAC) is still controversial. Far less is known about the specific effects of MyD88 signaling in myofibroblasts in CAC development. Here, we used a CAC mouse model in which MyD88 was selectively depleted in myofibroblasts. Myofibroblast MyD88-deficient mice are resistant to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced tumorigenesis, as evidenced by the decrease in the number and sizes of tumors. MyD88 deficiency in myofibroblasts attenuates intestinal epithelial cell (IEC) proliferation after acute DSS-induced colitis. Furthermore, MyD88 signaling in myofibroblasts increases the secretion of osteopontin (OPN), which promotes macrophage M2 polarization through binding to αvβ3 and CD44, leading to activation of the STAT3/PPARγ pathway. Thus, MyD88 signaling in myofibroblasts crucially contributes to colorectal cancer development and provides a promising therapeutic target for the prevention of colitis-associated carcinogenesis.
Collapse
|
17
|
Chen L, Zheng L, Chen P, Liang G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem 2020; 63:13316-13329. [DOI: 10.1021/acs.jmedchem.0c00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
18
|
Mohs A, Kuttkat N, Otto T, Youssef SA, De Bruin A, Trautwein C. MyD88-dependent signaling in non-parenchymal cells promotes liver carcinogenesis. Carcinogenesis 2020; 41:171-181. [PMID: 30770929 DOI: 10.1093/carcin/bgy173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
In Western countries, a rising incidence of obesity and type 2 diabetes correlates with an increase of non-alcoholic steatohepatitis (NASH)-a major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). NASH is associated with chronic liver injury, triggering hepatocyte death and enhanced translocation of intestinal bacteria, leading to persistent liver inflammation through activation of Toll-like receptors and their adapter protein myeloid differentiation factor 88 (MyD88). Therefore, we investigated the role of MyD88 during progression from NASH to HCC using a mouse model of chronic liver injury (hepatocyte-specific deletion of nuclear factor κB essential modulator, Nemo; NemoΔhepa). NemoΔhepa; NemoΔhepa/MyD88-/- and NemoΔhepa/MyD88Δhepa were generated and the impact on liver disease progression was investigated. Ubiquitous MyD88 ablation (NemoΔhepa/MyD88-/-) aggravated the degree of liver damage, accompanied by an overall decrease in inflammation, whereas infiltrating macrophages and natural killer cells were elevated. At a later stage, MyD88 deficiency impaired HCC formation. In contrast, hepatocyte-specific MyD88 deletion (NemoΔhepa/MyD88Δhepa) did not affect disease progression. These results suggest that signaling of Toll-like receptors through MyD88 in non-parenchymal liver cells is required for carcinogenesis during chronic liver injury. Hence, blocking MyD88 signaling may offer a therapeutic option to prevent HCC formation in patients with NASH.
Collapse
Affiliation(s)
- Antje Mohs
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen Pauwelsstrasse, Germany
| | - Nadine Kuttkat
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen Pauwelsstrasse, Germany
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen Pauwelsstrasse, Germany
| | - Sameh A Youssef
- Department of Pathobiology, Faculty of Veterinary Medicine, Dutch Molecular Pathology Center, Utrecht University, Yalelaan, TB Utrecht, The Netherlands
| | - Alain De Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Dutch Molecular Pathology Center, Utrecht University, Yalelaan, TB Utrecht, The Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen Pauwelsstrasse, Germany
| |
Collapse
|
19
|
Like a Rolling Stone: Sting-Cgas Pathway and Cell-Free DNA as Biomarkers for Combinatorial Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12080758. [PMID: 32796670 PMCID: PMC7464249 DOI: 10.3390/pharmaceutics12080758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Combining immune checkpoint inhibitors with other treatments likely to harness tumor immunity is a rising strategy in oncology. The exact modalities of such a combinatorial regimen are yet to be defined, and most attempts have relied so far on concomitant dosing, rather than sequential or phased administration. Because immunomodulating features are likely to be time-, dose-, and-schedule dependent, the need for biomarkers providing real-time information is critical to better define the optimal time-window to combine immune checkpoint inhibitors with other drugs. In this review, we present the various putative markers that have been investigated as predictive tools with immune checkpoint inhibitors and could be used to help further combining treatments. Whereas none of the current biomarkers, such as the PDL1 expression of a tumor mutational burden, is suitable to identify the best way to combine treatments, monitoring circulating tumor DNA is a promising strategy, in particular to check whether the STING-cGAS pathway has been activated by cytotoxics. As such, circulating tumor DNA could help defining the best time-window to administrate immune checkpoint inhibitors after that cytotoxics have been given.
Collapse
|
20
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
21
|
Mabrouk N, Ghione S, Laurens V, Plenchette S, Bettaieb A, Paul C. Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers (Basel) 2020; 12:cancers12051145. [PMID: 32370259 PMCID: PMC7281185 DOI: 10.3390/cancers12051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Véronique Laurens
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
- Correspondence: or ; Tel.: +33-3-80-39-33-51
| |
Collapse
|
22
|
Koliaraki V, Chalkidi N, Henriques A, Tzaferis C, Polykratis A, Waisman A, Muller W, Hackam DJ, Pasparakis M, Kollias G. Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis. Cell Rep 2020; 26:536-545.e4. [PMID: 30650348 PMCID: PMC6334226 DOI: 10.1016/j.celrep.2018.12.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
MyD88, an adaptor molecule downstream of innate pathways, plays a significant tumor-promoting role in sporadic intestinal carcinogenesis of the Apcmin/+ model, which carries a mutation in the Apc gene. Here, we show that deletion of MyD88 in intestinal mesenchymal cells (IMCs) significantly reduces tumorigenesis in this model. This phenotype is associated with decreased epithelial cell proliferation, altered inflammatory and tumorigenic immune cell infiltration, and modified gene expression similar to complete MyD88 knockout mice. Genetic deletion of TLR4, but not interleukin-1 receptor (IL-1R), in IMCs led to altered molecular profiles and reduction of intestinal tumors similar to the MyD88 deficiency. Ex vivo analysis in IMCs indicated that these effects could be mediated through downstream signals involving growth factors and inflammatory and extracellular matrix (ECM)-regulating genes, also found in human cancer-associated fibroblasts (CAFs). Our results provide direct evidence that during tumorigenesis, IMCs and CAFs are activated by innate TLR4/MyD88-mediated signals and promote carcinogenesis in the intestine.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Biomedical Sciences Research Centre (BSRC) "Alexander Fleming," Vari 16672, Greece.
