1
|
Cañizo CG, Guerrero-Ramos F, Perez Escavy M, Lodewijk I, Suárez-Cabrera C, Morales L, Nunes SP, Munera-Maravilla E, Rubio C, Sánchez R, Rodriguez-Izquierdo M, Martínez de Villarreal J, Real FX, Castellano D, Martín-Arriscado C, Lora Pablos D, Rodríguez Antolín A, Dueñas M, Paramio JM, Martínez VG. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Oncoimmunology 2025; 14:2438291. [PMID: 39698899 DOI: 10.1080/2162402x.2024.2438291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
High-risk non-muscle-invasive bladder cancer (NMIBC) presents high recurrence and progression rates. Despite the use of Bacillus Calmette-Guérin gold-standard immunotherapy and the recent irruption of anti-PD-1/PD-L1 drugs, we are missing a comprehensive understanding of the tumor microenvironment (TME) that may help us find biomarkers associated to treatment outcome. Here, we prospectively analyzed TME composition and PD-L1 expression of tumor and non-tumoral tissue biopsies from 73 NMIBC patients and used scRNA-seq, transcriptomic cohorts and tissue micro-array to validate the prognostic value of cell types of interest. Compared to non-tumoral tissue, NMIBC presented microvascular alterations, increased cancer-associated fibroblast (CAF) and myofibroblast (myoCAF) presence, and varied immune cell distribution, such as increased macrophage infiltration. Heterogeneous PD-L1 expression was observed across subsets, with macrophages showing the highest expression levels, but cancer cells as the primary potential anti-PD-L1 binding targets. Unbiased analysis revealed that myoCAF and M2-like macrophages are specifically enriched in high-grade NMIBC tumors. The topological distribution of these two cell types changed as NMIBC progresses, as shown by immunofluorescence. Only myoCAFs were associated with higher rates of progression and recurrence in three independent cohorts (888 total patients), reaching prediction values comparable to transcriptomic classes, which we further validated using tissue micro-array. Our study provides a roadmap to establish the landscape of the NMIBC TME, highlighting myoCAFs as potential prognostic markers.
Collapse
Affiliation(s)
- Carmen G Cañizo
- Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - Mercedes Perez Escavy
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Iris Lodewijk
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Lucía Morales
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Sandra P Nunes
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network) Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Ester Munera-Maravilla
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carolina Rubio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Rebeca Sánchez
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Jaime Martínez de Villarreal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Castellano
- Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - David Lora Pablos
- Scientific Support Unit, Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Marta Dueñas
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Victor G Martínez
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| |
Collapse
|
2
|
Pinto C, Widawski J, Zahalka S, Thaler B, Schuster LC, Lukowski SW, Ramírez F, Tirapu I. Cross-disease integration of single-cell RNA sequencing data from lung myeloid cells reveals TAM signature in in vitro model. Oncoimmunology 2025; 14:2502278. [PMID: 40448976 DOI: 10.1080/2162402x.2025.2502278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 06/02/2025] Open
Abstract
Advancements in single-cell RNA sequencing (scRNA-seq) have revealed the phenotypic and functional diversity of tumor-associated macrophages (TAMs), identifying specific populations that directly impact the antitumor response. However, despite the recognition of TAMs as promising therapeutic targets for cancer treatment, research is hindered by the lack of validated human preclinical models. Here, we applied scRNA-seq to a 3D human cell-based model comprising tumor cell line-derived spheroids, cancer-associated fibroblasts and primary monocytes, a setup widely used in immuno-oncology research. Integration of our in vitro data with publicly available patient-derived datasets showed that the macrophages in this model share phenotypic characteristics with the pro-angiogenic and pro-fibrotic SPP1+ TAM population recently found across multiple cancer types and inflammatory lung diseases. This population was linked to aspects of disease progression and associated with poor prognosis in several tumor indications, highlighting the need for relevant models enabling its study as an immunotherapy target. Our research validates the use of a 3D human cell-based culture as a more in vivo-relevant model and enables the preclinical testing of novel macrophage-targeting drugs in a human disease-relevant setup.
