1
|
de Wit AS, Bianchi F, van den Bogaart G. Antigen presentation of post-translationally modified peptides in major histocompatibility complexes. Immunol Cell Biol 2025; 103:161-177. [PMID: 39609891 PMCID: PMC11792782 DOI: 10.1111/imcb.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
T cells of the adaptive immune system recognize pathogens and malignantly transformed cells through a process called antigen presentation. During this process, peptides are displayed on major histocompatibility complex (MHC) class I and II molecules. Self-reactive T cells are typically removed or suppressed during T-cell development and through peripheral tolerance mechanisms, ensuring that only T cells recognizing peptides that are either absent or present in low abundance under normal conditions remain. This selective process allows T cells to respond to peptides derived from foreign proteins while ignoring those from self-proteins. However, T cells can also respond to peptides derived from proteins that have undergone post-translational modifications (PTMs). Over 200 different PTMs have been described, and while they are essential for protein function, localization and stability, their dysregulation is often associated with disease conditions. PTMs can affect the proteolytic processing of proteins and prevent MHC binding, thereby changing the repertoire of peptides presented on MHC molecules. However, it is also increasingly evident that many peptides presented on MHC molecules carry PTMs, which can alter their immunogenicity. As a result, the presentation of post-translationally modified peptides by MHC molecules plays a significant role in various diseases, as well as autoimmune disorders and allergies. This review will provide an overview of the impact of PTMs on antigen presentation and their implications for immune recognition and disease.
Collapse
Affiliation(s)
- Alexine S de Wit
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Mishto M, Takala I, Bonfanti P, Liepe J. Proteasome isoforms in human thymi and mouse models. Immunol Lett 2024; 269:106899. [PMID: 39019403 DOI: 10.1016/j.imlet.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The thymus is the organ where functional and self-tolerant T cells are selected through processes of positive and negative selection before migrating to the periphery. The antigenic peptides presented on MHC class I molecules of thymic epithelial cells (TECs) in the cortex and medulla of the thymus are key players in these processes. It has been theorized that these cells express different proteasome isoforms, which generate MHC class I immunopeptidomes with features that differentiate cortex and medulla, and hence positive and negative CD8+ T cell selection. This theory is largely based on mouse models and does not consider the large variety of noncanonical antigenic peptides that could be produced by proteasomes and presented on MHC class I molecules. Here, we review the multi-omics, biochemical and cellular studies carried out on mouse models and human thymi to investigate their content of proteasome isoforms, briefly summarize the implication that noncanonical antigenic peptide presentation in the thymus could have on CD8+ T cell repertoire and put these aspects in the larger framework of anatomical and immunological differences between these two species.
Collapse
Affiliation(s)
- Michele Mishto
- Molecular Immunology laboratory, the Francis Crick Institute, NW1 1AT London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, United Kingdom.
| | - Iina Takala
- Research group of Quantitative System Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, London NW3 2PP, United Kingdom
| | - Juliane Liepe
- Research group of Quantitative System Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Soh WT, Roetschke HP, Cormican JA, Teo BF, Chiam NC, Raabe M, Pflanz R, Henneberg F, Becker S, Chari A, Liu H, Urlaub H, Liepe J, Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun 2024; 15:1147. [PMID: 38326304 PMCID: PMC10850103 DOI: 10.1038/s41467-024-45339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Bei Fang Teo
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Nyet Cheng Chiam
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Monika Raabe
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ralf Pflanz
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ashwin Chari
- Research Group of Structural Biochemistry and Mechanisms, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Juliane Liepe
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK.
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
4
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
5
|
Roetschke HP, Rodriguez-Hernandez G, Cormican JA, Yang X, Lynham S, Mishto M, Liepe J. InvitroSPI and a large database of proteasome-generated spliced and non-spliced peptides. Sci Data 2023; 10:18. [PMID: 36627305 PMCID: PMC9832164 DOI: 10.1038/s41597-022-01890-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Noncanonical epitopes presented by Human Leucocyte Antigen class I (HLA-I) complexes to CD8+ T cells attracted the spotlight in the research of novel immunotherapies against cancer, infection and autoimmunity. Proteasomes, which are the main producers of HLA-I-bound antigenic peptides, can catalyze both peptide hydrolysis and peptide splicing. The prediction of proteasome-generated spliced peptides is an objective that still requires a reliable (and large) database of non-spliced and spliced peptides produced by these proteases. Here, we present an extended database of proteasome-generated spliced and non-spliced peptides, which was obtained by analyzing in vitro digestions of 80 unique synthetic polypeptide substrates, measured by different mass spectrometers. Peptides were identified through invitroSPI method, which was validated through in silico and in vitro strategies. The peptide product database contains 16,631 unique peptide products (5,493 non-spliced, 6,453 cis-spliced and 4,685 trans-spliced peptide products), and a substrate sequence variety that is a valuable source for predictors of proteasome-catalyzed peptide hydrolysis and splicing. Potential artefacts and skewed results due to different identification and analysis strategies are discussed.
Collapse
Affiliation(s)
- Hanna P Roetschke
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London (KCL), SE1 1UL, London, UK
| | - Guillermo Rodriguez-Hernandez
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London (KCL), SE1 1UL, London, UK
- Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), 37077, Göttingen, Germany
| | - Xiaoping Yang
- Proteomics Core Facility, James Black Centre, King's College London (KCL), SE5 9NU, London, UK
| | - Steven Lynham
- Proteomics Core Facility, James Black Centre, King's College London (KCL), SE5 9NU, London, UK
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London (KCL), SE1 1UL, London, UK.
- Francis Crick Institute, NW1 1AT, London, UK.
| | - Juliane Liepe
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Cormican JA, Soh WT, Mishto M, Liepe J. iBench: A ground truth approach for advanced validation of mass spectrometry identification method. Proteomics 2023; 23:e2200271. [PMID: 36189881 PMCID: PMC10078205 DOI: 10.1002/pmic.202200271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
The discovery of many noncanonical peptides detectable with sensitive mass spectrometry inside, outside, and on cells shepherded the development of novel methods for their identification, often not supported by a systematic benchmarking with other methods. We here propose iBench, a bioinformatic tool that can construct ground truth proteomics datasets and cognate databases, thereby generating a training court wherein methods, search engines, and proteomics strategies can be tested, and their performances estimated by the same tool. iBench can be coupled to the main database search engines, allows the selection of customized features of mass spectrometry spectra and peptides, provides standard benchmarking outputs, and is open source. The proof-of-concept application to tryptic proteome digestions, immunopeptidomes, and synthetic peptide libraries dissected the impact that noncanonical peptides could have on the identification of canonical peptides by Mascot search with rescoring via Percolator (Mascot+Percolator).
