1
|
Darguzyte M, Antczak P, Bachurski D, Hoelker P, Abedpour N, Gholamipoorfard R, Schlößer HA, Wennhold K, Thelen M, Garcia-Marquez MA, Koenig J, Schneider A, Braun T, Klawonn F, Damrat M, Rahman M, Kleid JM, Theobald SJ, Bauer E, von Kaisenberg C, Talbot SR, Shultz LD, Soper B, Stripecke R. Long-Term Human Immune Reconstitution, T-Cell Development, and Immune Reactivity in Mice Lacking the Murine Major Histocompatibility Complex: Validation with Cellular and Gene Expression Profiles. Cells 2024; 13:1686. [PMID: 39451205 PMCID: PMC11506606 DOI: 10.3390/cells13201686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Humanized mice transplanted with CD34+ hematopoietic cells (HPCs) are broadly used to study human immune responses and infections in vivo and for testing therapies pre-clinically. However, until now, it was not clear whether interactions between the mouse major histocompatibility complexes (MHCs) and/or the human leukocyte antigens (HLAs) were necessary for human T-cell development and immune reactivity. METHODS We evaluated the long-term (20-week) human hematopoiesis and human T-cell development in NOD Scid Gamma (NSG) mice lacking the expression of MHC class I and II (NSG-DKO). Triplicate experiments were performed with HPCs obtained from three donors, and humanization was confirmed in the reference strain NOD Rag Gamma (NRG). Further, we tested whether humanized NSG-DKO mice would respond to a lentiviral vector (LV) systemic delivery of HLA-A*02:01, HLA-DRB1*04:01, human GM-CSF/IFN-α, and the human cytomegalovirus gB antigen. RESULTS Human immune reconstitution was detectable in peripheral blood from 8 to 20 weeks after the transplantation of NSG-DKO. Human single positive CD4+ and CD8+ T-cells were detectable in lymphatic tissues (thymus, bone marrow, and spleen). LV delivery harnessed the detection of lymphocyte subsets in bone marrow (αβ and γδ T-cells and NK cells) and the expression of HLA-DR. Furthermore, RNA sequencing showed that LV delivery increased the expression of different human reactome pathways, such as defense responses to other organisms and viruses. CONCLUSIONS Human T-cell development and reactivity are independent of the expression of murine MHCs in humanized mice. Therefore, humanized NSG-DKO is a promising new model for studying human immune responses, as it abrogates the xenograft mouse MHC interference.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Philipp Antczak
- Department II of Internal Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, 50931 Cologne, Germany
| | - Daniel Bachurski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Patrick Hoelker
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Nima Abedpour
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Department of Translational Genomics, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Rahil Gholamipoorfard
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Department of Translational Genomics, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hans A. Schlößer
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria A. Garcia-Marquez
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Johannes Koenig
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
| | - Andreas Schneider
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
| | - Tobias Braun
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
| | - Frank Klawonn
- Department of Computer Science, Ostfalia University of Applied Sciences, 38302 Wolfenbuettel, Germany;
- Biostatistics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Damrat
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Masudur Rahman
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Jan-Malte Kleid
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Sebastian J. Theobald
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | | | - Brian Soper
- The Jackson Laboratory, Bar Harbor, ME 04609, USA;
| | - Renata Stripecke