Collapse
Affiliation(s)
- Catarina Pinto
- Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Jakub Widawski
- Computational Innovation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sophie Zahalka
- Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Barbara Thaler
- Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Linda C Schuster
- Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Samuel W Lukowski
- Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Fidel Ramírez
- Computational Innovation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Iñigo Tirapu
- Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
3
|
Caracuel-Peramos R, Rodríguez-Baena FJ, Redondo-García S, Villatoro-García JA, García-Muñoz A, Peris-Torres C, Plaza-Calonge MDC, Rubio-Gayarre A, López-Millán B, Ricciardelli C, Russell DL, Carmona-Sáez P, Rodríguez-Manzaneque JC. Loss of the extracellular protease ADAMTS1 reveals an antitumorigenic program involving the action of NIDOGEN-1 on macrophage polarization. Oncoimmunology 2025; 14:2508057. [PMID: 40401531 PMCID: PMC12101600 DOI: 10.1080/2162402x.2025.2508057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/12/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
Recent research highlighted the contribution of extracellular matrix, and particularly of ADAMTS proteases, in immune regulation. Now, our work with melanoma and mammary tumor models revealed that tumor blockade induced by the lack of Adamts1 led to an increased vascular deposition of its substrate, the basement membrane glycoprotein NIDOGEN-1 (NID1). Significantly, the overexpression of NID1 in the melanoma syngeneic model also blocked tumor progression, disclosing an overlapping phenotype with the absence of Adamts1. These tumors showed important alterations in their immune infiltrates, emphasizing an enhanced presence of antitumorigenic macrophages and a global inflammatory landscape. We corroborated in vitro that full length NID1, but not its fragments, promoted an M1-like macrophage polarization, mainly mediated by the αvβ3 integrin. Significantly, the projection of RNA-seq from our tumor models to two large human melanoma datasets allowed us to discover a new gene signature associated with good prognosis and the abundance of M1-like macrophages. These results support NID1 as a novel tumor suppressor with immunomodulatory properties, and unveil the existence of key oncological drivers in the extracellular scenario.
Collapse
Affiliation(s)
- Rita Caracuel-Peramos
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
| | | | - Silvia Redondo-García
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
| | - Juan Antonio Villatoro-García
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Department of Statistics, University of Granada, Granada, Spain
| | - Ana García-Muñoz
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
| | - Carlos Peris-Torres
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
| | | | - Alba Rubio-Gayarre
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
| | - Belén López-Millán
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Carmela Ricciardelli
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Pedro Carmona-Sáez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Department of Statistics, University of Granada, Granada, Spain
| | | |
Collapse
|
4
|
Shen X, Zhang F, Tang C, Soković M, Mišić D, Xu H, Ye Y, Liu J. Advances in Sampling and Analytical Techniques for Single-Cell Metabolomics: Exploring Cellular Heterogeneity. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10045. [PMID: 40223194 DOI: 10.1002/rcm.10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Single-cell metabolomics is an emerging and powerful technology that uncovers intercellular heterogeneity and reveals microenvironmental dynamics in both physiological and pathological conditions. This technology enables detailed observations of cellular interactions, providing valuable insights into processes such as aging, immune responses, and disease development. Despite significant advances, the need for detailed discussions on sampling and analytical methods in single-cell metabolomics continues to grow, with increasing focus on selecting the most suitable techniques for diverse research objectives. This review addresses these challenges by exploring key sampling and analytical strategies used in single-cell metabolomics. We focus on three main approaches: the capture and isolation of specific cell types, the precise aspiration of individual cells, and in situ mass spectrometry imaging. These methods are critically assessed to highlight strategies for achieving accurate metabolite detection at the single-cell level across diverse research applications.
Collapse
Affiliation(s)
- Xinxin Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangyuan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Chunping Tang
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Marina Soković
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- China-Serbia "Belt and Road" Joint Laboratory for Natural Products and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
5
|
Sabit H, Adel A, Abdelfattah MM, Ramadan RM, Nazih M, Abdel-Ghany S, El-Hashash A, Arneth B. The role of tumor microenvironment and immune cell crosstalk in triple-negative breast cancer (TNBC): Emerging therapeutic opportunities. Cancer Lett 2025; 628:217865. [PMID: 40516902 DOI: 10.1016/j.canlet.2025.217865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 06/03/2025] [Accepted: 06/07/2025] [Indexed: 06/16/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by its lack of estrogen, progesterone, and HER2 receptors, leading to limited treatment options and poor prognosis. This review synthesizes current research on the tumor microenvironment (TME) and immune cell crosstalk in TNBC to identify emerging therapeutic opportunities. The TME in TNBC is a complex ecosystem comprising immune cells, fibroblasts, and extracellular matrix components, which significantly influence tumor growth and metastasis. Single-cell RNA sequencing reveals T-cell heterogeneity and identifies prognostic genes. Regulatory T cells (Tregs) play a key role in immunosuppression, with thymidine kinase-1 (TK1) identified as a potential therapeutic target. MUC1-C and CXCL9 modulate the TME, impacting T-cell depletion and macrophage differentiation. Spatial analysis highlights the importance of cell-to-cell interactions in predicting recurrence. Epithelial-mesenchymal transition (EMT) and thermogenesis also influence the TME, while epigenetic modifications, such as HDAC inhibition, can induce pyroptosis and enhance immune cell recruitment. Integrating genomic information with TME analysis is crucial for developing personalized treatments, considering racial disparities in immune infiltration. Emerging therapies targeting immune checkpoints, modulating Treg activity, and inducing pyroptosis hold promise for improving TNBC patient outcomes. Future research should focus on multi-omics data, spatial transcriptomics, and patient-derived models to refine therapeutic interventions.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, 3237101, Egypt.