| | - Niki Chalkidi
- Biomedical Sciences Research Centre (BSRC) "Alexander Fleming," Vari 16672, Greece
| | - Ana Henriques
- Biomedical Sciences Research Centre (BSRC) "Alexander Fleming," Vari 16672, Greece
| | - Christos Tzaferis
- Biomedical Sciences Research Centre (BSRC) "Alexander Fleming," Vari 16672, Greece
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Werner Muller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139PT, UK
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Children's Center, Baltimore, MD 21287, USA
| | | | - George Kollias
- Biomedical Sciences Research Centre (BSRC) "Alexander Fleming," Vari 16672, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
23
|
Chen J, Xia D, Xu M, Su R, Lin W, Guo D, Chen G, Liu S. Expression and Significance of MyD88 in Patients With Gastric Cardia Cancer in a High-Incidence Area of China. Front Oncol 2020; 10:559. [PMID: 32477927 PMCID: PMC7239990 DOI: 10.3389/fonc.2020.00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Gastric cardia cancer (GCC) arises in the area of the stomach adjoining the esophageal-gastric junction and has unique risk factors. It was suggested that the involvement of Helicobacter pylori is associated with GCC from high-risk population. Myeloid differentiation factor 88 (MyD88) is a crucial adaptor molecule in Toll-like signaling pathway recognizing H. pylori. Its role in GCC has not been elucidated yet. In this study, our purpose is to investigate the expression and significance of MyD88 in GCC tissue. Methods: Expression of MyD88 and nuclear factor κB (NF-κB) p105/p50 and infection of H. pylori were detected by immunohistochemistry in gastric cardia tissue. The correlation of MyD88 expression to NF-κB p105/p50 expression, H. pylori infection, and clinicopathologic characteristics in gastric cardia tissue was analyzed. The involvement of MyD88 in patient prognosis was also analyzed. Results: Our data showed that the expression of MyD88 elevated from normal mucosa to inflammation (p = 0.071). The expression of MyD88 was enhanced in GCC tissues by contrast to non-malignant cardia mucosa (p = 0.025). What's more, overexpression of MyD88 was detected in intestinal-type adenocarcinoma with inflammation. Patients with high MyD88 staining revealed a better differentiation (p = 0.02). MyD88 also positively correlated with NF-κB p105/p50 expression (p = 0.012) in cancer tissue. Expression of MyD88 was increased but not significantly in biopsies with H. pylori infection compared with non-infected biopsies. Multivariate analyses revealed lymph node metastasis but not MyD88 expression was an independent predictor for patient survival. Conclusion: These findings provide pathological evidence that upregulating MyD88 and inducing inflammation might be involved in gastric cardia carcinogenesis in high-risk population. MyD88 plays a role in gastric cardia carcinogenesis with NF-κB pathway activation. Higher MyD88 expression is not a major prognostic determinant in GCC, but it may relate to the tumor cell differentiation.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Di Xia
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Muming Xu
- Department of Abdominal Surgery, The Tumor Hospital of Shantou University Medical College, Shantou, China
| | - Ruibing Su
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Wenting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Dan Guo
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Guangcan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Guangcan Chen
| | - Shuhui Liu
- Department of Pathology, Shantou University Medical College, Shantou, China
- Shuhui Liu
| |
Collapse
|
24
|
Li Q, Chen Y, Zhang D, Grossman J, Li L, Khurana N, Jiang H, Grierson PM, Herndon J, DeNardo DG, Challen GA, Liu J, Ruzinova MB, Fields RC, Lim KH. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight 2019; 4:130867. [PMID: 31527315 DOI: 10.1172/jci.insight.130867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the NF-κB transcription factors underlies chemoresistance in various cancer types, including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IκB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited, largely because of low specificity and toxicities of tested compounds. In solid cancers, the IKKs are driven predominantly by the Toll-like receptor (TLR)/IL-1 receptor family members, which signal through the IL-1 receptor-associated kinases (IRAKs), with isoform 4 (IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC have not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-κB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feed-forward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression is associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC.
Collapse
Affiliation(s)
- Qiong Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Herndon
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grant A Challen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, and
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Liu J, Zhang X, Wang H, Zhang M, Peng Y, Li M, Xie L, Jiang F, Gong Y, Zhao Q, Zhou P. Implication of myeloid differentiation factor 88 inhibitor TJ-M2010-5 for therapeutic intervention of hepatocellular carcinoma. Hepatol Res 2019; 49:1182-1194. [PMID: 31074165 DOI: 10.1111/hepr.13359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 04/06/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022]
Abstract
AIM Myeloid differentiation factor 88 (MyD88) plays a key role in tumor proliferation and metastasis. Targeting MyD88 is a potent strategy in tumor therapy. TJ-M2010-5 is a small molecule derivative of aminothiazole and could inhibit dimer formation of MyD88. To explore the potential of TJ-M2010-5 in tumor therapy, we determined its antitumor effect and correlate mechanisms of TJ-M2010-5 in hepatocellular carcinoma (HCC). METHODS The antitumor effect of intratumoral injection of TJ-M2010-5 to H22 tumor-bearing BALB/c mice was observed. Tumor growth was monitored. The expression of MyD88 and Ki-67 were detected by immunofluorescence. In vitro, the impacts of TJ-M2010-5 on proliferation, cell cycle, necrosis, and apoptosis of H22 cells were evaluated. The direct and indirect effects of TJ-M2010-5 on macrophages were evaluated using flow cytometry. RESULTS TJ-M2010-5 induced both G0 /G1 and G1 /S phase arrests in HCC cells. Mechanically, downstream activation of MyD88 was suppressed by TJ-M2010-5 through the extracellular regulated protein kinase-1/2/p90 ribosomal S6 kinase/glycogen synthase kinase-3β signaling pathway. In turn, cyclin-dependent kinase (CDK)6/cyclin D1 and CDK2/cyclin E complexes were downregulated. More importantly, TJ-M2010-5 significantly inhibited tumor growth in mice. Additionally, the portion of antitumor M1 macrophages (F4/80+ CD11c+ ) in the tumor microenvironment were increased after TJ-M2010-5 treatment. Together, these data indicate that TJ-M2010-5 is a promising therapeutic drug for HCC. CONCLUSIONS These results indicate that MyD88 is a feasible target for antitumor treatment and TJ-M2010-5 is a qualified candidate for HCC therapy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mingqiang Li
- Department of Surgery, Taian City Central Hospital, Taian, China
| | - Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
| | - Fengchao Jiang
- Academy of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
| |
Collapse
|
26
|
Xu L, Li Y, Yang C, Loughran P, Liao H, Hoffman R, Billiar TR, Deng M. TLR9 signaling in fibroblastic reticular cells regulates peritoneal immunity. J Clin Invest 2019; 129:3657-3669. [PMID: 31380807 DOI: 10.1172/jci127542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), a subpopulation of stromal cells in lymphoid organs and fat-associated lymphoid clusters (FALCs) in adipose tissue, play immune-regulatory roles in the host response to infection and may be useful as a form of cell therapy in sepsis. Here, we found an unexpected major role of TLR9 in controlling peritoneal immune cell recruitment and FALC formation at baseline and after sepsis induced by cecal ligation and puncture (CLP). TLR9 regulated peritoneal immunity via suppression of chemokine production by FRCs. Adoptive transfer of TLR9-deficient FRCs more effectively decreased mortality, bacterial load, and systemic inflammation after CLP than WT FRCs. Importantly, we found that activation of TLR9 signaling suppressed chemokine production by human adipose tissue-derived FRCs. Together, our results indicate that TLR9 plays critical roles in regulating peritoneal immunity via suppression of chemokine production by FRCs. These data form a knowledge basis upon which to design new therapeutic strategies to improve the therapeutic efficacy of FRC-based treatments for sepsis and immune dysregulation diseases.
