1
|
Chen Y, Liu Z, Liu F, Xu L, Li G, Qiao W, Wang Y, Dong N. T cell specific deletion of IRF4 with Ox40-Cre impairs effector and memory T cell responses in heart transplantation. Clin Immunol 2023; 252:109647. [PMID: 37211291 DOI: 10.1016/j.clim.2023.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND IRF4 is the pioneer factor for effector T cell maturation. Here we investigated the function of IRF4 in maintaining OX40-related T cell responses following alloantigen activation in a mouse heart transplantation model. METHODS Irf4flox/flox mice were bred with Ox40cre/+ mice to generate Irf4flox/floxOx40cre/+ mice. Wild type C57BL/6, Irf4flox/floxOx40cre/+ mice were transplanted with BALB/c heart allografts, with or without BALB/c skin-sensitization. CD4+ TEa T cells co-transfer experiments and flow cytometric analysis were conducted to investigate the amount of CD4+ T cells and the percentage of the T effector subset. RESULTS Irf4flox/floxOx40cre/+ and Irf4flox/floxOx40cre/+ TEa mice were constructed successfully. IRF4 ablation in activated OX40-mediated alloantigen specific CD4+ TEa T cells reduced effector T cell differentiation (CD44hiCD62Llo, Ki67, IFN-γ), which caused long-term allograft survival (> 100 d) in the chronic rejection model. In the donor skin-sensitized heart transplantation model, the formation and function of alloantigen-specific memory CD4+ TEa cells were also impaired in Irf4flox/floxOx40cre/+ mice. Additionally, deletion of IRF4 after T cell activation in Irf4flox/floxOx40cre/+ mice reduced T cell reactivation in vitro. CONCLUSIONS IRF4 ablation after OX40-related T cell activation could reduce effector and memory T cell formation and inhibit their function in response to alloantigen stimulation. These findings could have significant implications in targeting activated T cells to induce transplant tolerance.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yu Z, Jin J, Shui L, Chen H, Zhu Y. Recent advances in microdroplet techniques for single-cell protein analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Lafouresse F, Jugele R, Müller S, Doineau M, Duplan-Eche V, Espinosa E, Puisségur MP, Gadat S, Valitutti S. Stochastic asymmetric repartition of lytic machinery in dividing CD8 + T cells generates heterogeneous killing behavior. eLife 2021; 10:62691. [PMID: 33427199 PMCID: PMC7867409 DOI: 10.7554/elife.62691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy, and live-cell imaging. We show that CD107a+-intracellular vesicles, perforin, and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual cytotoxic T lymphocyte (CTL) dictates CTL killing capacity.
Collapse
Affiliation(s)
- Fanny Lafouresse
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Romain Jugele
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Marine Doineau
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, France and Institut Universitaire de France, Toulouse, France
| | - Valérie Duplan-Eche
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Eric Espinosa
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Pierre Puisségur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Sébastien Gadat
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, France and Institut Universitaire de France, Toulouse, France
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol 2020; 11:938. [PMID: 32499785 PMCID: PMC7242730 DOI: 10.3389/fimmu.2020.00938] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amino acid metabolism is a critical regulator of the immune response, and its modulating becomes a promising approach in various forms of immunotherapy. Insufficient concentrations of essential amino acids restrict T-cells activation and proliferation. However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and ARG2, have been found to be present in tumors and their increased activity usually correlates with more advanced disease and worse clinical prognosis. Nearly all types of myeloid cells were reported to produce arginases and the increased numbers of various populations of myeloid-derived suppressor cells and macrophages correlate with inferior clinical outcomes of cancer patients. Here, we describe the role of arginases produced by myeloid cells in regulating various populations of immune cells, discuss molecular mechanisms of immunoregulatory processes involving L-arginine metabolism and outline therapeutic approaches to mitigate the negative effects of arginases on antitumor immune response. Development of potent arginase inhibitors, with improved pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies based on targeting immunoregulatory pathways controlled by L-arginine degradation.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Matryba
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Neurobiology BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Rydzynska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jasinski