| | - Amro Adel
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, 3237101, Egypt
| | - Mariam M Abdelfattah
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, 3237101, Egypt
| | - Rehab M Ramadan
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, 3237101, Egypt
| | - Mahmoud Nazih
- Al Ryada University for Science and Technology (RST), ElMehwar ElMarkazy-2, Cairo - Alex desert RD K92, Sadat City, 16504, Egypt; Scientific Office, Egyptian Society of Pharmacogenomics and Personalized Medicine (ESPM), Cairo, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, 3237101, Egypt
| | - Ahmed El-Hashash
- Elizabeth City State campus of the University of North Carolina (UNC), NC, 27909, USA
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, Marburg, 35043, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr 12, Giessen, 35392, Germany.
| |
Collapse
|
6
|
Dai W, Ko JMY, Yu VZ, Hou Z, Chow LKY, Chung MKY, Islam KA, Ng BHY, Wong CWY, Leung KK, Chen C, Wong IYH, Law SYK, Lo AWI, Lam AKY, Lung ML. Characterizing chromosome instability reveals its association with lipid-associated macrophages and clonal evolution of lymph node metastasis in esophageal squamous cell carcinoma. Cancer Lett 2025; 628:217874. [PMID: 40516322 DOI: 10.1016/j.canlet.2025.217874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 06/02/2025] [Accepted: 06/12/2025] [Indexed: 06/16/2025]
Abstract
Esophageal cancer is an aggressive cancer, and metastasis is one of the major factors contributing to treatment failure, leading to poor clinical outcomes. Chromosome instability (CIN) is frequently observed in esophageal squamous cell carcinoma (ESCC). However, the functional impact of CIN is not well studied in ESCC metastasis. We aim to study the role and underlying mechanisms of CIN in lymph node (LN) metastasis. Integrated analysis was performed using single-cell RNA sequencing data with matched whole-exome sequencing in primary ESCC, genomic sequencing in ESCC organoids and clinical specimens, and spatial protein profiling to characterize CIN and relevant tumor immune microenvironment (TIME) associated with LN metastasis. CIN in primary ESCC is significantly associated with LN metastasis at diagnosis, particularly in those patients with homologous recombination deficiency and use of alternative end joining (alt-EJ). Primary CIN ESCC exhibited increased epithelial-mesenchymal transition (EMT), hypoxia, angiogenesis, RNA metabolism, and heat stress, associated with a strong metastatic potential. Although CIN ESCC has elevated neoantigen loads, its TIME was enriched for immunosuppressive lipid-associated tumor-associated macrophages (LA-TAMs). Secreted phosphoprotein 1 (SPP1) plays a key role in mediating the communications of CIN ESCC cells and LA-TAMs. In LN metastases, structural CIN (sCIN) with retrotransposon insertion and reactivation is important for ESCC clonal evolution and cell proliferation, associated with increased LA-TAMs infiltration and poor overall patient survival. ESCC with high CIN has a strong metastatic potential. Our findings reveal a novel link between error-prone DSB repair pathways and LA-TAMs through CIN in LN metastasis.
Collapse
Affiliation(s)
- Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China.
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Michael King Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kazi Anisha Islam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bianca Hoi-Yan Ng
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ka-Kiu Leung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cancan Chen
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ian Yu Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Ying-Kit Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region of China
| | - Alfred King-Yin Lam
- Department of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Xing YL, Panovska D, Park JW, Grossauer S, Koeck K, Bui B, Nasajpour E, Nirschl JJ, Feng ZP, Cheung P, Habib P, Wei R, Wang J, Thomason W, Monje M, Xiu J, Beck A, Weber KJ, Harter PN, Lim M, Mahaney KB, Prolo LM, Grant GA, Ji X, Walsh KM, Mulcahy Levy JM, Hambardzumyan D, Petritsch CK. BRAF/MEK inhibition induces cell state transitions boosting immune checkpoint sensitivity in BRAF V600E-mutant glioma. Cell Rep Med 2025; 6:102183. [PMID: 40505659 DOI: 10.1016/j.xcrm.2025.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/28/2025] [Accepted: 05/16/2025] [Indexed: 06/18/2025]
Abstract
Resistance to v-raf murine sarcoma viral oncogene homolog B1 (BRAF) plus mitogen-activated protein kinase kinase (MEK) inhibition (BRAFi+MEKi) in BRAFV600E-mutant gliomas drives rebound, progression, and high mortality, yet it remains poorly understood. This study addresses the urgent need to develop treatments for BRAFi+MEKi-resistant glioma using preclinical mouse models and patient-derived materials. BRAFi+MEKi reveals glioma plasticity by heightening cell state transitions along glial differentiation trajectories, giving rise to astrocyte- and immunomodulatory oligodendrocyte (OL)-like states. PD-L1 upregulation in OL-like cells links cell state transitions to immune evasion, possibly orchestrated by Galectin-3. BRAFi+MEKi induces interferon response signatures, tumor infiltration, and suppression of T cells. Combining BRAFi+MEKi with immune checkpoint inhibition enhances survival in a T cell-dependent manner, reinvigorates T cells, and outperforms individual or sequential therapies in mice. Elevated PD-L1 expression in BRAF-mutant versus BRAF-wild-type glioblastoma supports the rationale for PD-1 inhibition in patients. These findings underscore the potential of targeting glioma plasticity and highlight combination strategies to overcome therapy resistance in BRAFV600E-mutant high-grade glioma.