Collapse
Affiliation(s)
- Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Yiming Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chenxuan Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tsinghua University School of Medicine, Beijing, China
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Kim Y, Jo M, Schmidt J, Luo X, Prakash TP, Zhou T, Klein S, Xiao X, Post N, Yin Z, MacLeod AR. Enhanced Potency of GalNAc-Conjugated Antisense Oligonucleotides in Hepatocellular Cancer Models. Mol Ther 2019; 27:1547-1557. [PMID: 31303442 PMCID: PMC6731179 DOI: 10.1016/j.ymthe.2019.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/08/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are a novel therapeutic approach to target difficult-to-drug protein classes by targeting their corresponding mRNAs. Significantly enhanced ASO activity has been achieved by the targeted delivery of ASOs to selected tissues. One example is the targeted delivery of ASOs to hepatocytes, achieved with N-acetylgalactosamine (GalNAc) conjugation to ASO, which results in selective uptake by asialoglycoprotein receptor (ASGR). Here we have evaluated the potential of GalNAc-conjugated ASOs as a therapeutic approach to targeting difficult-to-drug pathways in hepatocellular carcinoma (HCC). The activity of GalNAc-conjugated ASOs was superior to that of the unconjugated parental ASO in ASGR (+) human HCC cells in vitro, but not in ASGR (-) cells. Both human- and mouse-derived HCC displayed reduced levels of ASGR, however, despite this, GalNAc-conjugated ASOs showed a 5- to 10-fold increase in potency in tumors. Systemically administered GalNAc-conjugated ASOs demonstrated both enhanced antisense activity and antitumor activity in the diethylnitrosamine-induced HCC tumor model. Finally, GalNAc conjugation enhanced ASO activity in human circulating tumor cells from HCC patients, demonstrating the potential of this approach in primary human HCC tumor cells. Taken together, these results provide a strong rationale for a potential therapeutic use of GalNAc-conjugated ASOs for the treatment of HCC.
Collapse
Affiliation(s)
- Youngsoo Kim
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA.
| | - Minji Jo
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Joanna Schmidt
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Xiaolin Luo
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Thazha P Prakash
- Department of Medicinal Chemistry, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Tianyuan Zhou
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Stephanie Klein
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Xiaokun Xiao
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Noah Post
- Department of Pharmacokinetics, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Zhengfeng Yin
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA.
| |
Collapse
|
28
|
Cataisson C, Salcedo R, Michalowski AM, Klosterman M, Naik S, Li L, Pan MJ, Sweet A, Chen JQ, Kostecka LG, Karwan M, Smith L, Dai RM, Stewart CA, Lyakh L, Hsieh WT, Khan A, Yang H, Lee M, Trinchieri G, Yuspa SH. T-Cell Deletion of MyD88 Connects IL17 and IκBζ to RAS Oncogenesis. Mol Cancer Res 2019; 17:1759-1773. [PMID: 31164412 DOI: 10.1158/1541-7786.mcr-19-0227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023]
Abstract
Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.
Collapse
Affiliation(s)
| | - Rosalba Salcedo
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland
| | | | - Mary Klosterman
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Shruti Naik
- Department of Pathology and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Michelle J Pan
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Amalia Sweet
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Megan Karwan
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Loretta Smith
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland
| | - Ren-Ming Dai
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Lyudmila Lyakh
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland.,Division of Allergy, Immunology & Transplantation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda Maryland
| | | | - Asra Khan
- Cancer and Inflammation Program (CIP), NCI, Bethesda Maryland
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | | | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland.
| |
Collapse
|
29
|
Gallot YS, Straughn AR, Bohnert KR, Xiong G, Hindi SM, Kumar A. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Hum Mol Genet 2019; 27:3449-3463. [PMID: 30010933 DOI: 10.1093/hmg/ddy258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, leads to severe muscle wasting and eventual death of the afflicted individuals, primarily due to respiratory failure. Deficit in myofiber regeneration, potentially due to an exhaustion of satellite cells, is one of the major pathological features of DMD. Myeloid differentiation primary response 88 (MyD88) is an adaptor protein that mediates activation of various inflammatory pathways in response to signaling from Toll-like receptors and interleukin-1 receptor. MyD88 also regulates cellular survival, proliferation and differentiation in a cell-autonomous manner. However, the role of MyD88 in satellite stem cell homeostasis and function in dystrophic muscle remains unknown. In this study, we demonstrate that tamoxifen-inducible deletion of MyD88 in satellite cells causes loss of skeletal muscle mass and strength in the mdx mouse model of DMD. Satellite cell-specific deletion of MyD88 inhibits myofiber regeneration and stimulates fibrogenesis in dystrophic muscle of mdx mice. Deletion of MyD88 also reduces the number of satellite cells and inhibits their fusion with injured myofibers in dystrophic muscle of mdx mice. Ablation of MyD88 in satellite cells increases the markers of M2 macrophages without having any significant effect on M1 macrophages and expression of inflammatory cytokines. Finally, we found that satellite cell-specific deletion of MyD88 leads to aberrant activation of Notch and Wnt signaling in skeletal muscle of mdx mice. Collectively, our results demonstrate that MyD88-mediated signaling in satellite cells is essential for the regeneration of injured myofibers in dystrophic muscle of mdx mice.