Collapse
Affiliation(s)
- John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| | - Wai Tuck Soh
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| |
Collapse
|
7
|
Xiang H, Zhang L, Bu F, Guan X, Chen L, Zhang H, Zhao Y, Chen H, Zhang W, Li Y, Lee LJ, Mei Z, Rao Y, Gu Y, Hou Y, Mu F, Dong X. A Novel Proteogenomic Integration Strategy Expands the Breadth of Neo-Epitope Sources. Cancers (Basel) 2022; 14:cancers14123016. [PMID: 35740681 PMCID: PMC9220843 DOI: 10.3390/cancers14123016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-specific antigens can activate T cell-based antitumor immune responses and are ideal targets for cancer immunotherapy. However, their identification is still challenging. Although mass spectrometry can directly identify human leukocyte antigen (HLA) binding peptides in tumor cells, it focuses on tumor-specific antigens derived from annotated protein-coding regions constituting only 1.5% of the genome. We developed a novel proteogenomic integration strategy to expand the breadth of tumor-specific epitopes derived from all genomic regions. Using the colorectal cancer cell line HCT116 as a model, we accurately identified 10,737 HLA-presented peptides, 1293 of which were non-canonical peptides that traditional database searches could not identify. Moreover, we found eight tumor neo-epitopes derived from somatic mutations, four of which were not previously reported. Our findings suggest that this new proteogenomic approach holds great promise for increasing the number of tumor-specific antigen candidates, potentially enlarging the tumor target pool and improving cancer immunotherapy.
Collapse
Affiliation(s)
- Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Le Zhang
- BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China; (L.Z.); (L.J.L.)
| | - Fanyu Bu
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Lei Chen
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Haibo Zhang
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Yuntong Zhao
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Huanyi Chen
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Weicong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Yijian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Leo Jingyu Lee
- BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China; (L.Z.); (L.J.L.)
| | - Zhanlong Mei
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
| | - Yuan Rao
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Yong Hou
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
| | - Feng Mu
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
- Correspondence: (F.M.); (X.D.)
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
- Correspondence: (F.M.); (X.D.)
| |
Collapse
|
8
|
Illing PT, Ramarathinam SH, Purcell AW. New insights and approaches for analyses of immunopeptidomes. Curr Opin Immunol 2022; 77:102216. [PMID: 35716458 DOI: 10.1016/j.coi.2022.102216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Human leucocyte antigen (HLA) molecules play a key role in health and disease by presenting antigen to T-lymphocytes for immunosurveillance. Immunopeptidomics involves the study of the collection of peptides presented within the antigen-binding groove of HLA molecules. Identifying their nature and diversity is crucial to understanding immunosurveillance especially during infection or for the recognition and potential eradication of tumours. This review discusses recent advances in the isolation, identification, and quantitation of these peptide antigens. New informatics approaches and databases have shed light on the extent of peptide antigens derived from unconventional sources including peptides derived from transcripts associated with frame shifts, long noncoding RNA, incorrectly annotated untranslated regions, post-translational modifications, and proteasomal splicing. Several challenges remain in successful analysis of immunopeptides, yet recent developments point to unexplored biology waiting to be unravelled.
Collapse
Affiliation(s)
- Patricia T Illing
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Kloetzel PM. Neo-Splicetopes in Tumor Therapy: A Lost Case? Front Immunol 2022; 13:849863. [PMID: 35265089 PMCID: PMC8898901 DOI: 10.3389/fimmu.2022.849863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome generates spliced peptides by ligating two distant cleavage products in a reverse proteolysis reaction. The observation that CD8+ T cells recognizing a spliced peptide induced T cell rejection in a melanoma patient following adoptive T cell transfer (ATT), raised some hopes with regard to the general therapeutic and immune relevance of spliced peptides. Concomitantly, the identification of spliced peptides was also the start of a controversy with respect to their frequency, abundancy and their therapeutic applicability. Here I review some of the recent evidence favoring or disfavoring an immune relevance of splicetopes and discuss from a theoretical point of view the potential usefulness of tumor specific splicetopes and why against all odds it still may seem worth trying to identify such tumor and patient-specific neosplicetopes for application in ATT.
Collapse
Affiliation(s)
- Peter M Kloetzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
10
|
Mishto M, Horokhovskyi Y, Cormican JA, Yang X, Lynham S, Urlaub H, Liepe J. Database search engines and target database features impinge upon the identification of post-translationally cis-spliced peptides in HLA class I immunopeptidomes. Proteomics 2022; 22:e2100226. [PMID: 35184383 PMCID: PMC9286349 DOI: 10.1002/pmic.202100226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Unconventional epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry (MS) required development of novel methods to cope with the large number of theoretical candidates. Methods to identify post-translationally spliced peptides led to a broad range of outcomes. We here investigated the impact of three common database search engines - that is, Mascot, Mascot+Percolator, and PEAKS DB - as final identification step, as well as the features of target database on the ability to correctly identify non-spliced and cis-spliced peptides. We used ground truth datasets measured by MS to benchmark methods' performance and extended the analysis to HLA class I immunopeptidomes. PEAKS DB showed better precision and recall of cis-spliced peptides and larger number of identified peptides in HLA class I immunopeptidomes than the other search engine strategies. The better performance of PEAKS DB appears to result from better discrimination between target and decoy hits and hence a more robust FDR estimation, and seems independent to peptide and spectrum features here investigated.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- Francis Crick InstituteLondonUK
| | | | - John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Xiaoping Yang
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Steven Lynham
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Henning Urlaub
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
- Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
11
|
Nony E, Moingeon P. Proteomics in support of immunotherapy: contribution to model-based precision medicine. Expert Rev Proteomics 2021; 19:33-42. [PMID: 34937491 DOI: 10.1080/14789450.2021.2020653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomics encompasses a wide and expanding range of methods to identify, characterize, and quantify thousands of proteins from a variety of biological samples, including blood samples, tumors, and tissues. Such methods are supportive of various forms of immunotherapy applied to chronic conditions such as allergies, autoimmune diseases, cancers, and infectious diseases. AREAS COVERED In support of immunotherapy, proteomics based on mass spectrometry has multiple specific applications related to (i) disease modeling and patient stratification, (ii) antigen/ autoantigen/neoantigen/ allergen identification, (iii) characterization of proteins and monoclonal antibodies used for immunotherapeutic or diagnostic purposes, (iv) identification of biomarkers and companion diagnostics and (v) monitoring by immunoproteomics of immune responses elicited in the course of the disease or following immunotherapy. EXPERT OPINION Proteomics contributes as an enabling technology to an evolution of immunotherapy toward a precision medicine approach aiming to better tailor treatments to patients' specificities in multiple disease areas. This trend is favored by a better understanding through multi-omics profiling of both the patient's characteristics, his/her immune status as well as of the features of the immunotherapeutic drug.
Collapse
Affiliation(s)
- Emmanuel Nony
- Protein Sciences Department, Institut de Recherches Servier, Croissy Sur Seine, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, Croissy Sur Seine, France
| |
Collapse
|
12
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
13
|
Mishto M. Commentary: Are There Indeed Spliced Peptides in the Immunopeptidome? Mol Cell Proteomics 2021; 20:100158. [PMID: 34607014 PMCID: PMC8724881 DOI: 10.1016/j.mcpro.2021.100158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Proteasome-generated spliced epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry triggered heated debates, which find a representative opinion in one of the two fronts in the recent perspective article by Arie Admon. Briefly, he suggests that proteasomes cannot efficiently catalyze such a reaction, and, thus, that all spliced peptides identified in HLA class I immunopeptidomes and other specimens are artifacts. This hypothesis is in contrast with in vitro, in cellula, and in vivo results published since the discovery of proteasome-catalyzed peptide splicing in 2004.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
14
|
Abstract
T cells must recognize pathogen-derived peptides bound to major histocompatibility complexes (MHCs) in order to initiate a cell-mediated immune response against an infection, or to support the development of high-affinity antibody responses. Identifying antigens presented on MHCs by infected cells and professional antigen-presenting cells (APCs) during infection may therefore provide a route toward developing new vaccines. Peptides bound to MHCs can be identified at whole-proteome scale using mass spectrometry-a technique referred to as "immunopeptidomics." This technique has emerged as a powerful tool for identifying potential vaccine targets in the context of many infectious diseases. In this review, we discuss the contributions immunopeptidomic studies have made to understanding antigen presentation and T cell priming in the context of infection and the potential for immunopeptidomics to inform the development of vaccines to address pressing global health problems in infectious disease.