Collapse
Affiliation(s)
- Yao Lulu Xing
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dena Panovska
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jong-Whi Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Life Sciences, Gachon University, Incheon 21999, South Korea
| | - Stefan Grossauer
- Vienna Medical Center, Medical University of Vienna, Vienna 1090, Austria
| | - Katharina Koeck
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Brandon Bui
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emon Nasajpour
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey J Nirschl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhi-Ping Feng
- The Australian National University Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Pierre Cheung
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pardes Habib
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruolun Wei
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jie Wang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wes Thomason
- Department of Oncological Sciences and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Monje
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joanne Xiu
- Medical Affairs, Caris Life Sciences Inc, Phoenix, AZ 85040, USA
| | - Alexander Beck
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Katharina J Weber
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute) and University Cancer Center (UCT), 60629 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60629 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly B Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura M Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Duke University, Durham, NC 27708, USA
| | - Xuhuai Ji
- Human Immune Monitoring Centre, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Walsh
- Division of Neuro-Epidemiology, Department of Neurosurgery, Duke University, Durham, NC 27708, USA
| | - Jean M Mulcahy Levy
- Morgan Adams Foundation Brain Tumor Research Program, Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claudia K Petritsch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Allgayer H, Mahapatra S, Mishra B, Swain B, Saha S, Khanra S, Kumari K, Panda VK, Malhotra D, Patil NS, Leupold JH, Kundu GC. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025. Mol Cancer 2025; 24:167. [PMID: 40483504 PMCID: PMC12144846 DOI: 10.1186/s12943-025-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 06/11/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial cellular process for embryogenesis, wound healing, and cancer progression. It involves a shift in cell interactions, leading to the detachment of epithelial cells and activation of gene programs promoting a mesenchymal state. EMT plays a significant role in cancer metastasis triggering tumor initiation and stemness, and activates metastatic cascades resulting in resistance to therapy. Moreover, reversal of EMT contributes to the formation of metastatic lesions. Metastasis still needs to be better understood functionally in its major but complex steps of migration, invasion, intravasation, dissemination, which contributes to the establishment of minimal residual disease (MRD), extravasation, and successful seeding and growth of metastatic lesions at microenvironmentally heterogeneous sites. Therefore, the current review article intends to present, and discuss comprehensively, the status quo of experimental models able to investigate EMT and metastasis in vitro and in vivo, for researchers planning to enter the field. We emphasize various methods to understand EMT function and the major steps of metastasis, including diverse migration, invasion and matrix degradation assays, microfluidics, 3D co-culture models, spheroids, organoids, or latest spatial and imaging methods to analyze complex compartments. In vivo models such as the chorionallantoic membrane (CAM) assay, cell line-derived and patient-derived xenografts, syngeneic, genetically modified, and humanized mice, are presented as a promising arsenal of tools to analyze intravasation, site specific metastasis, and treatment response. Furthermore, we give a brief overview on methods detecting dissemination and MRD in carcinomas, highlighting its significance in tracking the course of disease and response to treatment. Enhanced lineage tracking tools, dynamic in vivo imaging, and therapeutically useful in vivo models as powerful preclinical tools may still better reveal functional interdependencies between metastasis and EMT. Future directions are discussed in light of emerging views on the biology, diagnosis, and treatment of EMT and metastasis.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany.