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Yan SC, Wang YJ, Li YJ, Cai WY, Weng XG, Li Q, Chen Y, Yang Q, Zhu XX. Dihydroartemisinin Regulates the Th/Treg Balance by Inducing Activated CD4+ T cell Apoptosis via Heme Oxygenase-1 Induction in Mouse Models of Inflammatory Bowel Disease. Molecules 2019; 24:molecules24132475. [PMID: 31284478 PMCID: PMC6651826 DOI: 10.3390/molecules24132475] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Dihydroartemisinin (DHA) is a derivative of the herb Artemisia annua L. that has prominent immunomodulatory activity; however, its underlying mechanism remains elusive. Inflammatory bowel disease (IBD) is an idiopathic inflammatory condition characterized as an autoimmune disorder that includes dysfunctions in the T helper (Th)/T regulatory cell (Treg) balance, which normally plays pivotal roles in immune homeostasis. The aim of this study was to explore the potential of DHA to ameliorate IBD by restoring the Th/Treg cell balance. To this end, we established mouse models of colitis induced by oxazolone (OXA) and 2,4,6-trinitro-benzene sulfonic acid (TNBS). We then treated mice with DHA at 4, 8, or 16 mg/kg/day. DHA treatment ameliorated colitis signs and reduced lymphocyte infiltration and tissue fibrosis. Moreover, DHA decreased the numbers of Th1 and Th17 cells and Th9 and Th22 cells in TNBS- or OXA-induced colitis, respectively, and increased Tregs in both models. DHA (0.8 mg/mL) also inhibited activated CD4+ T lymphocytes, which was accompanied by apoptosis induction. Moreover, it promoted heme oxygenase-1 (HO-1) production in vitro and in vivo, concomitant with CD4+ T cell apoptosis and restoration of the Th/Treg balance, and these effects were blocked by treatment with the HO-1 inhibitor Sn-protoporphyrin IX. Overall, these results suggest that DHA is a novel and valuable candidate for IBD therapy or Th/Treg immunoregulation.
Collapse
Affiliation(s)
- Si Chao Yan
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ya Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Jie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Yan Cai
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao Gang Weng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao Xin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Baral S, Raja R, Sen P, Dixit NM. Towards multiscale modeling of the CD8 + T cell response to viral infections. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1446. [PMID: 30811096 PMCID: PMC6614031 DOI: 10.1002/wsbm.1446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
The CD8+ T cell response is critical to the control of viral infections. Yet, defining the CD8+ T cell response to viral infections quantitatively has been a challenge. Following antigen recognition, which triggers an intracellular signaling cascade, CD8+ T cells can differentiate into effector cells, which proliferate rapidly and destroy infected cells. When the infection is cleared, they leave behind memory cells for quick recall following a second challenge. If the infection persists, the cells may become exhausted, retaining minimal control of the infection while preventing severe immunopathology. These activation, proliferation and differentiation processes as well as the mounting of the effector response are intrinsically multiscale and collective phenomena. Remarkable experimental advances in the recent years, especially at the single cell level, have enabled a quantitative characterization of several underlying processes. Simultaneously, sophisticated mathematical models have begun to be constructed that describe these multiscale phenomena, bringing us closer to a comprehensive description of the CD8+ T cell response to viral infections. Here, we review the advances made and summarize the challenges and opportunities ahead. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Fates Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Subhasish Baral
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pramita Sen
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and Epigenetic Regulation of Effector and Memory CD8 T Cell Differentiation. Front Immunol 2018; 9:2826. [PMID: 30581433 PMCID: PMC6292868 DOI: 10.3389/fimmu.2018.02826] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Immune protection and lasting memory are accomplished through the generation of phenotypically and functionally distinct CD8 T cell subsets. Understanding how these effector and memory T cells are formed is the first step in eventually manipulating the immune system for therapeutic benefit. In this review, we will summarize the current understanding of CD8 T cell differentiation upon acute infection, with a focus on the transcriptional and epigenetic regulation of cell fate decision and memory formation. Moreover, we will highlight the importance of high throughput sequencing approaches and single cell technologies in providing insight into genome-wide investigations and the heterogeneity of individual CD8 T cells.