Collapse
|
15
|
Mishto M, Rodriguez-Hernandez G, Neefjes J, Urlaub H, Liepe J. Response: Commentary: An In Silico-In Vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Front Immunol 2021; 12:679836. [PMID: 34326838 PMCID: PMC8315000 DOI: 10.3389/fimmu.2021.679836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Guillermo Rodriguez-Hernandez
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
16
|
Melacarne A, Ferrari V, Tiraboschi L, Mishto M, Liepe J, Aralla M, Marconato L, Lizier M, Pozzi C, Zeira O, Penna G, Rescigno M. Identification of a class of non-conventional ER-stress-response-derived immunogenic peptides. Cell Rep 2021; 36:109312. [PMID: 34233181 PMCID: PMC8278487 DOI: 10.1016/j.celrep.2021.109312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Efforts to overcome resistance to immune checkpoint blockade therapy have focused on vaccination strategies using neoepitopes, although they cannot be applied on a large scale due to the "private" nature of cancer mutations. Here, we show that infection of tumor cells with Salmonella induces the opening of membrane hemichannels and the extracellular release of proteasome-generated peptides by the exacerbation of endoplasmic reticulum (ER) stress. Peptides released by cancer cells foster an antitumor response in vivo, both in mice bearing B16F10 melanomas and in dogs suffering from osteosarcoma. Mass spectrometry analysis on the supernatant of human melanoma cells revealed 12 peptides capable of priming healthy-donor CD8+ T cells that recognize and kill human melanoma cells in vitro and when xenotransplanted in vivo. Hence, we identified a class of shared tumor antigens that are generated in ER-stressed cells, such as tumor cells, that do not induce tolerance and are not presented by healthy cells.
Collapse
Affiliation(s)
- Alessia Melacarne
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valentina Ferrari
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20072 Pieve Emanuele, Milan, Italy
| | - Luca Tiraboschi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michele Mishto
- King's College London, Centre for Inflammation Biology and Cancer Immunology, Peter Gorer Department of Immunobiology, Great Maze Pond, SE1 1UL London, UK; Francis Crick Institute, NW1 1AT London, UK
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Marina Aralla
- Pronto Soccorso Veterinario Laudense, Via Milano 22, 26900 Lodi, Italy
| | - Laura Marconato
- University of Bologna, Department of Veterinary Medical Science, via Tolara di Sopra, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Chiara Pozzi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Offer Zeira
- San Michele Veterinary Hospital, via I maggio 26838 Tavazzano con Villavesco, Lodi, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
17
|
Amdare N, Purcell AW, DiLorenzo TP. Noncontiguous T cell epitopes in autoimmune diabetes: From mice to men and back again. J Biol Chem 2021; 297:100827. [PMID: 34044020 PMCID: PMC8233151 DOI: 10.1016/j.jbc.2021.100827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that affects the insulin-producing beta cells of the pancreatic islets. The nonobese diabetic mouse is a widely studied spontaneous model of the disease that has contributed greatly to our understanding of T1D pathogenesis. This is especially true in the case of antigen discovery. Upon review of existing knowledge concerning the antigens and peptide epitopes that are recognized by T cells in this model, good concordance is observed between mouse and human antigens. A fascinating recent illustration of the contribution of the nonobese diabetic mouse in the area of epitope identification is the discovery of noncontiguous CD4+ T cell epitopes. This novel epitope class is characterized by the linkage of an insulin-derived peptide to, most commonly, a fragment of a natural cleavage product of another beta cell secretory granule constituent. These so-called hybrid insulin peptides are also recognized by T cells in patients with T1D, although the precise mechanism for their generation has yet to be defined and is the subject of active investigation. Although evidence from the tumor immunology arena documented the existence of noncontiguous CD8+ T cell epitopes, generated by proteasome-mediated peptide splicing involving transpeptidation, such CD8+ T cell epitopes were thought to be a rare immunological curiosity. However, recent advances in bioinformatics and mass spectrometry have challenged this view. These developments, coupled with the discovery of hybrid insulin peptides, have spurred a search for noncontiguous CD8+ T cell epitopes in T1D, an exciting frontier area still in its infancy.
Collapse
Affiliation(s)
- Nitin Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
18
|
Structures suggest an approach for converting weak self-peptide tumor antigens into superagonists for CD8 T cells in cancer. Proc Natl Acad Sci U S A 2021; 118:2100588118. [PMID: 34074778 PMCID: PMC8201969 DOI: 10.1073/pnas.2100588118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor vaccines using modified self-antigens that structurally enhance T cell receptor–peptide–major histocompatibility complex interactions greatly improve a T cell protective response against the tumor’s unmodified self-antigen. X-ray crystal structures of these interactions explain how the native and modified peptides can interact with the same T cell receptor, but with different affinities and abilities to drive T cell proliferation and differentiation. Tumors frequently express unmutated self-tumor–associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA–specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I–TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA–specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.
Collapse
|
19
|
Admon A. Are There Indeed Spliced Peptides in the Immunopeptidome? Mol Cell Proteomics 2021; 20:100099. [PMID: 34022431 PMCID: PMC8724635 DOI: 10.1016/j.mcpro.2021.100099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The claims that a large fraction of the immunopeptidome is composed of spliced major histocompatibility complex (MHC) peptides have stirred significant excitement and raised controversy. Here, I suggest that there are likely no spliced peptides in the immunopeptidome, and if they exist at all, they are extremely rare. I base this claim on both biochemical and bioinformatics considerations. First, as a reactant in normal proteolytic reactions, water will compete with transpeptidation, which has been suggested as the mechanism of peptide splicing. The high mobility and abundance of water in aqueous solutions renders transpeptidation very inefficient and therefore unlikely to occur. Second, new studies have refuted the bioinformatics assignments to spliced peptides of most of the immunopeptidome MS data, suggesting that the correct assignments are likely other canonical, noncanonical, and post-translationally modified peptides. Therefore, I call for rigorous experimental methodology using heavy stable isotope peptides spiking into the immunoaffinity-purified mixtures of natural MHC peptides and analysis by the highly reliable targeted MS, to claim that MHC peptides are indeed spliced. Peptide splicing was suggested to contribute to the immunopeptidome. I suggest that this idea should be reconsidered based on new evidences. Both biochemical and bioinformatics considerations argue against peptide splicing.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
20
|
Reed BK, Kappler JW. Hidden in Plain View: Discovery of Chimeric Diabetogenic CD4 T Cell Neo-Epitopes. Front Immunol 2021; 12:669986. [PMID: 33986758 PMCID: PMC8111216 DOI: 10.3389/fimmu.2021.669986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The T cell antigens driving autoimmune Type 1 Diabetes (T1D) have been pursued for more than three decades. When diabetogenic CD4 T cell clones and their relevant MHCII antigen presenting alleles were first identified in rodents and humans, the path to discovering the peptide epitopes within pancreatic beta cell proteins seemed straightforward. However, as experimental results accumulated, definitive data were often absent or controversial. Work within the last decade has helped to clear up some of the controversy by demonstrating that a number of the important MHCII presented epitopes are not encoded in the natural beta cell proteins, but in fact are fusions between peptide fragments derived from the same or different proteins. Recently, the mechanism for generating these MHCII diabetogenic chimeric epitopes has been attributed to a form of reverse proteolysis, called transpeptidation, a process that has been well-documented in the production of MHCI presented epitopes. In this mini-review we summarize these data and their implications for T1D and other autoimmune responses.