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Nitin S Patil
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Shimizu K, Sanpei A, Nakazato H, Shinga J, Ueda S, Liu Y, Iyoda T, Yamasaki S, Nakabayashi J, Fujii SI. Distinct TAM subset with cross-dressing capability determines the bifurcation of tumor immunity. Cell Rep 2025; 44:115800. [PMID: 40489329 DOI: 10.1016/j.celrep.2025.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/01/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Tumor-associated macrophage (TAM) heterogeneity significantly influences the tumor microenvironment, positioning TAM inhibition as a promising anticancer strategy. Although several TAM subsets have been described, their functional roles remain unclear. In this study, we identified a distinct subset of CD9hiCD63hiCD206+Class IIlo hypoxic TAMs, located near tumors. These TAMs engage in trogocytosis, acquiring tumor membrane fragments, and cross-dress major histocompatibility complex (MHC)/tumor antigen epitopes. These processes facilitate their recognition by cytotoxic T lymphocytes, enhancing antitumor immune responses. We further found CH25H as a key regulator of TAM cross-dressing, with its inhibition associated with the activity of HIF1-α and VHL. These findings highlight the potential of modulating TAMs as an innovative immunotherapy strategy.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - An Sanpei
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Nakazato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Shinga
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Liu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Nakabayashi
- Institute of Science Tokyo, Institute of Liberal Arts, Mathematics, Tokyo, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
10
|
Aktay-Cetin Ö, Pullamsetti SS, Herold S, Savai R. Lung tumor immunity: redirecting macrophages through infection-induced inflammation. Trends Immunol 2025; 46:471-484. [PMID: 40382244 DOI: 10.1016/j.it.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
Macrophages play a central role in maintaining tissue homeostasis and in surveillance against pathogens and disease. In the lung, they can adopt either proinflammatory or anti-inflammatory states depending on the nature of the stimulus. As the predominant immune cells in both the lung tumor microenvironment and in sites of lung infection, the functional plasticity of macrophages makes them key players in determining disease outcome. Accurately defining their inflammatory profiles offers an opportunity to reprogram infection-associated macrophages towards enhanced tumor-killing phenotypes. This review explores how acute inflammation can drive macrophage-mediated antitumor immunity and highlights key molecules and signaling pathways that may be leveraged to therapeutically modulate macrophage function.
Collapse
Affiliation(s)
- Öznur Aktay-Cetin
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Department of Internal Medicine II, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Susanne Herold
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Department of Internal Medicine V, German Center for Lung Research (DZL), German Center for Infection Research (DZIF), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Department of Internal Medicine II, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.
| |
Collapse
|
11
|
Li D, Rudloff U. Emerging therapeutics targeting tumor-associated macrophages for the treatment of solid organ cancers. Expert Opin Emerg Drugs 2025:1-39. [PMID: 40353504 DOI: 10.1080/14728214.2025.2504376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Over the last decade, immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 or CTLA-4, which reinvigorate T cells for tumor control have become standard-of-care treatment options. In response to the increasingly recognized mechanisms of resistance to T cell activation in immunologically cold tumors, immuno-oncology drug development has started to shift beyond T cell approaches. These include tumor-associated macrophages (TAMs), a major pro-tumor immune cell population in the tumor microenvironment known to silence immune responses. AREAS COVERED Here we outline anti-TAM therapies in current development, either as monotherapy or in combination with other treatment modalities. We describe emerging drugs targeting TAMs under investigation in phase II and III testing with a focus on their distinguishing mechanism of action which include (1) reprogramming of TAMs toward anti-tumor function and immune surveillance, (2) blockade of recruitment, and (3) reduction and ablation of TAMs. EXPERT OPINION Several new immuno-oncology agents are under investigation to harness anti-tumor functions of TAMs. While robust anti-tumor efficacy of anti-TAM therapies across advanced solid organ cancers remains elusive to-date, TAM reprogramming therapies have yielded benefits in select cancers. The inherent heterogeneity of the diverse TAM population will require enhanced investments into biomarker-driven approaches to fully leverage its therapeutic potential.
Collapse
Affiliation(s)
- Dandan Li
- Developmental Therapeutics Branch (TDB), Biology Group, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Zhu X, Zhang L, Yu X, Yan P, Zhang X, Zhao Y, Wang D, Yang XA. Elucidating the tumor microenvironment interactions in breast, cervical, and ovarian cancer through single-cell RNA sequencing. Sci Rep 2025; 15:17846. [PMID: 40404741 PMCID: PMC12098903 DOI: 10.1038/s41598-025-03017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
This study aimed to identify the key cell types and their interactions in gynecological oncology of breast cancer, cervical cancer, and ovarian cancer. Single-cell RNA sequencing was performed on tumor samples of gynecological oncology from the GEO database. Cell types were identified using SingleR and cell composition was analyzed to understand the tumor microenvironment (TME). CellChat was used to analyze cell interactions, and pseudotemporal analysis was conducted on cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) to understand their differentiation status. Four CAF subtypes were identified: iCAF, myCAF, proCAF, and matCAF. The iCAF subpopulation secreted COL1A1 and promoted tumor cell migration, while myCAF was involved in angiogenesis. The matCAF subpopulation was present throughout tumor development. TAMs were found to promote angiogenesis through the VEGFA_VEGFR2 signaling pathway. CAFs and TAMs play pivotal roles in tumor progression through their interactions and signaling pathways.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Anyuan Road, Chengde, 067000, China
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Liang Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Yu
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Anyuan Road, Chengde, 067000, China
| | - Pengxian Yan
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Anyuan Road, Chengde, 067000, China
| | - Xiaoyu Zhang
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Anyuan Road, Chengde, 067000, China
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Yunlong Zhao
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Anyuan Road, Chengde, 067000, China
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Dongze Wang
- Clinical and Basic Medical College, Shandong First Medical University, Jinan, 250000, China
| | - Xiu-An Yang
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Anyuan Road, Chengde, 067000, China.