Collapse
Affiliation(s)
- Yann S Gallot
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Alex R Straughn
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kyle R Bohnert
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
30
|
Interplay between dendritic cells and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:179-215. [DOI: 10.1016/bs.ircmb.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Khan S, Godfrey V, Zaki MH. Cytosolic Nucleic Acid Sensors in Inflammatory and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:215-253. [PMID: 30798989 DOI: 10.1016/bs.ircmb.2018.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immunity employs germline-encoded pattern recognition receptors (PRRs) to sense microbial pattern molecules. Recognition of pathogen-associated molecular patterns (PAMPs) by various PPRs located on the cell membrane or in the cytosol leads to the activation of cell signaling pathways and production of inflammatory mediators. Nucleic acids including DNA, RNA, and their derivatives are potent PAMPs which can be recognized by multiple PRRs to induce inflammatory responses. While nucleic acid sensors can also sense endogenous nucleic acids, they are capable of discriminating self from non-self. However, defects in nucleic acid sensing PRRs or dysregulation of nucleic acid sensing signaling pathways may cause excessive activation of the immune system resulting in the development of inflammatory and autoimmune diseases. This review will discuss the major pathways for sensing intracellular nucleic acids and how defects in these nucleic acid sensing are associated with different kinds of autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Shahanshah Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Victoria Godfrey
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Md Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
32
|
Wenzl K, Manske MK, Sarangi V, Asmann YW, Greipp PT, Schoon HR, Braggio E, Maurer MJ, Feldman AL, Witzig TE, Slager SL, Ansell SM, Cerhan JR, Novak AJ. Loss of TNFAIP3 enhances MYD88 L265P-driven signaling in non-Hodgkin lymphoma. Blood Cancer J 2018; 8:97. [PMID: 30301877 PMCID: PMC6177394 DOI: 10.1038/s41408-018-0130-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 01/04/2023] Open
Abstract
MYD88 mutations are one of the most recurrent mutations in hematologic malignancies. However, recent mouse models suggest that MYD88L265P alone may not be sufficient to induce tumor formation. Interplay between MYD88L265P and other genetic events is further supported by the fact that TNFAIP3 (A20) inactivation often accompanies MYD88L265P. However, we are still lacking information about the consequence of MYD88L265P in combination with TNFAIP3 loss in human B cell lymphoma. Review of our genetic data on diffuse large B cell lymphoma (DLBCL) and Waldenstrom macroglobulinemia (WM), found that a large percentage of DLBCL and WM cases that have a MYD88 mutation also harbor a TNFAIP3 loss, 55% DLBCL and 28% of WM, respectively. To mimic this combination of genetic events, we used genomic editing technology to knock out TNFAIP3 in MYD88L265P non-Hodgkin's lymphoma (NHL) cell lines. Loss of A20 expression resulted in increased NF-κB and p38 activity leading to upregulation of the NF-κB target genes BCL2 and MYC. Furthermore, we detected the increased production of IL-6 and CXCL10 which led to an upregulation of the JAK/STAT pathway. Overall, these results suggest that MYD88L265P signaling can be enhanced by a second genetic alteration in TNFAIP3 and highlights a potential opportunity for therapeutic targeting.
Collapse
Affiliation(s)
- Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia T Greipp
- Genomics Laboratory, Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 2018; 107:177-184. [PMID: 30086464 DOI: 10.1016/j.biopha.2018.07.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kewei Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
34
|
Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 2018; 281:57-61. [PMID: 29247996 DOI: 10.1111/imr.12614] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is an important component of the tumor microenvironment. IL-1 is an inflammatory cytokine which plays a key role in carcinogenesis and tumor progression. IL-1 is subject to regulation by components of the IL-1 and IL-1 receptor (ILR) families. Negative regulators include a decoy receptor (IL-1R2), receptor antagonists (IL-1Ra), IL-1R8, and anti-inflammatory IL-37. IL-1 acts at different levels in tumor initiation and progression, including driving chronic non-resolving inflammation, tumor angiogenesis, activation of the IL-17 pathway, induction of myeloid-derived suppressor cells (MDSC) and macrophage recruitment, invasion and metastasis. Based on initial clinical results, the translation potential of IL-1 targeting deserves extensive analysis.
Collapse
Affiliation(s)
- Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Cecilia Garlanda
- Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| |
Collapse
|
35
|
Wu TC, Xu K, Martinek J, Young RR, Banchereau R, George J, Turner J, Kim KI, Zurawski S, Wang X, Blankenship D, Brookes HM, Marches F, Obermoser G, Lavecchio E, Levin MK, Bae S, Chung CH, Smith JL, Cepika AM, Oxley KL, Snipes GJ, Banchereau J, Pascual V, O'Shaughnessy J, Palucka AK. IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Res 2018; 78:5243-5258. [PMID: 30012670 DOI: 10.1158/0008-5472.can-18-0413] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/04/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
Inflammation affects tumor immune surveillance and resistance to therapy. Here, we show that production of IL1β in primary breast cancer tumors is linked with advanced disease and originates from tumor-infiltrating CD11c+ myeloid cells. IL1β production is triggered by cancer cell membrane-derived TGFβ. Neutralizing TGFβ or IL1 receptor prevents breast cancer progression in humanized mouse model. Patients with metastatic HER2- breast cancer display a transcriptional signature of inflammation in the blood leukocytes, which is attenuated after IL1 blockade. When present in primary breast cancer tumors, this signature discriminates patients with poor clinical outcomes in two independent public datasets (TCGA and METABRIC).Significance: IL1β orchestrates tumor-promoting inflammation in breast cancer and can be targeted in patients using an IL1 receptor antagonist. Cancer Res; 78(18); 5243-58. ©2018 AACRSee related commentary by Dinarello, p. 5200.