Collapse
Affiliation(s)
- Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ryan Zander
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| |
Collapse
|
8
|
Horton MB, Prevedello G, Marchingo JM, Zhou JHS, Duffy KR, Heinzel S, Hodgkin PD. Multiplexed Division Tracking Dyes for Proliferation-Based Clonal Lineage Tracing. THE JOURNAL OF IMMUNOLOGY 2018; 201:1097-1103. [PMID: 29914887 DOI: 10.4049/jimmunol.1800481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
The generation of cellular heterogeneity is an essential feature of immune responses. Understanding the heritability and asymmetry of phenotypic changes throughout this process requires determination of clonal-level contributions to fate selection. Evaluating intraclonal and interclonal heterogeneity and the influence of distinct fate determinants in large numbers of cell lineages, however, is usually laborious, requiring familial tracing and fate mapping. In this study, we introduce a novel, accessible, high-throughput method for measuring familial fate changes with accompanying statistical tools for testing hypotheses. The method combines multiplexing of division tracking dyes with detection of phenotypic markers to reveal clonal lineage properties. We illustrate the method by studying in vitro-activated mouse CD8+ T cell cultures, reporting division and phenotypic changes at the level of families. This approach has broad utility as it is flexible and adaptable to many cell types and to modifications of in vitro, and potentially in vivo, fate monitoring systems.
Collapse
Affiliation(s)
- Miles B Horton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Giulio Prevedello
- Hamilton Institute, Maynooth University, Maynooth, County Kildare, Ireland
| | - Julia M Marchingo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Jie H S Zhou
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, County Kildare, Ireland
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; .,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| |
Collapse
|
9
|
|
10
|
Park H, Kim H, Doh J. Multifunctional Microwell Arrays for Single Cell Level Functional Analysis of Lymphocytes. Bioconjug Chem 2017; 29:672-679. [DOI: 10.1021/acs.bioconjchem.7b00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Gabel M, Regoes RR, Graw F. More or less-On the influence of labelling strategies to infer cell population dynamics. PLoS One 2017; 12:e0185523. [PMID: 29045427 PMCID: PMC5646766 DOI: 10.1371/journal.pone.0185523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/14/2017] [Indexed: 11/18/2022] Open
Abstract
The adoptive transfer of labelled cell populations has been an essential tool to determine and quantify cellular dynamics. The experimental methods to label and track cells over time range from fluorescent dyes over congenic markers towards single-cell labelling techniques, such as genetic barcodes. While these methods have been widely used to quantify cell differentiation and division dynamics, the extent to which the applied labelling strategy actually affects the quantification of the dynamics has not been determined so far. This is especially important in situations where measurements can only be obtained at a single time point, as e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling strategies as characterised by the number of different labels and the initial number of cells per label to quantify cellular dynamics. We simulated adoptive transfer experiments in systems of various complexity that assumed either homoeostatic cellular turnover or cell expansion dynamics involving various steps of cell differentiation and proliferation. Re-sampling cells at a single time point, we determined the ability of different labelling strategies to recover the underlying kinetics. Our results indicate that cell transition and expansion rates are differently affected by experimental shortcomings, such as loss of cells during transfer or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed labels in the transferred population generally lead to more robust and less biased results than non-equal label sizes. In addition, our analysis indicates that certain labelling approaches incorporate a systematic bias for the identification of complex cell expansion dynamics.