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
13
|
Meng C, Lin K, Shi W, Teng H, Wan X, DeBruine A, Wang Y, Liang X, Leo J, Chen F, Gu Q, Zhang J, Van V, Maldonado KL, Gan B, Ma L, Lu Y, Zhao D. Histone methyltransferase ASH1L primes metastases and metabolic reprogramming of macrophages in the bone niche. Nat Commun 2025; 16:4681. [PMID: 40394007 PMCID: PMC12092585 DOI: 10.1038/s41467-025-59381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Bone metastasis is a major cause of cancer death; however, the epigenetic determinants driving this process remain elusive. Here, we report that histone methyltransferase ASH1L is genetically amplified and is required for bone metastasis in men with prostate cancer. ASH1L rewires histone methylations and cooperates with HIF-1α to induce pro-metastatic transcriptome in invading cancer cells, resulting in monocyte differentiation into lipid-associated macrophage (LA-TAM) and enhancing their pro-tumoral phenotype in the metastatic bone niche. We identified IGF-2 as a direct target of ASH1L/HIF-1α and mediates LA-TAMs' differentiation and phenotypic changes by reprogramming oxidative phosphorylation. Pharmacologic inhibition of the ASH1L-HIF-1α-macrophages axis elicits robust anti-metastasis responses in preclinical models. Our study demonstrates epigenetic alterations in cancer cells reprogram metabolism and features of myeloid components, facilitating metastatic outgrowth. It establishes ASH1L as an epigenetic driver priming metastasis and macrophage plasticity in the bone niche, providing a bona fide therapeutic target in metastatic malignancies.
Collapse
Affiliation(s)
- Chenling Meng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Shi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinhai Wan
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anna DeBruine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Liang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Javier Leo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Feiyu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qianlin Gu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vivien Van
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kiersten L Maldonado
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Zhao R, Ding D, Bao M, Ding Y, Ding R, Liu J, Li Y, Zhu C. Effects of ER-phagy regulatory genes on the microenvironment of hepatocellular carcinoma: a comprehensive analysis. Discov Oncol 2025; 16:795. [PMID: 40381129 PMCID: PMC12085452 DOI: 10.1007/s12672-025-02649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025] Open
Abstract
The relationships between gene regulatory functions and hepatocellular carcinoma (HCC) occurrence and progression are constantly being clarified. However, tumour microenvironment complexity has hindered the classification of the role of genes. A comprehensive analysis to further clarify gene functions could provide additional benefits to HCC patients. In the present study, we combined single-cell sequencing data, Mendelian randomization, and bioinformatics analysis for comprehensive analysis. After the study was completed we found that T cell, dendritic cell (DC), macrophage and monocyte contents and the interaction between immune cells in the HCC microenvironment differed between the microvascular invasion-positive (MVI +) and microvascular invasion-negative (MVI-) groups. Mendelian randomization analysis indicated that causal relationships between several endoplasmic reticulum autophagy (ER-phagy) genes and T cell, DC, macrophage and monocyte contents. Single-cell sequencing data were used to validate the association of these genes with immune cells in the microenvironment. Based on the above results, we preliminarily elucidated the potential role of ER autophagy in the HCC microenvironment. Furthermore, a prognostic model was constructed using these causal association genes, which could accurately predict the prognosis and survival of HCC patients.
Collapse
Affiliation(s)
- Rongchang Zhao
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Dan Ding
- Department of Intensive Care Unit, Taixing People's Hospital, Taixing, China
| | - Minhui Bao
- Department of Intensive Care Unit, Taixing People's Hospital, Taixing, China.
| | - Yan Ding
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Rongjie Ding
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Jun Liu
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Yu Li
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Chunrong Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Ogden S, Metic N, Leylek O, Smith EA, Berner AM, Baker AM, Uddin I, Buzzetti M, Gerlinger M, Graham T, Kocher HM, Efremova M. Phenotypic heterogeneity and plasticity in colorectal cancer metastasis. CELL GENOMICS 2025:100881. [PMID: 40393458 DOI: 10.1016/j.xgen.2025.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Phenotypic heterogeneity and plasticity in colorectal cancer (CRC) has a crucial role in tumor progression, metastasis, and therapy resistance. However, the regulatory factors and the extrinsic signals driving phenotypic heterogeneity remain unknown. Using a combination of single-cell multiomics and spatial transcriptomics data from primary and metastatic CRC patients, we reveal cancer cell states with regenerative and inflammatory phenotypes that closely resemble metastasis-initiating cells in mouse models. We identify an intermediate population with a hybrid regenerative and stem phenotype. We reveal the transcription factors AP-1 and nuclear factor κB (NF-κB) as their key regulators and show localization of these states in an immunosuppressive niche both at the invasive edge in primary CRC and in liver metastasis. We uncover ligand-receptor interactions predicted to activate the regenerative and inflammatory phenotype in cancer cells. Together, our findings reveal regulatory and signaling factors that mediate distinct cancer cell states and can serve as potential targets to impair metastasis.