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Department II of Internal Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Das S, Thompson W, Papoutsakis ET. Engineered and hybrid human megakaryocytic extracellular vesicles for targeted non-viral cargo delivery to hematopoietic (blood) stem and progenitor cells. Front Bioeng Biotechnol 2024; 12:1435228. [PMID: 39386042 PMCID: PMC11461334 DOI: 10.3389/fbioe.2024.1435228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Native and engineered extracellular vesicles generated from human megakaryocytes (huMkEVs) or from the human megakaryocytic cell line CHRF (CHEVs) interact with tropism delivering their cargo to both human and murine hematopoietic stem and progenitor cells (HSPCs). To develop non-viral delivery vectors to HSPCs based on MkEVs, we first confirmed, using NOD-scid IL2Rγnull (NSG™) mice, the targeting potential of the large EVs, enriched in microparticles (huMkMPs), chosen for their large cargo capacity. 24 h post intravenous infusion into NSG mice, huMkEVs induced a nearly 50% increase in murine platelet counts. PKH26-labeled huMkEVs or CHEVs localized to the HSPC-rich bone marrow preferentially interacting with murine HSPCs, thus confirming their receptor-mediated tropism for NSG HSPCs, and their potential to treat thromobocytopenias. We explored this tropism to functionally deliver synthetic cargo, notably plasmid DNA coding for a fluorescent reporter, to NSG HSPCs both in vitro and in vivo. We loaded huMkEVs with plasmid DNA either through electroporation or by generating hybrid particles with preloaded liposomes. Both methods facilitated successful functional targeted delivery of pDNA, as tissue weight-normalized fluorescence intensity of the expressed fluorescent reporter was significantly higher in bone marrow than other tissues. Furthermore, the fraction of fluorescent CD117+ HSPCs was nearly 19-fold higher than other cell types within the bone marrow 72-h following administration of the hybrid particles, further supporting that HSPC tropism is retained when using hybrid particles. These data demonstrate the potential of these EVs as a non-viral, HSPC-specific cargo vehicle for gene therapy applications to treat hematological diseases.
Collapse
Affiliation(s)
- Samik Das
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
3
|
Gu A, Li J, Qiu S, Hao S, Yue ZY, Zhai S, Li MY, Liu Y. Pancreatic cancer environment: from patient-derived models to single-cell omics. Mol Omics 2024; 20:220-233. [PMID: 38414408 DOI: 10.1039/d3mo00250k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant cancer characterized by poor prognosis, high heterogeneity, and intricate heterocellular systems. Selecting an appropriate experimental model for studying its progression and treatment is crucial. Patient-derived models provide a more accurate representation of tumor heterogeneity and complexity compared to cell line-derived models. This review initially presents relevant patient-derived models, including patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived explants (PDEs), which are essential for studying cell communication and pancreatic cancer progression. We have emphasized the utilization of these models in comprehending intricate intercellular communication, drug responsiveness, mechanisms underlying tumor growth, expediting drug discovery, and enabling personalized medical approaches. Additionally, we have comprehensively summarized single-cell analyses of these models to enhance comprehension of intercellular communication among tumor cells, drug response mechanisms, and individual patient sensitivities.
Collapse
Affiliation(s)
- Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shenglin Hao
- Department of Functional Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| |
Collapse
|
4
|
Yu CI, Maser R, Marches F, Banchereau J, Palucka K. Engraftment of adult hematopoietic stem and progenitor cells in a novel model of humanized mice. iScience 2024; 27:109238. [PMID: 38433905 PMCID: PMC10904995 DOI: 10.1016/j.isci.2024.109238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Pre-clinical use of humanized mice transplanted with CD34+ hematopoietic stem and progenitor cells (HSPCs) is limited by insufficient engraftment with adult non-mobilized HSPCs. Here, we developed a novel immunodeficient mice based on NOD-SCID-Il2γc-/- (NSG) mice to support long-term engraftment with human adult HSPCs. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HSPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells, and tissue colonization at one year after adult HSPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time and may facilitate building autologous models for immuno-oncology studies.