Collapse
Affiliation(s)
- Brendan K Reed
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - John W Kappler
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States.,Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
21
|
Mishto M, Mansurkhodzhaev A, Rodriguez-Calvo T, Liepe J. Potential Mimicry of Viral and Pancreatic β Cell Antigens Through Non-Spliced and cis-Spliced Zwitter Epitope Candidates in Type 1 Diabetes. Front Immunol 2021; 12:656451. [PMID: 33936085 PMCID: PMC8082463 DOI: 10.3389/fimmu.2021.656451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens' mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | | | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
22
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
23
|
Mansurkhodzhaev A, Barbosa CRR, Mishto M, Liepe J. Proteasome-Generated cis-Spliced Peptides and Their Potential Role in CD8 + T Cell Tolerance. Front Immunol 2021; 12:614276. [PMID: 33717099 PMCID: PMC7943738 DOI: 10.3389/fimmu.2021.614276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
The human immune system relies on the capability of CD8+ T cells to patrol body cells, spot infected cells and eliminate them. This cytotoxic response is supposed to be limited to infected cells to avoid killing of healthy cells. To enable this, CD8+ T cells have T Cell Receptors (TCRs) which should discriminate between self and non-self through the recognition of antigenic peptides bound to Human Leukocyte Antigen class I (HLA-I) complexes-i.e., HLA-I immunopeptidomes-of patrolled cells. The majority of these antigenic peptides are produced by proteasomes through either peptide hydrolysis or peptide splicing. Proteasome-generated cis-spliced peptides derive from a given antigen, are immunogenic and frequently presented by HLA-I complexes. Theoretically, they also have a very large sequence variability, which might impinge upon our model of self/non-self discrimination and central and peripheral CD8+ T cell tolerance. Indeed, a large variety of cis-spliced epitopes might enlarge the pool of viral-human zwitter epitopes, i.e., peptides that may be generated with the exact same sequence from both self (human) and non-self (viral) antigens. Antigenic viral-human zwitter peptides may be recognized by CD8+ thymocytes and T cells, induce clonal deletion or other tolerance processes, thereby restraining CD8+ T cell response against viruses. To test this hypothesis, we computed in silico the theoretical frequency of zwitter non-spliced and cis-spliced epitope candidates derived from human proteome (self) and from the proteomes of a large pool of viruses (non-self). We considered their binding affinity to the representative HLA-A*02:01 complex, self-antigen expression in Medullary Thymic Epithelial cells (mTECs) and the relative frequency of non-spliced and cis-spliced peptides in HLA-I immunopeptidomes. Based on the present knowledge of proteasome-catalyzed peptide splicing and neglecting CD8+ TCR degeneracy, our study suggests that, despite their frequency, the portion of the cis-spliced peptides we investigated could only marginally impinge upon the variety of functional CD8+ cytotoxic T cells (CTLs) involved in anti-viral response.
Collapse
Affiliation(s)
- Artem Mansurkhodzhaev
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Juliane Liepe
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
24
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
25
|
Digging deeper into the immunopeptidome: characterization of post-translationally modified peptides presented by MHC I. JOURNAL OF PROTEINS AND PROTEOMICS 2021; 12:151-160. [PMID: 36619276 PMCID: PMC9807509 DOI: 10.1007/s42485-021-00066-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023]
Abstract
Peptides presented by MHC molecules on the cell surface, or the immunopeptidome, play an important role in the adaptive arm of the immune response. Antigen processing for MHC class I molecules is a ubiquitous pathway present in all nucleated cells which generates and presents peptides of both self and non-self-origin. Peptides with post-translational modifications represent one category of peptides presented by MHC class I molecules. However, owing to the complexity of self-peptides presented by cells, the diversity of peptides with post-translational modifications is not well-studied. In this study, we carried out MHC Class I immunopeptidomics analysis of Loucy T-cell leukemia and A375 malignant melanoma cell line to characterize the diversity of post-translational modifications of MHC class I-bound peptides. Using high resolution mass spectrometry, we identified 25,761 MHC-bound peptides across both cell lines using Bolt and Sequest search engines. The enrichment method was highly specific as ~ 90% of the peptides were of typical length (8-12 amino acids long) and the motifs were expected based on previously reported motifs for MHC I alleles. Among the MHC-bound peptides, we identified phosphorylation as a major post-translational modification followed by deamidation. We observed site-specific localization of these post-translational modifications, at position P4 for phosphorylated peptides and position P3 for deamidated peptides. We identified a smaller number of peptides with acetylated and methylated lysine, possibly due to very low stoichiometric levels of these PTMs compared to phosphorylation and deamidation. Using PEAKS de novo sequencing algorithm, we identified spliced peptides that accounted for ~ 5-7% of MHC-bound peptides that were otherwise similar in their features as normal MHC-bound peptides. We validated the identity of several post-translationally modified peptides and spliced peptides through mass spectrometric analysis of synthetic peptides. Our study confirms post-translationally modified peptides to be present at low stoichiometric levels along with unusual spliced peptides through unbiased identification using high resolution mass spectrometry. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-021-00066-x.
Collapse
|
26
|
Nerli S, Sgourakis NG. Structure-Based Modeling of SARS-CoV-2 Peptide/HLA-A02 Antigens. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:553478. [PMID: 35047875 PMCID: PMC8757863 DOI: 10.3389/fmedt.2020.553478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2-specific CD4 and CD8 T cells have been shown to be present in individuals with acute, mild, and asymptomatic Coronavirus disease (COVID-19). Toward the development of diagnostic and therapeutic tools to fight COVID-19, it is important to predict and characterize T cell epitopes expressed by SARS-CoV-2. Here, we use RosettaMHC, a comparative modeling approach which leverages existing structures of peptide/MHC complexes available in the Protein Data Bank, to derive accurate 3D models for putative SARS-CoV-2 CD8 epitopes. We outline an application of our method to model 8-10 residue epitopic peptides predicted to bind to the common allele HLA-A*02:01, and we make our models publicly available through an online database (https://rosettamhc.chemistry.ucsc.edu). We further compare electrostatic surfaces with models of homologous peptide/HLA-A*02:01 complexes from human common cold coronavirus strains to identify epitopes which may be recognized by a shared pool of cross-reactive TCRs. As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models can be used to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol 2020; 38:1194-1202. [PMID: 32341563 PMCID: PMC7541396 DOI: 10.1038/s41587-020-0505-4] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
CD4+ T cells are critical to fighting pathogens, but a comprehensive analysis of human T-cell specificities is hindered by the diversity of HLA alleles (>20,000) and the complexity of many pathogen genomes. We previously described GLIPH, an algorithm to cluster T-cell receptors (TCRs) that recognize the same epitope and to predict their HLA restriction, but this method loses efficiency and accuracy when >10,000 TCRs are analyzed. Here we describe an improved algorithm, GLIPH2, that can process millions of TCR sequences. We used GLIPH2 to analyze 19,044 unique TCRβ sequences from 58 individuals latently infected with Mycobacterium tuberculosis (Mtb) and to group them according to their specificity. To identify the epitopes targeted by clusters of Mtb-specific T cells, we carried out a screen of 3,724 distinct proteins covering 95% of Mtb protein-coding genes using artificial antigen-presenting cells (aAPCs) and reporter T cells. We found that at least five PPE (Pro-Pro-Glu) proteins are targets for T-cell recognition in Mtb.