Collapse
Affiliation(s)
- Te-Chia Wu
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kangling Xu
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Jan Martinek
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Department of Biomedical Studies, Baylor University, Waco, Texas
| | - Robyn R Young
- The Center for Cancer and Blood Disorders, Fort Worth, Texas
| | - Romain Banchereau
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jacob Turner
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Kyung In Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Xuan Wang
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Derek Blankenship
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Hannah M Brookes
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Florentina Marches
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Gerlinde Obermoser
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Elizabeth Lavecchio
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Maren K Levin
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Sookyoung Bae
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Cheng-Han Chung
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Department of Biomedical Studies, Baylor University, Waco, Texas
| | - Jennifer L Smith
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Alma-Martina Cepika
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Kyp L Oxley
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - George J Snipes
- Baylor University Medical Center, Sammons Cancer Center, Dallas, Texas
| | - Jacques Banchereau
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Charles A. Sammons Cancer Center, Texas Oncology, Dallas, Texas
| | - A Karolina Palucka
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas. .,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| |
Collapse
|
36
|
Identification and expression of alternatively spliced novel isoforms of cancer associated MYD88 lacking death domain in mouse. Mol Biol Rep 2018; 45:699-711. [DOI: 10.1007/s11033-018-4209-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
|
37
|
Oliveira LB, Haga IR, Villa LL. Human papillomavirus (HPV) 16 E6 oncoprotein targets the Toll-like receptor pathway. J Gen Virol 2018; 99:667-675. [PMID: 29595418 DOI: 10.1099/jgv.0.001057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer is one of the leading causes of death in women worldwide and is etiologically linked to human papillomavirus (HPV) infection. Viral early proteins E6 and E7 manipulate cellular functions to promote the virus life cycle and are essential to the cellular transformation process. The innate immune system plays a pivotal role in the natural history of HPV infection. Among the various proteins that mediate the innate immune response, Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and initiate the immune response. The objective of this study was to identify HPV E6 protein interaction partners in the TLR signalling pathway that may play a role in the immune response against HPV. Six TLR pathway proteins were shown to interact with HPV16 E6: myeloid differentiation primary response protein (MyD88), TIR domain-containing adapter molecule 1 (TRIF), interleukin-1 receptor-associated kinase-like (IRAK) 2, TNF receptor-associated factor (TRAF) 6, I-κB kinase beta (IKKβ) and I-κB kinase epsilon (IKKε). The interaction site of IKKε with E6 is located in the region containing the enzyme catalytic site, suggesting an influence of E6 on the activation of IKKε target proteins. HPV16 E6 potentiated the activation of NF-κB by various TLR pathway members. These results suggest that HPV16 has the ability to interfere with components of the immune response, contributing to HPV carcinogenesis.
Collapse
Affiliation(s)
- Lucas Boeno Oliveira
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | | | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Campesato LF, Silva APM, Cordeiro L, Correa BR, Navarro FCP, Zanin RF, Marçola M, Inoue LT, Duarte ML, Molgora M, Pasqualini F, Massara M, Galante P, Barroso-Sousa R, Polentarutti N, Riva F, Costa ET, Mantovani A, Garlanda C, Camargo AA. High IL-1R8 expression in breast tumors promotes tumor growth and contributes to impaired antitumor immunity. Oncotarget 2018; 8:49470-49483. [PMID: 28533483 PMCID: PMC5564782 DOI: 10.18632/oncotarget.17713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
Tumors develop numerous strategies to fine-tune inflammation and avoid detection and eradication by the immune system. The identification of mechanisms leading to local immune dysregulation is critical to improve cancer therapy. We here demonstrate that Interleukin-1 receptor 8 (IL-1R8 - previously known as SIGIRR/TIR8), a negative regulator of Toll-Like and Interleukin-1 Receptor family signaling, is up-regulated during breast epithelial cell transformation and in primary breast tumors. IL-1R8 expression in transformed breast epithelial cells reduced IL-1-dependent NF-κB activation and production of pro-inflammatory cytokines, inhibited NK cell activation and favored M2-like macrophage polarization. In a murine breast cancer model (MMTV-neu), IL-1R8-deficiency reduced tumor growth and metastasis and was associated with increased mobilization and activation of immune cells, such as NK cells and CD8+ T cells. Finally, immune-gene signature analysis in clinical specimens revealed that high IL-1R8 expression is associated with impaired innate immune sensing and T-cell exclusion from the tumor microenvironment. Our results indicate that high IL-1R8 expression acts as a novel immunomodulatory mechanism leading to dysregulated immunity with important implications for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Luis Felipe Campesato
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil.,Graduate Program in Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Luna Cordeiro
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Bruna R Correa
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Fabio C P Navarro
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Rafael F Zanin
- Cellular and Molecular Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Marçola
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lilian T Inoue
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Mariana L Duarte
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | | | | | | | - Pedro Galante
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | | | | | - Federica Riva
- Department of Veterinary Pathology, University of Milan, Milan, Italy
| | - Erico T Costa
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | | | - Anamaria A Camargo
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Role of Pattern Recognition Receptors in KSHV Infection. Cancers (Basel) 2018; 10:cancers10030085. [PMID: 29558453 PMCID: PMC5876660 DOI: 10.3390/cancers10030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus or Human herpesvirus-8 (KSHV/HHV-8), an oncogenic human herpesvirus and the leading cause of cancer in HIV-infected individuals, is a major public health concern with recurring reports of epidemics on a global level. The early detection of KSHV virus and subsequent activation of the antiviral immune response by the host’s immune system are crucial to prevent KSHV infection. The host’s immune system is an evolutionary conserved system that provides the most important line of defense against invading microbial pathogens, including viruses. Viruses are initially detected by the cells of the host innate immune system, which evoke concerted antiviral responses via the secretion of interferons (IFNs) and inflammatory cytokines/chemokines for elimination of the invaders. Type I IFN and cytokine gene expression are regulated by multiple intracellular signaling pathways that are activated by germline-encoded host sensors, i.e., pattern recognition receptors (PRRs) that recognize a conserved set of ligands, known as ‘pathogen-associated molecular patterns (PAMPs)’. On the contrary, persistent and dysregulated signaling of PRRs promotes numerous tumor-causing inflammatory events in various human cancers. Being an integral component of the mammalian innate immune response and due to their constitutive activation in tumor cells, targeting PRRs appears to be an effective strategy for tumor prevention and/or treatment. Cellular PRRs are known to respond to KSHV infection, and KSHV has been shown to be armed with an array of strategies to selectively inhibit cellular PRR-based immune sensing to its benefit. In particular, KSHV has acquired specific immunomodulatory genes to effectively subvert PRR responses during the early stages of primary infection, lytic reactivation and latency, for a successful establishment of a life-long persistent infection. The current review aims to comprehensively summarize the latest advances in our knowledge of role of PRRs in KSHV infections.