Collapse
Affiliation(s)
- Chun I. Yu
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT 06032, USA
| | - Rick Maser
- The Jackson Laboratory for Mammalian Genetics (JAX-MG), Bar Harbor, ME 04609, USA
| | - Florentina Marches
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT 06032, USA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT 06032, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT 06032, USA
| |
Collapse
|
5
|
Le Y, Gao H, Le J, Hornick JL, Bleday R, Wee J, Zhu Z. VentX promotes tumor specific immunity and efficacy of immune checkpoint inhibitors. iScience 2024; 27:108731. [PMID: 38299030 PMCID: PMC10829883 DOI: 10.1016/j.isci.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Immune suppression within tumor microenvironments (TME) have been implicated in limited efficacy of immune check point inhibitors (ICIs) against solid tumors. Down-regulated VentX expression in tumor associated macrophages (TAMs) underlies phagocytotic anergic phenotype of TAMs, which govern immunological state of TME. In this study, using a tumor immune microenvironment enabling model system (TIME-EMS) of non-small cell lung cancer (NSCLC), we found that PD-1 antibody modestly activates cytotoxic T lymphocytes (CTLs) within the NSCLC-TME but not the status of TIME. We showed that the restoration of VentX expression in TAMs reignites the phagocytotic function of TAMs, which in turn, transforms TIME, activates CTLs in a tumor-specific manner and promotes efficacy of PD-1 antibody against NSCLC but not toxicity on normal lung epithelial cells. Supported by in vivo data on NSG-PDX models of primary human NSCLC, our study revealed potential venues to promote the efficacy of ICI against solid tumors through VentX-based mechanisms.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Joanna Le
- Department of Obstetrics and Gynecology, University of Massachusetts Medical Center
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ronald Bleday
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jon Wee
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Brown FC, Carmichael CL. Patient-Derived Xenograft Models for Leukemias. Methods Mol Biol 2024; 2806:31-40. [PMID: 38676794 DOI: 10.1007/978-1-0716-3858-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Patient-derived xenograft (PDX) modeling is a valuable tool for the study of leukemia pathogenesis, progression, and therapy response. Engraftment of human leukemia cells occurs following injection into the tail vein (or retro-orbital vein) of preconditioned immunocompromised mice. Injected mice are maintained in a sterile and supportive housing environment until leukemia engraftment is observed, at which time studies such as drug treatments or leukemia sampling can occur. Here, we outline a method for generating PDXs from Acute Myeloid Leukemia (AML) patient samples using tail vein injection; however it can also be readily applied to T- and B- Acute Lymphoblastic Leukemia (ALL) samples.
Collapse
Affiliation(s)
- Fiona C Brown
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Catherine L Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Saito Y, Iida-Norita R, Afroj T, Refaat A, Hazama D, Komori S, Ohata S, Takai T, Oduori OS, Kotani T, Funakoshi Y, Koma YI, Murata Y, Yakushijin K, Matsuoka H, Minami H, Yokozaki H, Manz MG, Matozaki T. Preclinical evaluation of the efficacy of an antibody to human SIRPα for cancer immunotherapy in humanized mouse models. Front Immunol 2023; 14:1294814. [PMID: 38162643 PMCID: PMC10757636 DOI: 10.3389/fimmu.2023.1294814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment and are considered potential targets for cancer immunotherapy. To examine the antitumor effects of agents targeting human TAMs in vivo, we here established preclinical tumor xenograft models based on immunodeficient mice that express multiple human cytokines and have been reconstituted with a human immune system by transplantation of human CD34+ hematopoietic stem and progenitor cells (HIS-MITRG mice). HIS-MITRG mice supported the growth of both human cell line (Raji)- and patient-derived B cell lymphoma as well as the infiltration of human macrophages into their tumors. We examined the potential antitumor action of an antibody to human SIRPα (SE12C3) that inhibits the interaction of CD47 on tumor cells with SIRPα on human macrophages and thereby promotes Fcγ receptor-mediated phagocytosis of the former cells by the latter. Treatment with the combination of rituximab (antibody to human CD20) and SE12C3 inhibited Raji tumor growth in HIS-MITRG mice to a markedly greater extent than did rituximab monotherapy. This enhanced antitumor effect was dependent on human macrophages and attributable to enhanced rituximab-dependent phagocytosis of lymphoma cells by human macrophages. Treatment with rituximab and SE12C3 also induced reprogramming of human TAMs toward a proinflammatory phenotype. Furthermore, the combination treatment essentially prevented the growth of patient-derived diffuse large B cell lymphoma in HIS-MITRG mice. Our findings thus support the study of HIS-MITRG mice as a model for the preclinical evaluation in vivo of potential therapeutics, such as antibodies to human SIRPα, that target human TAMs.