Collapse
Affiliation(s)
- Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunlin Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Rubelt
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Mishto M. What We See, What We Do Not See, and What We Do Not Want to See in HLA Class I Immunopeptidomes. Proteomics 2020; 20:e2000112. [PMID: 32533627 DOI: 10.1002/pmic.202000112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/14/2022]
Abstract
The identification of peptides bound to human leukocyte antigen class I (HLA-I) molecules-that is, the HLA-I immunopeptidome-is a useful tool in the hunt for epitopes suitable for vaccinations and immunotherapies. These peptides are mainly generated by proteasomes through peptide hydrolysis and peptide splicing. In this issue, Nicastri and colleagues compared different methods for the elution of HLA class I-associated peptides. It is demonstrated that the choice of HLA-associated peptide enrichment and purification strategy affects peptide yields and creates a bias in detected sequence repertoire. The author carried out this technical brief through the analysis of canonical non-spliced peptides. However, their study left out any analysis of post-translationally spliced peptides, thereby missing an opportunity to shed light on the persistent debate of the frequency of these unconventional peptides.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
29
|
Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers (Basel) 2020; 12:cancers12061660. [PMID: 32585818 PMCID: PMC7352969 DOI: 10.3390/cancers12061660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored. Cancer immunotherapy mainly relies on the generation and stimulation of cytotoxic CD8 T lymphocytes (CTLs) within the tumor microenvironment (TME), priming T cells and establishing efficient and durable anti-tumor immunity. Therefore, there is a clear need to define and identify immunogenic T cell epitopes to use in therapeutic cancer vaccines. Naturally presented antigens in the human leucocyte antigen-1 (HLA-I) complex on the tumor surface are the main protagonists in evocating a specific anti-tumor CD8+ T cell response. However, the methodologies for their identification have been a major bottleneck for their reliable characterization. Consequently, the field of antigen discovery has yet to improve. The current review is intended to define what are today known as tumor antigens, with a main focus on CTL antigenic peptides. We also review the techniques developed and employed to date for antigen discovery, exploring both the direct elution of HLA-I peptides and the in silico prediction of epitopes. Finally, the last part of the review analyses the future challenges and direction of the antigen discovery field.
Collapse
|
30
|
Specht G, Roetschke HP, Mansurkhodzhaev A, Henklein P, Textoris-Taube K, Urlaub H, Mishto M, Liepe J. Large database for the analysis and prediction of spliced and non-spliced peptide generation by proteasomes. Sci Data 2020; 7:146. [PMID: 32415162 PMCID: PMC7228940 DOI: 10.1038/s41597-020-0487-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Proteasomes are the main producers of antigenic peptides presented to CD8+ T cells. They can cut proteins and release their fragments or recombine non-contiguous fragments thereby generating novel sequences, i.e. spliced peptides. Understanding which are the driving forces and the sequence preferences of both reactions can streamline target discovery in immunotherapies against cancer, infection and autoimmunity. Here, we present a large database of spliced and non-spliced peptides generated by proteasomes in vitro, which is available as simple CSV file and as a MySQL database. To generate the database, we performed in vitro digestions of 55 unique synthetic polypeptide substrates with different proteasome isoforms and experimental conditions. We measured the samples using three mass spectrometers, filtered and validated putative peptides, identified 22,333 peptide product sequences (15,028 spliced and 7,305 non-spliced product sequences). Our database and datasets have been deposited to the Mendeley (doi:10.17632/nr7cs764rc.1) and PRIDE (PXD016782) repositories. We anticipate that this unique database can be a valuable source for predictors of proteasome-catalyzed peptide hydrolysis and splicing, with various future translational applications.
Collapse
Affiliation(s)
- Gerd Specht
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Petra Henklein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, D-10117, Berlin, Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Michele Mishto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany.
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, United Kingdom.
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
31
|
Nerli S, Sgourakis NG. Structure-based modeling of SARS-CoV-2 peptide/HLA-A02 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511353 DOI: 10.1101/2020.03.23.004176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As a first step toward the development of diagnostic and therapeutic tools to fight the Coronavirus disease (COVID-19), it is important to characterize CD8+ T cell epitopes in the SARS-CoV-2 peptidome that can trigger adaptive immune responses. Here, we use RosettaMHC, a comparative modeling approach which leverages existing high-resolution X-ray structures from peptide/MHC complexes available in the Protein Data Bank, to derive physically realistic 3D models for high-affinity SARS-CoV-2 epitopes. We outline an application of our method to model 439 9mer and 279 10mer predicted epitopes displayed by the common allele HLA-A*02:01, and we make our models publicly available through an online database ( https://rosettamhc.chemistry.ucsc.edu ). As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models of antigens from different strains and HLA alleles can be used as a basis to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
|
32
|
The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides. Nat Immunol 2020; 21:455-463. [PMID: 32152506 PMCID: PMC7117798 DOI: 10.1038/s41590-020-0623-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The nature of autoantigens that trigger autoimmune diseases has been much discussed, but direct biochemical identification is lacking for most. Addressing this question demands unbiased examination of the self-peptides displayed by a defined autoimmune major histocompatibility complex class II (MHCII) molecule. Here we examined the immunopeptidome of the pancreatic islets in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes based on the I-Ag7 variant of MHCII. The relevant peptides that induced pathogenic CD4+ T cells at the initiation of diabetes derived from proinsulin. These peptides were also found in the MHCII peptidome of the pancreatic lymph nodes and spleen. The proinsulin-derived peptides followed a trajectory from their generation and exocytosis in β cells, to uptake and presentation in islets and peripheral sites. Such a pathway generated conventional epitopes but also resulted in the presentation of post-translationally modified peptides, including deamidated sequences. These analyses reveal the key features of a restricted component in the self-MHCII peptidome that caused autoreactivity.