Collapse
Affiliation(s)
- Samuel Ogden
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nasrine Metic
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ozen Leylek
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Elise A Smith
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alison M Berner
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Imran Uddin
- CRUK City of London Centre Single Cell Genomics Facility, University College London, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mirjana Efremova
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
16
|
Gholamin S, Natri HM, Zhao Y, Xu S, Aftabizadeh M, Comin-Anduix B, Saravanakumar S, Masia C, Wong RA, Peter L, Chung MI, Mee ED, Aguilar B, Starr R, Torrejon DY, Alizadeh D, Wu X, Kalbasi A, Ribas A, Forman S, Badie B, Banovich N, Brown C. Overcoming myeloid-driven resistance to CAR T therapy by targeting SPP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646202. [PMID: 40236117 PMCID: PMC11996542 DOI: 10.1101/2025.04.01.646202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chimeric antigen receptor CAR T cell therapy faces notable limitations in treatment of solid tumors. The suppressive tumor microenvironment TME, characterized by complex interactions among immune and stromal cells, is gaining recognition in conferring resistance to CAR T cell therapy. Despite the abundance and diversity of macrophages in the TME, their intricate involvement in modulating responses to CAR T cell therapies remains poorly understood. Here, we conducted single-cell RNA sequencing scRNA seq on tumors from 41 glioma patients undergoing IL13Ra2-targeted CAR T cell therapy, identifying elevated suppressive SPP1 signatures predominantly in macrophages from patients who were resistant to treatment. Further integrative scRNA seq analysis of high-grade gliomas as well as an interferon-signaling deficient syngeneic mouse model both resistant to CAR T therapy demonstrated the role of congruent suppressive pathways in mediating resistance to CAR T cells and a dominant role for SPP1+ macrophages. SPP1 blockade with an anti-SPP1 antibody abrogates the suppressive TME effects and substantially prolongs survival in IFN signaling-deficient and glioma syngeneic mouse models resistant to CAR T cell therapy. These findings illuminate the role of SPP1+ macrophages in fueling a suppressive TME and driving solid tumor resistance to CAR cell therapies. Targeting SPP1 may serve as a universal strategy to reprogram immune dynamics in solid tumors mitigating resistance to CAR T therapies.
Collapse
|
17
|
Rannikko JH, Turpin R, Boström P, Virtakoivu R, Harth C, Takeda A, Tamminen A, Koskivuo I, Hollmén M. Macrophage sensitivity to bexmarilimab-induced reprogramming is shaped by the tumor microenvironment. J Immunother Cancer 2025; 13:e011292. [PMID: 40379271 PMCID: PMC12083384 DOI: 10.1136/jitc-2024-011292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/26/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) adapt to the tumor microenvironment (TME), either aiding cancer eradication or promoting tumor growth and immune evasion. To manipulate TAMs therapeutically, a deep understanding of their interaction with the TME is essential. This study explores the responsiveness of TMEs to bexmarilimab, a macrophage reprogramming therapy showing clinical benefit in various solid tumors. METHODS We exploited a breast cancer patient-derived explant culture (PDEC) model to characterize bexmarilimab responses in both tumor and adjacent cancer-free tissues by RNA sequencing and multiplex cytokine profiling. Using single-cell RNA sequencing, spatial transcriptomics, and conditioned media treatment, we further investigated the effects of Clever-1+ macrophages and TME features on bexmarilimab sensitivity. RESULTS The PDEC model captured key aspects of bexmarilimab's mode of action and validated a gene signature for determining treatment sensitivity. We identified three distinct responses to bexmarilimab in tumors and adjacent cancer-free tissues, shaped by the local microenvironment and macrophage phenotype, origin, and localization. The inflammatory state of the TME emerged as the primary determinant of response. Immune activation occurred in immunologically cold TMEs lacking late-stage activated TAMs, whereas interferon-regulated TMEs exhibited suppressed inflammation. In cancer-free breast tissue, bexmarilimab activated B cell responses independent of treatment sensitivity in the adjacent tumor. CONCLUSIONS These findings reveal the complexity of TAM targeting in cancer and emphasize the need for patient selection to maximize bexmarilimab's efficacy.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Rita Turpin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Pia Boström
- Department of Pathology, TYKS Turku University Hospital, Turku, Finland
| | - Reetta Virtakoivu
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Chantal Harth
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Anselm Tamminen
- Department of Plastic and General Surgery, TYKS Turku University Hospital, Turku, Finland
| | - Ilkka Koskivuo