Collapse
Affiliation(s)
- Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rie Iida-Norita
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tania Afroj
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alaa Refaat
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Hazama
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satomi Komori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ohata
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Takai
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Okechi S. Oduori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironobu Minami
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich at the University of Zurich, Zurich, Switzerland
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
8
|
Yu CI, Maser R, Marches F, Banchereau J, Palucka K. Long-term engraftment of adult hematopoietic progenitors in a novel model of humanized mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560534. [PMID: 37873457 PMCID: PMC10592884 DOI: 10.1101/2023.10.02.560534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pre-clinical use of humanized mice transplanted with CD34 + hematopoietic progenitor cells (HPCs) is limited by insufficient engraftment with adult HPCs. Here, we developed a novel immunodeficient mice based in NOD-SCID- Il2γc -/- (NSG) mice to support long-term engraftment with human adult HPCs and tissue colonization with human myeloid cells. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells, and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells. Furthermore, higher frequencies of human lymphoid and myeloid cells were detected in tissues at one year after adult HPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time. Summary Pre-clinical use of humanized mice is limited by insufficient engraftment with adult hematopoietic progenitor cells (HPCs). Here, we developed a novel immunodeficient mice which support long-term engraftment with adult bone marrow HPCs and facilitate building autologous models for immuno-oncology studies.
Collapse
|
9
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
10
|
Anjos-Afonso F, Bonnet D. Human CD34+ hematopoietic stem cell hierarchy: how far are we with its delineation at the most primitive level? Blood 2023; 142:509-518. [PMID: 37018661 PMCID: PMC10644061 DOI: 10.1182/blood.2022018071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to isolate and characterize different hematopoietic stem cell (HSC) or progenitor cell populations opens avenues to understand how hematopoiesis is regulated during development, homeostasis, and regeneration as well as in age-related conditions such as clonal hematopoiesis and leukemogenesis. Significant progress has been made in the past few decades in determining the composition of the cell types that exist in this system, but the most significant advances have come from mouse studies. However, recent breakthroughs have made significant strides that have enhanced the resolution of the human primitive hematopoietic compartment. Therefore, we aim to review this subject not only from a historical perspective but also to discuss the progress made in the characterization of the human postnatal CD34+ HSC-enriched populations. This approach will enable us to shed light on the potential future translational applicability of human HSCs.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
11
|
Bruserud Ø, Reikvam H. Casein Kinase 2 (CK2): A Possible Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3711. [PMID: 37509370 PMCID: PMC10378128 DOI: 10.3390/cancers15143711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The protein kinase CK2 (also known as casein kinase 2) is one of the main contributors to the human phosphoproteome. It is regarded as a possible therapeutic strategy in several malignant diseases, including acute myeloid leukemia (AML), which is an aggressive bone marrow malignancy. CK2 is an important regulator of intracellular signaling in AML cells, especially PI3K-Akt, Jak-Stat, NFκB, Wnt, and DNA repair signaling. High CK2 levels in AML cells at the first time of diagnosis are associated with decreased survival (i.e., increased risk of chemoresistant leukemia relapse) for patients receiving intensive and potentially curative antileukemic therapy. However, it is not known whether these high CK2 levels can be used as an independent prognostic biomarker because this has not been investigated in multivariate analyses. Several CK2 inhibitors have been developed, but CX-4945/silmitasertib is best characterized. This drug has antiproliferative and proapoptotic effects in primary human AML cells. The preliminary results from studies of silmitasertib in the treatment of other malignancies suggest that gastrointestinal and bone marrow toxicities are relatively common. However, clinical AML studies are not available. Taken together, the available experimental and clinical evidence suggests that the possible use of CK2 inhibition in the treatment of AML should be further investigated.