Collapse
|
33
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
34
|
Roerden M, Nelde A, Walz JS. Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy? Front Immunol 2019; 10:3004. [PMID: 31921218 PMCID: PMC6934135 DOI: 10.3389/fimmu.2019.03004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neoantigens derive from non-synonymous somatic mutations in malignant cells. Recognition of neoantigens presented via human leukocyte antigen (HLA) molecules on the tumor cell surface by T cells holds promise to enable highly specific and effective anti-cancer immune responses and thus neoantigens provide an exceptionally attractive target for immunotherapy. While genome sequencing approaches already enable the reliable identification of somatic mutations in tumor samples, the identification of mutation-derived, naturally HLA-presented neoepitopes as targets for immunotherapy remains challenging, particularly in low mutational burden cancer entities, including hematological malignancies. Several approaches have been utilized to identify neoepitopes from primary tumor samples. Besides whole genome sequencing with subsequent in silico prediction of potential mutation-derived HLA ligands, mass spectrometry (MS) allows for the only unbiased identification of naturally presented mutation-derived HLA ligands. The feasibility of characterizing and targeting these novel antigens has recently been demonstrated in acute myeloid leukemia (AML). Several immunogenic, HLA-presented peptides derived from mutated Nucleophosmin 1 (NPM1) were identified, allowing for the generation of T-cell receptor-transduced NPM1mut-specific T cells with anti-leukemic activity in a xenograft mouse model. Neoantigen-specific T-cell responses have also been identified for peptides derived from mutated isocitrate dehydrogenase (IDHmut), and specific T-cell responses could be induced by IDHmut peptide vaccination. In this review, we give a comprehensive overview on known neoantigens in hematological malignancies, present possible prediction and discovery tools and discuss their role as targets for immunotherapy approaches.
Collapse
Affiliation(s)
- Malte Roerden
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Textoris-Taube K, Cammann C, Henklein P, Topfstedt E, Ebstein F, Henze S, Liepe J, Zhao F, Schadendorf D, Dahlmann B, Uckert W, Paschen A, Mishto M, Seifert U. ER-aminopeptidase 1 determines the processing and presentation of an immunotherapy-relevant melanoma epitope. Eur J Immunol 2019; 50:270-283. [PMID: 31729751 DOI: 10.1002/eji.201948116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Dissecting the different steps of the processing and presentation of tumor-associated antigens is a key aspect of immunotherapies enabling to tackle the immune response evasion attempts of cancer cells. The immunodominant glycoprotein gp100209-217 epitope, which is liberated from the melanoma differentiation antigen gp100PMEL17 , is part of immunotherapy trials. By analyzing different human melanoma cell lines, we here demonstrate that a pool of N-terminal extended peptides sharing the common minimal epitope is generated by melanoma proteasome subtypes. In vitro and in cellulo experiments indicate that ER-resident aminopeptidase 1 (ERAP1)-but not ERAP2-defines the processing of this peptide pool thereby modulating the T-cell recognition of melanoma cells. By combining the outcomes of our studies and others, we can sketch the complex processing and endogenous presentation pathway of the gp100209-217 -containing epitope/peptides, which are produced by proteasomes and are translocated to the vesicular compartment through different pathways, where the precursor peptides that reach the endoplasmic reticulum are further processed by ERAP1. The latter step enhances the activation of epitope-specific T lymphocytes, which might be a target to improve the efficiency of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- Shared Facility for Mass Spectrometry, Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Henze
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juliane Liepe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fang Zhao
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Burkhardt Dahlmann
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz Gemeinschaft, Berlin, Germany
| | - Annette Paschen
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", University of Bologna, Bologna, Italy
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Mishto M, Mansurkhodzhaev A, Ying G, Bitra A, Cordfunke RA, Henze S, Paul D, Sidney J, Urlaub H, Neefjes J, Sette A, Zajonc DM, Liepe J. An in silico-in vitro Pipeline Identifying an HLA-A *02:01 + KRAS G12V + Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Front Immunol 2019; 10:2572. [PMID: 31803176 PMCID: PMC6872521 DOI: 10.3389/fimmu.2019.02572] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
Targeting CD8+ T cells to recurrent tumor-specific mutations can profoundly contribute to cancer treatment. Some of these mutations are potential tumor antigens although they can be displayed by non-spliced epitopes only in a few patients, because of the low affinity of the mutated non-spliced peptides for the predominant HLA class I alleles. Here, we describe a pipeline that uses the large sequence variety of proteasome-generated spliced peptides and identifies spliced epitope candidates, which carry the mutations and bind the predominant HLA-I alleles with high affinity. They could be used in adoptive T cell therapy and other anti-cancer immunotherapies for large cohorts of cancer patients. As a proof of principle, the application of this pipeline led to the identification of a KRAS G12V mutation-carrying spliced epitope candidate, which is produced by proteasomes, transported by TAPs and efficiently presented by the most prevalent HLA class I molecules, HLA-A*02:01 complexes.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institut für Biochemie, Berlin, Germany
| | - Artem Mansurkhodzhaev
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ge Ying
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Robert A Cordfunke
- Department of Immunohematology and Bloodbank, Leiden University Medical Center LUMC, Leiden, Netherlands
| | - Sarah Henze
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Debdas Paul
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany.,Institut for Clinical Chemistry, University Medical Center Goettingen Bioanalytics, Goettingen, Germany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, Netherlands
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juliane Liepe
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18:197-218. [PMID: 30610226 DOI: 10.1038/s41573-018-0007-y] [Citation(s) in RCA: 2169] [Impact Index Per Article: 361.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.
Collapse
|
38
|
Faridi P, Li C, Ramarathinam SH, Vivian JP, Illing PT, Mifsud NA, Ayala R, Song J, Gearing LJ, Hertzog PJ, Ternette N, Rossjohn J, Croft NP, Purcell AW. A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands. Sci Immunol 2019; 3:3/28/eaar3947. [PMID: 30315122 DOI: 10.1126/sciimmunol.aar3947] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
Abstract
The diversity of peptides displayed by class I human leukocyte antigen (HLA) plays an essential role in T cell immunity. The peptide repertoire is extended by various posttranslational modifications, including proteasomal splicing of peptide fragments from distinct regions of an antigen to form nongenomically templated cis-spliced sequences. Previously, it has been suggested that a fraction of the immunopeptidome constitutes such cis-spliced peptides; however, because of computational limitations, it has not been possible to assess whether trans-spliced peptides (i.e., the fusion of peptide segments from distinct antigens) are also bound and presented by HLA molecules, and if so, in what proportion. Here, we have developed and applied a bioinformatic workflow and demonstrated that trans-spliced peptides are presented by HLA-I, and their abundance challenges current models of proteasomal splicing that predict cis-splicing as the most probable outcome. These trans-spliced peptides display canonical HLA-binding sequence features and are as frequently identified as cis-spliced peptides found bound to a number of different HLA-A and HLA-B allotypes. Structural analysis reveals that the junction between spliced peptides is highly solvent exposed and likely to participate in T cell receptor interactions. These results highlight the unanticipated diversity of the immunopeptidome and have important implications for autoimmunity, vaccine design, and immunotherapy.