Collapse
Affiliation(s)
- Michael Gabel
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany
- * E-mail: (MG); (FG)
| | - Roland R. Regoes
- Institute for Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Frederik Graw
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany
- * E-mail: (MG); (FG)
| |
Collapse
|
12
|
Patsoukis N, Weaver JD, Strauss L, Herbel C, Seth P, Boussiotis VA. Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Front Immunol 2017; 8:330. [PMID: 28443090 PMCID: PMC5387055 DOI: 10.3389/fimmu.2017.00330] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Host immunity provides wide spectrum protection that serves to eradicate pathogens and cancer cells, while maintaining self-tolerance and immunological homeostasis. Ligation of the T cell receptor (TCR) by antigen activates signaling pathways that coordinately induce aerobic glycolysis, mitochondrial activity, anabolic metabolism, and T effector cell differentiation. Activation of PI3K, Akt, and mTOR triggers the switch to anabolic metabolism by inducing transcription factors such as Myc and HIF1, and the glucose transporter Glut1, which is pivotal for the increase of glucose uptake after T cell activation. Activation of MAPK signaling is required for glucose and glutamine utilization, whereas activation of AMPK is critical for energy balance and metabolic fitness of T effector and memory cells. Coinhibitory receptors target TCR-proximal signaling and generation of second messengers. Imbalanced activation of such signaling pathways leads to diminished rates of aerobic glycolysis and impaired mitochondrial function resulting in defective anabolic metabolism and altered T cell differentiation. The coinhibitory receptors mediate distinct and synergistic effects on the activation of signaling pathways thereby modifying metabolic programs of activated T cells and resulting in altered immune functions. Understanding and therapeutic targeting of metabolic programs impacted by coinhibitory receptors might have significant clinical implications for the treatment of chronic infections, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica D Weaver
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laura Strauss
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christoph Herbel
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pankaj Seth
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR. T-cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun 2016; 7:13540. [PMID: 27869196 PMCID: PMC5121331 DOI: 10.1038/ncomms13540] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. Why do populations of highly similar T cells have heterogeneous division destinies in response to antigenic stimulus? Here the authors develop a multiplex-dye assay and a mathematical framework to test clonal heterogeneity and show distinction in division destiny is a result of inter-clonal variability as lineage imprinting ensures clones share similar proliferation fates.
Collapse
Affiliation(s)
- J M Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Prevedello
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| | - A Kan
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| |
Collapse
|
14
|
Capece T, Kim M. The Role of Lymphatic Niches in T Cell Differentiation. Mol Cells 2016; 39:515-23. [PMID: 27306645 PMCID: PMC4959015 DOI: 10.14348/molcells.2016.0089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
Long-term immunity to many viral and bacterial pathogens requires CD8(+) memory T cell development, and the induction of long-lasting CD8(+) memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8(+) T cell compartment is highly dependent on the early activation cues received by naïve CD8(+) T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.
Collapse
Affiliation(s)
- Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| |
Collapse
|
15
|
Weber TS, Dukes M, Miles DC, Glaser SP, Naik SH, Duffy KR. Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system. BMC SYSTEMS BIOLOGY 2016; 10:43. [PMID: 27363727 PMCID: PMC4929723 DOI: 10.1186/s12918-016-0290-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/14/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular barcoding is a recently developed biotechnology tool that enables the familial identification of progeny of individual cells in vivo. In immunology, it has been used to track the burst-sizes of multiple distinct responding T cells over several adaptive immune responses. In the study of hematopoiesis, it revealed fate heterogeneity amongst phenotypically identical multipotent cells. Most existing approaches rely on ex vivo viral transduction of cells with barcodes followed by adoptive transfer into an animal, which works well for some systems, but precludes barcoding cells in their native environment such as those inside solid tissues. RESULTS With a view to overcoming this limitation, we propose a new design for a genetic barcoding construct based on the Cre Lox system that induces randomly created stable barcodes in cells in situ by exploiting inherent sequence distance constraints during site-specific recombination. We identify the cassette whose provably maximal code diversity is several orders of magnitude higher than what is attainable with previously considered Cre Lox barcoding approaches, exceeding the number of lymphocytes or hematopoietic progenitor cells in mice. CONCLUSIONS Its high diversity and in situ applicability, make the proposed Cre Lox based tagging system suitable for whole tissue or even whole animal barcoding. Moreover, it can be built using established technology.