Collapse
Affiliation(s)
- Øystein Bruserud
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
12
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
13
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Derecka M, Crispino JD. Bone Marrow Avatars: Mimicking Hematopoiesis in a Dish. Cancer Discov 2023; 13:263-265. [PMID: 36744319 DOI: 10.1158/2159-8290.cd-22-1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMMARY Faithful recapitulation of human bone marrow complexity has been a major challenge for the sci-entific community for many years. In this issue of Cancer Discovery, Khan and colleagues present an improved induced pluripotent stem cell differentiation protocol that generates bone marrow organoids re-creating key characteristics of human marrow. See related article by Khan et al., p. 364 (8).
Collapse
Affiliation(s)
- Marta Derecka
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
15
|
Kanikarla Marie P, Sorokin AV, Bitner LA, Aden R, Lam M, Manyam G, Woods MN, Anderson A, Capasso A, Fowlkes N, Overman MJ, Menter DG, Kopetz S. Autologous humanized mouse models to study combination and single-agent immunotherapy for colorectal cancer patient-derived xenografts. Front Oncol 2022; 12:994333. [PMID: 36212401 PMCID: PMC9532947 DOI: 10.3389/fonc.2022.994333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Designing studies of immunotherapy is limited due to a lack of pre-clinical models that reliably predict effective immunotherapy responses. To address this gap, we developed humanized mouse models of colorectal cancer (CRC) incorporating patient-derived xenografts (PDX) with human peripheral blood mononuclear cells (PBMC). Humanized mice with CRC PDXs were generated via engraftment of autologous (isolated from the same patients as the PDXs) or allogeneic (isolated from healthy donors) PBMCs. Human T cells were detected in mouse blood, tissues, and infiltrated the implanted PDXs. The inclusion of anti-PD-1 therapy revealed that tumor responses in autologous but not allogeneic models were more comparable to that of patients. An overall non-specific graft-vs-tumor effect occurred in allogeneic models and negatively correlated with that seen in patients. In contrast, autologous humanized mice more accurately correlated with treatment outcomes by engaging pre-existing tumor specific T-cell populations. As autologous T cells appear to be the major drivers of tumor response thus, autologous humanized mice may serve as models at predicting treatment outcomes in pre-clinical settings for therapies reliant on pre-existing tumor specific T-cell populations.
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V. Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lea A. Bitner
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rebecca Aden
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melanie N. Woods
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amanda Anderson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna Capasso
- Department of Oncology, The University of Texas Health Austin, Austin, TX, United States
| | - Natalie Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G. Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Scott Kopetz,
| |
Collapse
|
16
|
Kleinmanns K, Gullaksen SE, Bredholt G, Davidson B, Torkildsen CF, Grindheim S, Bjørge L, McCormack E. Humanized Ovarian Cancer Patient-Derived Xenografts for Improved Preclinical Evaluation of Immunotherapies. Cancers (Basel) 2022; 14:3092. [PMID: 35804867 PMCID: PMC9265069 DOI: 10.3390/cancers14133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) has poor prognosis and new treatment modalities are needed. Immunotherapy, with checkpoint inhibitors, have demonstrated limited impact. To evaluate the suitability for immunotherapeutics, contextualized preclinical models are required to secure meaningful clinical translation. Therefore, we developed and characterized humanized patient-derived xenograft (hu PDX) murine models of HGSOC, which were established by orthotopic implantation of tumor cell suspensions and intravenous injection of CD34+ cells isolated from umbilical cord blood samples. The developing human immune system in NSG and NSGS mice was followed longitudinally by flow cytometry and characterized by mass cytometry with a panel of 34 surface markers. Molecular imaging of tumor burden, survival analysis, and characterization of tumor-infiltrating immune cells was performed to assess the treatment response to anti-PD-1 (nivolumab) monotherapy. Successful generation of hu PDX models was achieved. Mice treated with nivolumab showed a decrease in tumor burden, however no significant survival benefit was identified when compared to untreated controls. No correlation was seen between PD-L1 expression and CD8 T cell infiltration and response parameters. As the characterization showed an immune infiltration of predominantly myeloid cells, similar to what is observed in HGSOC patients, the models may have the potential to evaluate the importance of myeloid cell immunomodulation as well.