Collapse
Affiliation(s)
- Pouya Faridi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Li
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology,ETH Zurich, Zurich 8093, Switzerland
| | - Sri H Ramarathinam
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Patricia T Illing
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rochelle Ayala
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jiangning Song
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, School of Clinical Science, Monash University, Clayton, Victoria 3168, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, School of Clinical Science, Monash University, Clayton, Victoria 3168, Australia
| | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine,Heath Park, Cardiff CF14 4XN, UK
| | - Nathan P Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
39
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
40
|
Kuckelkorn U, Stübler S, Textoris-Taube K, Kilian C, Niewienda A, Henklein P, Janek K, Stumpf MPH, Mishto M, Liepe J. Proteolytic dynamics of human 20S thymoproteasome. J Biol Chem 2019; 294:7740-7754. [PMID: 30914481 DOI: 10.1074/jbc.ra118.007347] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
An efficient immunosurveillance of CD8+ T cells in the periphery depends on positive/negative selection of thymocytes and thus on the dynamics of antigen degradation and epitope production by thymoproteasome and immunoproteasome in the thymus. Although studies in mouse systems have shown how thymoproteasome activity differs from that of immunoproteasome and strongly impacts the T cell repertoire, the proteolytic dynamics and the regulation of human thymoproteasome are unknown. By combining biochemical and computational modeling approaches, we show here that human 20S thymoproteasome and immunoproteasome differ not only in the proteolytic activity of the catalytic sites but also in the peptide transport. These differences impinge upon the quantity of peptide products rather than where the substrates are cleaved. The comparison of the two human 20S proteasome isoforms depicts different processing of antigens that are associated to tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Ulrike Kuckelkorn
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Biochemie, Germany, 10117 Berlin, Germany
| | - Sabine Stübler
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.,Mathematical Modelling and Systems Biology, Institute of Mathematics, University of Potsdam, 14469 Potsdam, Germany
| | - Kathrin Textoris-Taube
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Germany, 10117 Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, 10117 Berlin, Germany
| | - Christiane Kilian
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Biochemie, Germany, 10117 Berlin, Germany
| | - Agathe Niewienda
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Germany, 10117 Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, 10117 Berlin, Germany
| | - Petra Henklein
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Biochemie, Germany, 10117 Berlin, Germany
| | - Katharina Janek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Germany, 10117 Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, 10117 Berlin, Germany
| | - Michael P H Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.,Melbourne Integrative Genomics, Schools of BioSciences and of Maths & Stats, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Michele Mishto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Germany, 10117 Berlin, Germany, .,Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London SE1 1UL, United Kingdom
| | - Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom, .,Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| |
Collapse
|
41
|
Dianzani C, Vecchio D, Clemente N, Chiocchetti A, Martinelli Boneschi F, Galimberti D, Dianzani U, Comi C, Mishto M, Liepe J. Untangling Extracellular Proteasome-Osteopontin Circuit Dynamics in Multiple Sclerosis. Cells 2019; 8:cells8030262. [PMID: 30897778 PMCID: PMC6468732 DOI: 10.3390/cells8030262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
The function of proteasomes in extracellular space is still largely unknown. The extracellular proteasome-osteopontin circuit has recently been hypothesized to be part of the inflammatory machinery regulating relapse/remission phase alternation in multiple sclerosis. However, it is still unclear what dynamics there are between the different elements of the circuit, what the role of proteasome isoforms is, and whether these inflammatory circuit dynamics are associated with the clinical severity of multiple sclerosis. To shed light on these aspects of this novel inflammatory circuit, we integrated in vitro proteasome isoform data, cell chemotaxis cell culture data, and clinical data of multiple sclerosis cohorts in a coherent computational inference framework. Thereby, we modeled extracellular osteopontin-proteasome circuit dynamics during relapse/remission alternation in multiple sclerosis. Applying this computational framework to a longitudinal study on single multiple sclerosis patients suggests a complex interaction between extracellular proteasome isoforms and osteopontin with potential clinical implications.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, 10126 Torino, Italy.
| | - Domizia Vecchio
- Interdisciplinary Research Centre of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Amedeo Avogadro, 28100 Novara, Italy.
| | - Nausicaa Clemente
- Interdisciplinary Research Centre of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Amedeo Avogadro, 28100 Novara, Italy.
| | - Annalisa Chiocchetti
- Interdisciplinary Research Centre of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Amedeo Avogadro, 28100 Novara, Italy.
| | - Filippo Martinelli Boneschi
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy.
- MS Research Unit and Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, "Dino Ferrari" Centre, 20100 Milano, Italy.
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20100 Milano, Italy.
| | - Umberto Dianzani
- Interdisciplinary Research Centre of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Amedeo Avogadro, 28100 Novara, Italy.
| | - Cristoforo Comi
- Interdisciplinary Research Centre of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Amedeo Avogadro, 28100 Novara, Italy.
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, UK.
- Institute for Biochemistry, Charité⁻Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Germany, 10117 Berlin, Germany.
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
42
|
Liepe J, Sidney J, Lorenz FKM, Sette A, Mishto M. Mapping the MHC Class I-Spliced Immunopeptidome of Cancer Cells. Cancer Immunol Res 2019; 7:62-76. [PMID: 30425108 PMCID: PMC12032831 DOI: 10.1158/2326-6066.cir-18-0424] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
Anticancer immunotherapies demand optimal epitope targets, which could include proteasome-generated spliced peptides if tumor cells were to present them. Here, we show that spliced peptides are widely presented by MHC class I molecules of colon and breast carcinoma cell lines. The peptides derive from hot spots within antigens and enlarge the antigen coverage. Spliced peptides also represent a large number of antigens that would otherwise be neglected by patrolling T cells. These antigens tend to be long, hydrophobic, and basic. Thus, spliced peptides can be a key to identifying targets in an enlarged pool of antigens associated with cancer.
Collapse
Affiliation(s)
- Juliane Liepe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Felix K M Lorenz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany
| |
Collapse
|
43
|
Wilson EA, Anderson KS. Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy. Expert Rev Proteomics 2018; 15:1065-1077. [PMID: 30408427 DOI: 10.1080/14789450.2018.1545578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The recent development of checkpoint blockade immunotherapy for cancer has led to impressive clinical results across multiple tumor types. There is mounting evidence that immune recognition of tumor derived MHC class I (MHC-I) restricted epitopes bearing cancer specific mutations and alterations is a crucial mechanism in successfully triggering immune-mediated tumor rejection. Therapeutic targeting of these cancer specific epitopes (neoepitopes) is emerging as a promising opportunity for the generation of personalized cancer vaccines and adoptive T cell therapies. However, one major obstacle limiting the broader application of neoepitope based therapies is the difficulty of selecting highly immunogenic neoepitopes among the wide array of presented non-immunogenic HLA ligands derived from self-proteins. Areas covered: In this review, we present an overview of the MHC-I processing and presentation pathway, as well as highlight key areas that contribute to the complexity of the associated MHC-I peptidome. We cover recent technological advances that simplify and optimize the identification of targetable neoepitopes for cancer immunotherapeutic applications. Expert commentary: Recent advances in computational modeling, bioinformatics, and mass spectrometry are unlocking the underlying mechanisms governing antigen processing and presentation of tumor-derived neoepitopes.
Collapse
Affiliation(s)
- Eric A Wilson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Karen S Anderson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA.,b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| |
Collapse
|
44
|
Rolfs Z, Solntsev SK, Shortreed MR, Frey BL, Smith LM. Global Identification of Post-Translationally Spliced Peptides with Neo-Fusion. J Proteome Res 2018; 18:349-358. [PMID: 30346791 DOI: 10.1021/acs.jproteome.8b00651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-translationally spliced peptides have recently garnered significant interest as potential targets for cancer immunotherapy and as contributors to autoimmune diseases such as type 1 diabetes, yet feasible identification methods for spliced peptides have yet to be developed. Here we present Neo-Fusion, a search program for discovering spliced peptides in tandem mass spectrometry data. Neo-Fusion utilizes two separated ion database searches to identify the two halves of each spliced peptide, and then it infers the full spliced sequence. This strategy allows for the identification of spliced peptides without peptide length constraints, providing a broadly applicable tool suitable for identification of spliced peptides in a variety of systems, such as the HLA-I and HLA-II immunopeptidomes and in vitro digested protein samples obtained from organelles, cells, or tissues of interest. Using simulated spliced peptides to benchmark Neo-Fusion, 25% of all simulated spliced peptides were identified at a measured false-discovery rate of 5% for HLA-I. Neo-Fusion provides the research community with a powerful new tool to aid in the study of the prevalence and biological significance of post-translationally spliced peptides.