Collapse
|
40
|
Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88's effects on the gut microbiota. Exp Mol Med 2018; 50:e433. [PMID: 29371696 PMCID: PMC5799803 DOI: 10.1038/emm.2017.246] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/04/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Although radiation therapy is a cornerstone of modern management of malignancies, various side effects are inevitably linked to abdominal and pelvic cancer after radiotherapy. Radiation-mediated gastrointestinal (GI) toxicity impairs the life quality of cancer survivors and even shortens their lifespan. Hydrogen has been shown to protect against tissue injuries caused by oxidative stress and excessive inflammation, but its effect on radiation-induced intestinal injury was previously unknown. In the present study, we found that oral gavage with hydrogen-water increased the survival rate and body weight of mice exposed to total abdominal irradiation (TAI); oral gavage with hydrogen-water was also associated with an improvement in GI tract function and the epithelial integrity of the small intestine. Mechanistically, microarray analysis revealed that hydrogen-water administration upregulated miR-1968-5p levels, thus resulting in parallel downregulation of MyD88 expression in the small intestine after TAI exposure. Additionally, high-throughput sequencing showed that hydrogen-water oral gavage resulted in retention of the TAI-shifted intestinal bacterial composition in mice. Collectively, our findings suggested that hydrogen-water might be used as a potential therapeutic to alleviate intestinal injury induced by radiotherapy for abdominal and pelvic cancer in preclinical settings.
Collapse
|
41
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Innate Immune Receptors in the Regulation of Tumor Immunity. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Ahn J, Son S, Oliveira SC, Barber GN. STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis. Cell Rep 2017; 21:3873-3884. [PMID: 29281834 PMCID: PMC6082386 DOI: 10.1016/j.celrep.2017.11.101] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Intestinal immune homeostasis is preserved by commensal bacteria interacting with the host to generate a balanced array of cytokines that are essential for wound repair and for combatting infection. Inflammatory bowel disease (IBD), which can lead to colitis-associated cancer (CAC), is thought to involve chronic microbial irritation following a breach of the mucosal intestinal epithelium. However, the innate immune pathways responsible for regulating these inflammatory processes remain to be fully clarified. Here, we show that commensal bacteria influence STING signaling predominantly in mononuclear phagocytes to produce both pro-inflammatory cytokines as well as anti-inflammatory IL-10. Enterocolitis, manifested through loss of IL-10, was completely abrogated in the absence of STING. Intestinal inflammation was less severe in the absence of cGAS, possibly suggesting a role for cyclic dinucleotides (CDNs) indirectly regulating STING signaling. Our data shed insight into the causes of inflammation and provide a potential therapeutic target for prevention of IBD.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sehee Son
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
43
|
Hindi SM, Shin J, Gallot YS, Straughn AR, Simionescu-Bankston A, Hindi L, Xiong G, Friedland RP, Kumar A. MyD88 promotes myoblast fusion in a cell-autonomous manner. Nat Commun 2017; 8:1624. [PMID: 29158520 PMCID: PMC5696367 DOI: 10.1038/s41467-017-01866-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/20/2017] [Indexed: 12/27/2022] Open
Abstract
Myoblast fusion is an indispensable step for skeletal muscle development, postnatal growth, and regeneration. Myeloid differentiation primary response gene 88 (MyD88) is an adaptor protein that mediates Toll-like receptors and interleukin-1 receptor signaling. Here we report a cell-autonomous role of MyD88 in the regulation of myoblast fusion. MyD88 protein levels are increased during in vitro myogenesis and in conditions that promote skeletal muscle growth in vivo. Deletion of MyD88 impairs fusion of myoblasts without affecting their survival, proliferation, or differentiation. MyD88 regulates non-canonical NF-κB and canonical Wnt signaling during myogenesis and promotes skeletal muscle growth and overload-induced myofiber hypertrophy in mice. Ablation of MyD88 reduces myofiber size during muscle regeneration, whereas its overexpression promotes fusion of exogenous myoblasts to injured myofibers. Our study shows that MyD88 modulates myoblast fusion and suggests that augmenting its levels may be a therapeutic approach to improve skeletal muscle formation in degenerative muscle disorders.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yann S Gallot
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Alex R Straughn
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Adriana Simionescu-Bankston
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lubna Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
44
|
Trucco LD, Roselli E, Araya P, Nuñez NG, Mena HA, Bocco JL, Negrotto S, Maccioni M. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma. PLoS One 2017; 12:e0179897. [PMID: 28662055 PMCID: PMC5491060 DOI: 10.1371/journal.pone.0179897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/06/2017] [Indexed: 01/15/2023] Open
Abstract
The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis.
Collapse
Affiliation(s)
- Lucas Daniel Trucco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Emiliano Roselli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Araya
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Gonzalo Nuñez
- Laboratoire de Transfert, INSERM U932, Laboratoire d'Immunologie, Institute Curie, París, France
| | - Hebe Agustina Mena
- Laboratorio de Trombosis Experimental, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Soledad Negrotto
- Laboratorio de Trombosis Experimental, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
45
|
Kinowaki K, Soejima Y, Kumagai A, Kondo F, Sano K, Fujii T, Kitagawa M, Fukusato T. Clinical and pathological significance of myeloid differentiation factor 88 expression in human hepatocellular carcinoma tissues. Pathol Int 2017; 67:256-263. [PMID: 28370778 DOI: 10.1111/pin.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
The innate immune system, which includes toll-like receptor (TLR) signaling, plays an important role in inflammation and oncogenesis. Although TLR common adaptor myeloid differentiation factor 88 (MyD88) is known to have multiple effects on carcinogenesis, the role of MyD88 in hepatocarcinogenesis remains unknown. In this study, MyD88 expression was examined in 105 samples of human hepatocellular carcinoma (HCC) tissue by immunohistochemistry, Western blot, and quantitative reverse-transcriptase polymerase chain reaction methods. The relationships between MyD88 expression and clinical and pathological parameters were analyzed. The results showed that attenuated expression of MyD88 in HCC tissue tumor cells was significantly related to hepatitis B virus infection, large tumor size, positive vascular invasion, and intrahepatic metastasis (P < 0.05). Western blot analysis of MyD88 protein in nine normal livers and 28 HCCs showed gender disparity (P < 0.01, P < 0.05), and attenuated expression in cirrhotic livers (P < 0.05). Low expression of MyD88 mRNA was evident in HCCs with vascular invasion (P < 0.01). In contrast to previous reports, these results suggest that attenuated expression of MyD88 in HCC is associated with tumor progression.