Collapse
Affiliation(s)
- Katrin Kleinmanns
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
| | - Stein-Erik Gullaksen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
| | - Geir Bredholt
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway;
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Cecilie Fredvik Torkildsen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Department of Obstetrics and Gynecology, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Sindre Grindheim
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Line Bjørge
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, 5020 Bergen, Norway; (S.-E.G.); (G.B.); (C.F.T.); (S.G.); (L.B.)
- Vivarium, Department of Clinical Science, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| |
Collapse
|
17
|
Ren D, Liu W, Ding S, Li Y. Protocol for generating human immune system mice and hydrodynamic injection to analyze human hematopoiesis in vivo. STAR Protoc 2022; 3:101217. [PMID: 35265863 PMCID: PMC8899045 DOI: 10.1016/j.xpro.2022.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immune system (HIS) mice provide a valuable platform to investigate and modulate human hematopoiesis development in vivo. Here, we describe detailed protocols for the construction of HIS mice, modulation of human hematopoiesis in vivo using hydrodynamic injection of plasmids encoding cytokines of interest, and flow cytometry analysis of humanization levels and human immune subsets. This approach can be easily applied to screen or verify factors that regulate human hematopoiesis and immune system. For complete details on the use and execution of this protocol, please refer to Cardoso et al. (2021) and Li et al. (2017). The protocol for construction of human immune system mice Detailed procedure for hydrodynamic injection Characterization of human immune subpopulations by flow cytometry In vivo modulation of human hematopoiesis
Collapse
|
18
|
Suryawanshi GW, Arokium H, Kim S, Khamaikawin W, Lin S, Shimizu S, Chupradit K, Lee Y, Xie Y, Guan X, Suryawanshi V, Presson AP, An DS, Chen ISY. Longitudinal clonal tracking in humanized mice reveals sustained polyclonal repopulation of gene-modified human-HSPC despite vector integration bias. Stem Cell Res Ther 2021; 12:528. [PMID: 34620229 PMCID: PMC8499514 DOI: 10.1186/s13287-021-02601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Current understanding of hematopoiesis is largely derived from mouse models that are physiologically distant from humans. Humanized mice provide the most physiologically relevant small animal model to study human diseases, most notably preclinical gene therapy studies. However, the clonal repopulation dynamics of human hematopoietic stem and progenitor cells (HSPC) in these animal models is only partially understood. Using a new clonal tracking methodology designed for small sample volumes, we aim to reveal the underlying clonal dynamics of human cell repopulation in a mouse environment. METHODS Humanized bone marrow-liver-thymus (hu-BLT) mice were generated by transplanting lentiviral vector-transduced human fetal liver HSPC (FL-HSPC) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice implanted with a piece of human fetal thymus. We developed a methodology to track vector integration sites (VIS) in a mere 25 µl of mouse blood for longitudinal and quantitative clonal analysis of human HSPC repopulation in mouse environment. We explored transcriptional and epigenetic features of human HSPC for possible VIS bias. RESULTS A total of 897 HSPC clones were longitudinally tracked in hu-BLT mice-providing a first-ever demonstration of clonal dynamics and coordinated expansion of therapeutic and control vector-modified human cell populations simultaneously repopulating in the same humanized mice. The polyclonal repopulation stabilized at 19 weeks post-transplant and the contribution of the largest clone doubled within 4 weeks. Moreover, 550 (~ 60%) clones persisted over 6 weeks and were highly shared between different organs. The normal clonal profiles confirmed the safety of our gene therapy vectors. Multi-omics analysis of human FL-HSPC revealed that 54% of vector integrations in repopulating clones occurred within ± 1 kb of H3K36me3-enriched regions. CONCLUSIONS Human repopulation in mice is polyclonal and stabilizes more rapidly than that previously observed in humans. VIS preference for H3K36me3 has no apparent negative effects on HSPC repopulation. Our study provides a methodology to longitudinally track clonal repopulation in small animal models extensively used for stem cell and gene therapy research and with lentiviral vectors designed for clinical applications. Results of this study provide a framework for understanding the clonal behavior of human HPSC repopulating in a mouse environment, critical for translating results from humanized mice models to the human settings.