Collapse
Affiliation(s)
- Tom S Weber
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | | | - Denise C Miles
- The Walter and Eliza Hall Institute of Medical Research & The University of Melbourne, Parkville, Melbourne, Australia
| | - Stefan P Glaser
- The Walter and Eliza Hall Institute of Medical Research & The University of Melbourne, Parkville, Melbourne, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research & The University of Melbourne, Parkville, Melbourne, Australia
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
16
|
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| | - Ton N.M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| |
Collapse
|
17
|
Verbist KC, Guy CS, Milasta S, Liedmann S, Kamiński MM, Wang R, Green DR. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 2016; 532:389-93. [PMID: 27064903 PMCID: PMC4851250 DOI: 10.1038/nature17442] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Asymmetric cell division (ACD)—the partitioning of cellular components in response to polarizing cues during mitosis—plays roles in differentiation and development1. ACD is important for the self-renewal of neuroblasts in C. elegans and fertilized zygotes in Drosophila, and participates in the development of mammalian nervous and digestive systems1. T lymphocytes, upon activation by antigen-presenting cells (APC), can undergo ACD, wherein the daughter cell proximal to the APC is more likely to differentiate into an effector-like T cell and the distal daughter more likely to differentiate into a memory-like T cell2. Upon activation and prior to cell division, expression of the transcription factor c-Myc drives metabolic reprogramming, necessary for the subsequent proliferative burst3. We found that during the first division of an activated T cell, c-Myc can sort asymmetrically. Asymmetric amino acid transporter distribution, amino acid content, and TORC1 function correlate with c-Myc expression, and both amino acids and TORC1 activity sustain the differences in c-Myc expression in one daughter over the other. Asymmetric c-Myc levels in daughter T cells affect proliferation, metabolism, and differentiation, and these effects are altered by experimental manipulation of TORC1 activity or Myc expression. Therefore, metabolic signaling pathways cooperate with transcription programs to maintain differential cell fates following asymmetric T cell division.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Cliff S Guy
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Sandra Milasta
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
18
|
Gerritsen B, Pandit A. The memory of a killer T cell: models of CD8(+) T cell differentiation. Immunol Cell Biol 2015; 94:236-41. [PMID: 26700072 DOI: 10.1038/icb.2015.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
CD8(+) T cells have an important role in protection against infections and reinfections of intra-cellular pathogens like viruses. Naive CD8(+) T cells circulating in blood or lymphoid tissues can get activated upon stimulation by cognate antigen. The activated T cells undergo rapid proliferation and can expand more than 10(4)-folds comprising largely of effector T cells. Upon antigen clearance, the CD8(+) T-cell population contracts due to apoptosis, leaving behind a small population of memory T cells. The timing and mechanisms underlying the differentiation of naive cells into effector cells and memory cells is not yet clear. In this article, we review the recent quantitative studies that support different hypotheses of CD8(+) T-cell differentiation.
Collapse
Affiliation(s)
- Bram Gerritsen
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.,Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Clonal expansion under the microscope: studying lymphocyte activation and differentiation using live‐cell imaging. Immunol Cell Biol 2015; 94:242-9. [DOI: 10.1038/icb.2015.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
|
20
|
Longwe H, Phiri KS, Mbeye NM, Gondwe T, Jambo KC, Mandala WL. Proportions of CD4+, CD8+ and B cell subsets are not affected by exposure to HIV or to Cotrimoxazole prophylaxis in Malawian HIV-uninfected but exposed children. BMC Immunol 2015; 16:50. [PMID: 26315539 PMCID: PMC4552147 DOI: 10.1186/s12865-015-0115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a result of successful PMTCT programs, children born from HIV-infected mothers are now effectively protected from contracting the infection. However, it is not well known whether in utero exposure to the virus and the subsequent exposure to Cotrimoxazole (CTX) prophylaxis affect the cell mediated immune system of the children. This observational prospective study was aimed at determining how CD4(+) T, CD8(+) T and B cell subsets varied in HIV-exposed but uninfected (HEU) children at different ages. METHODS We recruited HEU and HIV-unexposed and uninfected (HUU) children from 6 months of age and followed them up until they were 18 months old. HEU children received daily CTX prophylaxis beginning at 6 weeks of age until when 12 months of age. Venous blood samples were collected 6 monthly and analysed for different subsets of CD8(+) T, B cells and totalCD4(+) T cells. RESULTS At 6 months of age, HEU children had a lower percentage of total CD4(+) T cells compared to HUU children and a lower proportion of naïve CD8(+) T cells but higher percentage of effector memory CD8(+) T cells compared to HUU children. HEU and HUU children had similar proportions of all B cell subsets at all ages. CONCLUSIONS The study showed that the subtle variations in CD4(+) and CD8(+) T cell subsets observed at 6 months do not last beyond 12 months of age, suggesting that HEU children have a robust cell-mediated immune system during first year of life. TRIAL REGISTRATION This article report is not based on results of a controlled health-care intervention.