Collapse
Affiliation(s)
- Keiichi Kinowaki
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Yurie Soejima
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Department of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arisa Kumagai
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Fukuo Kondo
- Department of Pathology, Toranomon Hospital, Tokyo, Japan.,Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| | - Keiji Sano
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan.,Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Rationale for stimulator of interferon genes-targeted cancer immunotherapy. Eur J Cancer 2017; 75:86-97. [PMID: 28219022 DOI: 10.1016/j.ejca.2016.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022]
Abstract
The efficacy of checkpoint inhibitor therapy illustrates that cancer immunotherapy, which aims to foster the host immune response against cancer to achieve durable anticancer responses, can be successfully implemented in a routine clinical practice. However, a substantial proportion of patients does not benefit from this treatment, underscoring the need to identify alternative strategies to defeat cancer. Despite the demonstration in the 1990's that the detection of danger signals, including the nucleic acids DNA and RNA, by dendritic cells (DCs) in a cancer setting is essential for eliciting host defence, the molecular sensors responsible for recognising these danger signals and eliciting anticancer immune responses remain incompletely characterised, possibly explaining the disappointing results obtained so far upon the clinical implementation of DC-based cancer vaccines. In 2008, STING (stimulator of interferon genes), was identified as a protein that is indispensable for the recognition of cytosolic DNA. The central role of STING in controlling anticancer immune responses was exemplified by observations that spontaneous and radiation-induced adaptive anticancer immunity was reduced in the absence of STING, illustrating the potential of STING-targeting for cancer immunotherapy. Here, we will discuss the relevance of manipulating the STING signalling pathway for cancer treatment and integrating STING-targeting based strategies into combinatorial therapies to obtain long-lasting anticancer immune responses.
Collapse
|
47
|
Lozano-Pope I, Sharma A, Matthias M, Doran KS, Obonyo M. Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer. BMC Cancer 2017; 17:133. [PMID: 28201999 PMCID: PMC5310019 DOI: 10.1186/s12885-017-3114-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer is one of the most common and lethal type of cancer worldwide. Infection with Helicobacter pylori (H. pylori) is recognized as the major cause of gastric cancer. However, it remains unclear the mechanism by which Helicobacter infection leads to gastric cancer. Furthermore, the underlying molecular events involved during the progression of Helicobacter infection to gastric malignancy are not well understood. In previous studies, we demonstrated that that H. felis-infected Myd88−/− mice exhibited dramatic pathology and an accelerated progression to gastric dysplasia; however, the MyD88 downstream gene targets responsible for this pathology have not been described. This study was designed to identify MyD88-dependent genes involved in the progression towards gastric cancer during the course of Helicobacter infection. Methods Wild type (WT) and Myd88 deficient mice (Myd88−/−) were infected with H. felis for 25 and 47 weeks and global transcriptome analysis performed on gastric tissue using MouseWG-6 v2 expression BeadChips microarrays. Function and pathway enrichment analyses of statistically significant, differential expressed genes (p < 0.05) were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tools. Results Helicobacter infection affected the transcriptional profile of more genes in Myd88−/− mice compared to WT mice. Infection of Myd88−/− mice resulted in the differential expression of 1,989 genes at 25 weeks (1031 up and 958 downregulated). At 47 weeks post-H.felis infection, 2,162 (1140 up and 1022 downregulated) were differentially expressed. The most significant differentially upregulated gene during Helicobacter infection in Myd88−/− mice was chitinase-like 4 (chil4), which is involved in tissue remodeling and wound healing. Other highly upregulated genes in H. felis-infected Myd88−/− mice included, Indoleamine 2,3-Dioxygenase 1 (Ido1), Guanylate binding protein 2 (Gbp2), ubiquitin D (Ubd), β2-Microglobulin (B2m), CD74 antigen (Cd74), which have been reported to promote cancer progression by enhancing angiogenesis, proliferation, migration, metastasis, invasion, and tumorigenecity. For downregulated genes, the highly expressed genes included, ATPase H+/K+ transporting, alpha subunit (Atp4a), Atp4b, Mucin 5 AC (Muc5ac), Apolipoprotein A-1 (Apoa1), and gastric intrinsic factor (Gif), whose optimal function is important in maintaining gastric hemostasis and lower expression has been associated with increased risk of gastric carcinogenesis. Conclusions These results provide a global transcriptional gene profile during the development and progression of Helicobacter-induced gastric cancer. The data show that our mouse model system is useful for identifying genes involved in gastric cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3114-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arnika Sharma
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Michael Matthias
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Kelly S Doran
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Marygorret Obonyo
- Department of Medicine, University of California, La Jolla, CA, USA.