Collapse
Affiliation(s)
- Gajendra W Suryawanshi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Hubert Arokium
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Wannisa Khamaikawin
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Samantha Lin
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Saki Shimizu
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | | | - YooJin Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Yiming Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Xin Guan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Vasantika Suryawanshi
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Angela P Presson
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, 84108, USA
- Department of Biostatistics, University of California, Los Angeles, 90095, USA
| | - Dong-Sung An
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA.
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA.
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Wang S, Zhou X, Zeng Z, Sui M, Chen L, Feng C, Huang C, Yang Q, Ji M, Hou P. Atovaquone-HSA nano-drugs enhance the efficacy of PD-1 blockade immunotherapy by alleviating hypoxic tumor microenvironment. J Nanobiotechnology 2021; 19:302. [PMID: 34600560 PMCID: PMC8487475 DOI: 10.1186/s12951-021-01034-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxia is inherent character of most solid malignancies, leading to the failure of chemotherapy, radiotherapy and immunotherapy. Atovaquone, an anti-malaria drug, can alleviate tumor hypoxia by inhibiting mitochondrial complex III activity. The present study exploits atovaquone/albumin nanoparticles to improve bioavailability and tumor targeting of atovaquone, enhancing the efficacy of anti-PD-1 therapy by normalizing tumor hypoxia. Methods We prepared atovaquone-loaded human serum albumin (HSA) nanoparticles stabilized by intramolecular disulfide bonds, termed HSA-ATO NPs. The average size and zeta potential of HSA-ATO NPs were measured by particle size analyzer. The morphology of HSA-ATO NPs was characterized by transmission electron microscope (TEM). The bioavailability and safety of HSA-ATO NPs were assessed by animal experiments. Flow cytometry and ELISA assays were used to evaluate tumor immune microenvironment. Results Our data first verified that atovaquone effectively alleviated tumor hypoxia by inhibiting mitochondrial activity both in vitro and in vivo, and successfully encapsulated atovaquone in vesicle with albumin, forming HSA-ATO NPs of approximately 164 nm in diameter. We then demonstrated that the HSA-ATO NPs possessed excellent bioavailability, tumor targeting and a highly favorable biosafety profile. When combined with anti-PD-1 antibody, we observed that HSA-ATO NPs strongly enhanced the response of mice bearing tumor xenografts to immunotherapy. Mechanistically, HSA-ATO NPs promoted intratumoral CD8+ T cell recruitment by alleviating tumor hypoxia microenvironment, thereby enhancing the efficacy of anti-PD-1 immunotherapy. Conclusions Our data provide strong evidences showing that HSA-ATO NPs can serve as safe and effective nano-drugs to enhance cancer immunotherapy by alleviating hypoxic tumor microenvironment. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01034-9.