Collapse
Affiliation(s)
- Herbert Longwe
- Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi. .,Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Kamija S Phiri
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Nyanyiwe M Mbeye
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Thandile Gondwe
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
| | - Wilson L Mandala
- Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi. .,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
| |
Collapse
|
21
|
Dura B, Voldman J. Spatially and temporally controlled immune cell interactions using microscale tools. Curr Opin Immunol 2015; 35:23-9. [DOI: 10.1016/j.coi.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/29/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
|
22
|
Jaitin DA, Keren-Shaul H, Elefant N, Amit I. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics. Semin Immunol 2015; 27:67-71. [DOI: 10.1016/j.smim.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/21/2022]
|
23
|
Dura B, Dougan SK, Barisa M, Hoehl MM, Lo CT, Ploegh HL, Voldman J. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat Commun 2015; 6:5940. [DOI: 10.1038/ncomms6940] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
|
24
|
Backer RA, Helbig C, Gentek R, Kent A, Laidlaw BJ, Dominguez CX, de Souza YS, van Trierum SE, van Beek R, Rimmelzwaan GF, ten Brinke A, Willemsen AM, van Kampen AHC, Kaech SM, Blander JM, van Gisbergen K, Amsen D. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol 2014; 15:1143-51. [PMID: 25344724 PMCID: PMC4232996 DOI: 10.1038/ni.3027] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022]
Abstract
Activated CD8+ T cells choose between terminal effector cell (TEC) or memory precursor cell (MPC) fates. We show that Notch controls this choice. Notch promoted differentiation of immediately protective TECs and was correspondingly required for clearance of an acute influenza virus infection. Notch activated a major portion of the TEC-specific gene expression program and suppressed the MPC-specific program. Expression of Notch receptors was induced on naïve CD8+ T cells by inflammatory mediators and interleukin 2 (IL-2) via mTOR and T-bet dependent pathways. These pathways were subsequently amplified downstream of Notch, creating a positive feedback loop. Notch thus functions as a central hub where information from different sources converges to match effector T cell differentiation to the demands of the infection.
Collapse
Affiliation(s)
- Ronald A Backer
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Christina Helbig
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands
| | - Andrew Kent
- The Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, Department of Medicine, New York, New York, USA
| | - Brian J Laidlaw
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Claudia X Dominguez
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Yevan S de Souza
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Ruud van Beek
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - A Marcel Willemsen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Susan M Kaech
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - J Magarian Blander
- The Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, Department of Medicine, New York, New York, USA
| | - Klaas van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Derk Amsen
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Hodgkin PD, Dowling MR, Duffy KR. Why the immune system takes its chances with randomness. Nat Rev Immunol 2014; 14:711. [PMID: 25212742 DOI: 10.1038/nri3734-c1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Philip D Hodgkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, 3052 Victoria, Australia, and the Department of Medical Biology, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Mark R Dowling
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, 3052 Victoria, Australia, and the Department of Medical Biology, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Ken R Duffy
- Hamilton Institute, National University of Ireland, Maynooth, County Kildare, Ireland
| |
Collapse
|