| |
Collapse
|
48
|
Liu SZ, He XM, Zhang X, Zeng FC, Wang F, Zhou XY. Ischemic Preconditioning-Induced SOCS-1 Protects Rat Intestinal Ischemia Reperfusion Injury via Degradation of TRAF6. Dig Dis Sci 2017; 62:105-114. [PMID: 27538408 DOI: 10.1007/s10620-016-4277-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The inflammatory immune response plays an important role in mesenteric ischemia and ischemia-reperfusion injury. Toll-like receptor 4 (TLR4) is a critical receptor in transduction of the inflammatory response and plays an important role in intestinal homeostasis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), known as a key adaptor protein downstream of TLR4, is involved in the inflammatory response by activating multiple apoptotic signaling pathways. However, mechanisms of the suppressor of cytokine signaling-1 (SOCS-1) in regulating cell inflammation and apoptosis are still obscure. OBJECTIVES To investigate the TLR4-TRAF6 signaling pathway in intestinal ischemia and reperfusion injury, as well as SOCS-1 expression after ischemic preconditioning in the rat intestine. METHODS The small bowel ischemia, ischemia-reperfusion, and preconditioning models were induced using ligation of the superior mesenteric artery in male Sprague-Dawley rats; then, the mRNA and protein levels of TLR4, TRAF6, and SOCS-1 were analyzed using real-time PCR, Western blot, and immunohistochemistry, respectively. RESULTS The expression of TLR4 and TRAF6 was gradually increased with increasing intestinal ischemia duration, but increased substantially after ischemia-reperfusion injury. After ischemic preconditioning, TLR4 and TRAF6 expressions decreased; however, expression of SOCS-1 and the TLR4-TRAF6 pathway inhibitor was increased. CONCLUSION These data show that ischemic preconditioning may induce the activation of SOCS-1 to inhibit the TLR4-TRAF6 signaling pathway, thereby playing a protective role in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Sheng-Zhi Liu
- SouthWest Medical University Clinical Medicine, 25 Tai Ping Street, Lu Zhou, 646000, Sichuan Province, People's Republic of China.,Department of Vascular Surgery, The Second People's Hospital of Yibin, 96 North Street, Yi Bin, 644000, Sichuan Province, People's Republic of China
| | - Xue-Mei He
- Medical Research Center, The Affiliated Hospital of SouthWest Medical University, 25 Tai Ping Street, Lu Zhou, 646000, Sichuan Province, People's Republic of China
| | - Xu Zhang
- Department of Pathology, The Affiliated Hospital of SouthWest Medical University, 25 Tai Ping Street, Lu Zhou, 646000, Sichuan Province, People's Republic of China
| | - Fan-Cai Zeng
- Department of Biochemistry, SouthWest Medical University, 25 Tai Ping Street, Lu Zhou, 646000, Sichuan Province, People's Republic of China
| | - Fang Wang
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of SouthWest Medical University, 25 Tai Ping Street, Lu Zhou, 646000, Sichuan Province, People's Republic of China
| | - Xiang-Yu Zhou
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of SouthWest Medical University, 25 Tai Ping Street, Lu Zhou, 646000, Sichuan Province, People's Republic of China.
| |
Collapse
|
49
|
Cataisson C, Michalowski AM, Shibuya K, Ryscavage A, Klosterman M, Wright L, Dubois W, Liu F, Zhuang A, Rodrigues KB, Hoover S, Dwyer J, Simpson MR, Merlino G, Yuspa SH. MET signaling in keratinocytes activates EGFR and initiates squamous carcinogenesis. Sci Signal 2016; 9:ra62. [PMID: 27330189 DOI: 10.1126/scisignal.aaf5106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The receptor tyrosine kinase MET is abundant in many human squamous cell carcinomas (SCCs), but its functional significance in tumorigenesis is not clear. We found that the incidence of carcinogen-induced skin squamous tumors was substantially increased in transgenic MT-HGF (mouse metallothionein-hepatocyte growth factor) mice, which have increased abundance of the MET ligand HGF. Squamous tumors also erupted spontaneously on the skin of MT-HGF mice that were promoted by wounding or the application of 12-O-tetradecanoylphorbol 13-acetate, an activator of protein kinase C. Carcinogen-initiated tumors had Ras mutations, but spontaneous tumors did not. Cultured keratinocytes from MT-HGF mice and oncogenic RAS-transduced keratinocytes shared phenotypic and biochemical features of initiation that were dependent on autocrine activation of epidermal growth factor receptor (EGFR) through increased synthesis and release of EGFR ligands, which was mediated by the kinase SRC, the pseudoproteases iRhom1 and iRhom2, and the metallopeptidase ADAM17. Pharmacological inhibition of EGFR caused the regression of MT-HGF squamous tumors that developed spontaneously in orthografts of MT-HGF keratinocytes combined with dermal fibroblasts and implanted onto syngeneic mice. The global gene expression profile in MET-transformed keratinocytes was highly concordant with that in RAS-transformed keratinocytes, and a core RAS/MET coexpression network was activated in precancerous and cancerous human skin lesions. Tissue arrays revealed that many human skin SCCs have abundant HGF at both the transcript and protein levels. Thus, through the activation of EGFR, MET activation parallels a RAS pathway to contribute to human and mouse cutaneous cancers.
Collapse
Affiliation(s)
- Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Shibuya
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Klosterman
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Wright
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fan Liu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Zhuang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kameron B Rodrigues
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelley Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Abstract
Stimulator of interferon genes (STING) is activated by binding to cyclic dinucleotides (CDNs), which results in potent cytokine production. CDNs are produced by certain intracellular bacteria and are generated by the cyclic GMP–AMP synthase (cGAS) following binding to cytosolic DNA species, such as viral DNA. STING-inducible innate immune molecules are essential for protection of the host against pathogens and are important for the stimulation of adaptive immunity. Self-DNA, for example from the nucleus or mitochondria, can leak into the cytosolic compartment and stimulate STING activity to cause autoinflammatory disease. Certain mutations in the gene encoding STING can cause the protein to become permanently active and similarly induce autoinflammatory responses. STING can be activated in phagocytes by DNA released from engulfed tumour cells and drive the production of cytokines necessary for generating robust antitumour T cell responses. DNA-damaging agents can cause the release of nuclear DNA into the cytosol that stimulates STING-dependent cytokine production and phagocyte infiltration. This may be essential for eliminating damaged cells and generating antitumour T cell responses, but chronic stimulation may also promote inflammation-aggravated cancer. STING agonists exert potent antitumour activity and may be effective, novel adjuvants in vaccine formulations. In contrast, inhibitors of STING signalling may be beneficial for the treatment of autoinflammatory disease, such as systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS) and STING-associated vasculopathy with onset in infancy (SAVI).
Activation of STING (stimulator of interferon genes) by cytosolic aberrant DNA species or cyclic dinucleotides triggers transcription of numerous innate immune genes. In this Review, the author summarizes recent insights into the regulation of STING signalling and its role in autoinflammatory disease and cancer. The rapid detection of microbial agents is essential for the effective initiation of host defence mechanisms against infection. Understanding how cells detect cytosolic DNA to trigger innate immune gene transcription has important implications — not only for comprehending the immune response to pathogens but also for elucidating the causes of autoinflammatory disease involving the sensing of self-DNA and the generation of effective antitumour adaptive immunity. The discovery of the STING (stimulator of interferon genes)-controlled innate immune pathway, which mediates cytosolic DNA-induced signalling events, has recently provided important insights into these processes, opening the way for the development of novel immunization regimes, as well as therapies to treat autoinflammatory disease and cancer.
Collapse
Affiliation(s)
- Glen N Barber
- Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|