Collapse
Affiliation(s)
- Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xinrui Zhou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Zekun Zeng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Mengjun Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Lihong Chen
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chen Huang
- Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China. .,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
20
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Comparative Transcriptomic Analysis of the Hematopoietic System between Human and Mouse by Single Cell RNA Sequencing. Cells 2021; 10:cells10050973. [PMID: 33919312 PMCID: PMC8143332 DOI: 10.3390/cells10050973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: mouse models are fundamental to the study of hematopoiesis, but comparisons between mouse and human in single cells have been limited in depth. (2) Methods: we constructed a single-cell resolution transcriptomic atlas of hematopoietic stem and progenitor cells (HSPCs) of human and mouse, from a total of 32,805 single cells. We used Monocle to examine the trajectories of hematopoietic differentiation, and SCENIC to analyze gene networks underlying hematopoiesis. (3) Results: After alignment with Seurat 2, the cells of mouse and human could be separated by same cell type categories. Cells were grouped into 17 subpopulations; cluster-specific genes were species-conserved and shared functional themes. The clustering dendrogram indicated that cell types were highly conserved between human and mouse. A visualization of the Monocle results provided an intuitive representation of HSPC differentiation to three dominant branches (Erythroid/megakaryocytic, Myeloid, and Lymphoid), derived directly from the hematopoietic stem cell and the long-term hematopoietic stem cells in both human and mouse. Gene regulation was similarly conserved, reflected by comparable transcriptional factors and regulatory sequence motifs in subpopulations of cells. (4) Conclusions: our analysis has confirmed evolutionary conservation in the hematopoietic systems of mouse and human, extending to cell types, gene expression and regulatory elements.
Collapse
|
22
|
Mian SA, Anjos-Afonso F, Bonnet D. Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Front Immunol 2021; 11:619236. [PMID: 33603749 PMCID: PMC7884350 DOI: 10.3389/fimmu.2020.619236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy has established itself as a promising tool for cancer treatment. There are many challenges that remain including lack of targets and some patients across various cancers who have not shown robust clinical response. One of the major problems that have hindered the progress in the field is the dearth of appropriate mouse models that can reliably recapitulate the complexity of human immune-microenvironment as well as the malignancy itself. Immunodeficient mice reconstituted with human immune cells offer a unique opportunity to comprehensively evaluate immunotherapeutic strategies. These immunosuppressed and genetically modified mice, with some overexpressing human growth factors, have improved human hematopoietic engraftment as well as created more functional immune cell development in primary and secondary lymphoid tissues in these mice. In addition, several new approaches to modify or to add human niche elements to further humanize these immunodeficient mice have allowed a more precise characterization of human hematopoiesis. These important refinements have opened the possibility to evaluate not only human immune responses to different tumor cells but also to investigate how malignant cells interact with their niche and most importantly to test immunotherapies in a more preclinically relevant setting, which can ultimately lead to better success of these drugs in clinical trials.
Collapse
Affiliation(s)
- Syed A Mian
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom.,Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
23
|
Sommerkamp P, Mercier FE, Wilkinson AC, Bonnet D, Bourgine PE. Engineering human hematopoietic environments through ossicle and bioreactor technologies exploitation. Exp Hematol 2021; 94:20-25. [PMID: 33278488 PMCID: PMC7879567 DOI: 10.1016/j.exphem.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/16/2023]
Abstract
The bone marrow microenvironment contains cellular niches that maintain the pool of hematopoietic stem and progenitor cells and support hematopoietic maturation. Malignant hematopoietic cells also co-opt normal cellular interactions to promote their own growth and evade therapy. In vivo systems used to study human hematopoiesis have been developed through transplantation into immunodeficient mouse models. However, incomplete cross-compatibility between the murine stroma and transplanted human hematopoietic cells limits the rate of engraftment and the study of relevant interactions. To supplement in vivo xenotransplantation models, complementary strategies have recently been developed, including the use of three-dimensional human bone marrow organoids in vivo, generated from bone marrow stromal cells seeded onto osteo-inductive scaffolds, as well as the use of ex vivo bioreactor models. These topics were the focus of the Spring 2020 International Society for Experimental Hematology New Investigator webinar. We review here the latest advances in generating humanized hematopoietic organoids and how they allow for the study of novel microenvironmental interactions.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - François E Mercier
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Dominique Bonnet
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, London, UK
| | - Paul E Bourgine
- Laboratory for Cell, Tissue, and Organ Engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|