Collapse
Affiliation(s)
- Zach Rolfs
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Stefan K Solntsev
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael R Shortreed
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Brian L Frey
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
45
|
Mylonas R, Beer I, Iseli C, Chong C, Pak HS, Gfeller D, Coukos G, Xenarios I, Müller M, Bassani-Sternberg M. Estimating the Contribution of Proteasomal Spliced Peptides to the HLA-I Ligandome. Mol Cell Proteomics 2018; 17:2347-2357. [PMID: 30171158 PMCID: PMC6283289 DOI: 10.1074/mcp.ra118.000877] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
It has been reported that about 30% of the HLA-I ligands are produced by proteasomal splicing of two noncontiguous fragments of a parental protein. We report that the identification of many of those spliced peptides is ambiguous. With an alternative workflow, based on de novo sequencing and subsequent verification with multiple search tools, we estimate that the upper bound for the proportion of cis-spliced peptides is 2–6%. Nevertheless, the true contribution of spliced peptides to the ligandome may be much smaller. Spliced peptides are short protein fragments spliced together in the proteasome by peptide bond formation. True estimation of the contribution of proteasome-spliced peptides (PSPs) to the global human leukocyte antigen (HLA) ligandome is critical. A recent study suggested that PSPs contribute up to 30% of the HLA ligandome. We performed a thorough reanalysis of the reported results using multiple computational tools and various validation steps and concluded that only a fraction of the proposed PSPs passes the quality filters. To better estimate the actual number of PSPs, we present an alternative workflow. We performed de novo sequencing of the HLA-peptide spectra and discarded all de novo sequences found in the UniProt database. We checked whether the remaining de novo sequences could match spliced peptides from human proteins. The spliced sequences were appended to the UniProt fasta file, which was searched by two search tools at a false discovery rate (FDR) of 1%. We find that 2–6% of the HLA ligandome could be explained as spliced protein fragments. The majority of these potential PSPs have good peptide-spectrum match properties and are predicted to bind the respective HLA molecules. However, it remains to be shown how many of these potential PSPs actually originate from proteasomal splicing events.
Collapse
Affiliation(s)
- Roman Mylonas
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ilan Beer
- Adicet Bio Israel, Ltd., Technion City, 32000, Haifa, Israel
| | - Christian Iseli
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Chloe Chong
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Hui-Song Pak
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - David Gfeller
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Markus Müller
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Michal Bassani-Sternberg
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
47
|
The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 2018; 19:923-931. [PMID: 30104634 DOI: 10.1038/s41590-018-0186-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
The basic principle of adaptive immunity is to strictly discriminate between self and non-self, and a central challenge to overcome is the enormous variety of pathogens that might be encountered. In cell-mediated immunity, immunological discernment takes place at a molecular or cellular level. Central to both mechanisms of discernment is the generation of antigenic peptides associated with MHC class I molecules, which is achieved by a proteolytic complex called the proteasome. To adequately accomplish the discrimination between self and non-self that is essential for adaptive immunity and self-tolerance, two proteasome subtypes have evolved via gene duplication: the immunoproteasome and the thymoproteasome. In this Review, we describe various aspects of these immunity-dedicated proteasomes, from their discovery to recent findings.
Collapse
|
48
|
A tissue-based draft map of the murine MHC class I immunopeptidome. Sci Data 2018; 5:180157. [PMID: 30084848 PMCID: PMC6080492 DOI: 10.1038/sdata.2018.157] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022] Open
Abstract
The large array of peptides presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC class I immunopeptidome. Although the MHC class I immunopeptidome is ubiquitous in mammals and represents a critical component of the immune system, very little is known, in any species, about its composition across most tissues and organs in vivo. We applied mass spectrometry (MS) technologies to draft the first tissue-based atlas of the murine MHC class I immunopeptidome in health. Peptides were extracted from 19 normal tissues from C57BL/6 mice and prepared for MS injections, resulting in a total number of 28,448 high-confidence H2Db/Kb-associated peptides identified and annotated in the atlas. This atlas provides initial qualitative data to explore the tissue-specificity of the immunopeptidome and serves as a guide to identify potential tumor-associated antigens from various cancer models. Our data were shared via PRIDE (PXD008733), SysteMHC Atlas (SYSMHC00018) and SWATH Atlas. We anticipate that this unique dataset will be expanded in the future and will find wide applications in basic and translational immunology.
Collapse
|
49
|
Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr Opin Immunol 2018; 52:81-86. [PMID: 29723668 DOI: 10.1016/j.coi.2018.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
The sequence of a large number of MHC-presented epitopes is not present as such in the original antigen because it has been re-shuffled by the proteasome or other proteases. Why do proteases throw a spanner in the works of our model of antigen tagging and immune recognition? We describe in this review what we know about the immunological relevance of post-translationally spliced epitopes and why proteases seem to have a second (dark) personality, which is keen to create new peptide bonds.
Collapse
|
50
|
Freudenmann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. Immunology 2018; 154:331-345. [PMID: 29658117 DOI: 10.1111/imm.12936] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
The entirety of human leukocyte antigen (HLA)-presented peptides is referred to as the HLA ligandome of a cell or tissue, in tumours often termed immunopeptidome. Mapping the tumour immunopeptidome by mass spectrometry (MS) comprehensively views the pathophysiologically relevant antigenic signature of human malignancies. MS is an unbiased approach stringently filtering the candidates to be tested as opposed to epitope prediction algorithms. In the setting of peptide-specific immunotherapies, MS-based strategies significantly diminish the risk of lacking clinical benefit, as they yield highly enriched amounts of truly presented peptides. Early immunopeptidomic efforts were severely limited by technical sensitivity and manual spectra interpretation. The technological progress with development of orbitrap mass analysers and enhanced chromatographic performance led to vast improvements in mass accuracy, sensitivity, resolution, and speed. Concomitantly, bioinformatic tools were developed to process MS data, integrate sequencing results, and deconvolute multi-allelic datasets. This enabled the immense advancement of tumour immunopeptidomics. Studying the HLA-presented peptide repertoire bears high potential for both answering basic scientific questions and translational application. Mapping the tumour HLA ligandome has started to significantly contribute to target identification for the design of peptide-specific cancer immunotherapies in clinical trials and compassionate need treatments. In contrast to prediction algorithms, rare HLA allotypes and HLA class II can be adequately addressed when choosing MS-guided target identification platforms. Herein, we review the identification of tumour HLA ligands focusing on sources, methods, bioinformatic data analysis, translational application, and provide an outlook on future developments.
Collapse
Affiliation(s)
- Lena Katharina Freudenmann
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Ana Marcu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| |
Collapse
|