- Department of Plastic and General Surgery, TYKS Turku University Hospital, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Peng G, Li B, Han H, Yuan Y, Mishra F, Huang Y, Liu ZR. Extracellular PKM2 modulates cancer immunity by regulating macrophage polarity. Cancer Immunol Immunother 2025; 74:195. [PMID: 40343475 PMCID: PMC12064527 DOI: 10.1007/s00262-025-04050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025]
Abstract
Tumor controls its immunity by educating its microenvironment, including regulating polarity of tumor associated macrophages. It is well documented that cancer cells release PKM2 to facilitate tumor progression. We report here that the extracellular PKM2 (EcPKM2) modulates tumor immunity by facilitating M2 macrophage polarization in tumors. EcPKM2 interacts with integrin αvβ3 on macrophage to activate integrin-FAK-PI3K signal axis. Activation of FAK-PI3K by EcPKM2 suppresses PTEN expression, which subsequently upregulates arginase1 (Arg1) expression and activity in macrophage to facilitate M2 polarity. Our studies uncover a novel and important mechanism for modulation of tumor immunity. More importantly, an antibody against PKM2 that disrupts the interaction between EcPKM2 and integrin αvβ3 is effective in converting M2 macrophages to M1 macrophages in tumors, suggesting a new therapeutic strategy and target for cancer therapies. Combination of the anti-PKM2 antibody with checkpoint blockades provides enhanced treatment effects.
Collapse
Affiliation(s)
- Guangda Peng
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Hongwei Han
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Falguni Mishra
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Yang Huang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA.
| |
Collapse
|
19
|
Barrio-Alonso C, Nieto-Valle A, Barandalla-Revilla L, Avilés-Izquierdo JA, Parra-Blanco V, Sánchez-Mateos P, Samaniego R. Translating genetics into tissue: inflammatory cytokine-producing TAMs and PD-L1 tumor expression as poor prognosis factors in cutaneous melanoma. Front Immunol 2025; 16:1587545. [PMID: 40406129 PMCID: PMC12095150 DOI: 10.3389/fimmu.2025.1587545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
Myeloid cells within tumor microenvironments exhibit significant heterogeneity and play a critical role in influencing clinical outcomes. In this study, we investigated the infiltration of various myeloid cell subtypes in a cohort of cutaneous melanomas, revealing no significant correlation between myeloid cell densities and the occurrence of distant metastasis. We further examined the phenotypic characteristics of primary melanoma tumor-associated macrophages (TAMs) utilizing the seven-phenotype classification recently proposed by Ma et al., derived from extensive pan-cancer single-cell RNA-sequencing studies. First, we analyzed the transcriptomic profile of TAMs isolated from stage IV metastasizing primary melanomas, alongside melanoma-conditioned monocytes cultured in vitro, both supporting the inflammatory cytokine-producing macrophage phenotype. Next, we employed multicolor fluorescence confocal microscopy, to assess the expression of TAM phenotype markers at the protein level in a cohort of primary melanoma samples. Notably, markers indicative of the inflammatory TAM phenotype, quantified at single-cell level, were significantly enriched in metastasizing tumors, demonstrating an independent correlation with shorter disease-free and overall survival (log-rank test, p< 0.0002). Additionally, our screening of phenotype markers expression revealed that PD-L1 positivity in tumor cells, rather than in TAMs, was associated with poor prognosis, highlighting a novel aspect of the immune landscape in cutaneous melanoma.
Collapse
Affiliation(s)
- Celia Barrio-Alonso
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alicia Nieto-Valle
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Inmunología, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Barandalla-Revilla
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Verónica Parra-Blanco
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Inmunología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
20
|
Bai X, Guo YR, Zhao ZM, Li XY, Dai DQ, Zhang JK, Li YS, Zhang CD. Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies. Cancer Lett 2025; 625:217772. [PMID: 40324582 DOI: 10.1016/j.canlet.2025.217772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Macrophages are innate immune cells distributed throughout the body that play vital roles in organ development, tissue homeostasis, and immune surveillance. Macrophages acquire a binary M1/M2 polarized phenotype through signaling cascades upon sensing different signaling molecules in the environment, thereby playing a core role in a series of immune tasks, rendering precise regulation essential. M1/M2 macrophage phenotypes regulate inflammatory responses, while controlled activation of inflammatory signaling pathways is involved in regulating macrophage polarization. Among the relevant signaling pathways, we focus on the six well-characterized NF-κB, MAPK, JAK-STAT, PI3K/AKT, inflammasome, and cGAS-STING inflammatory pathways, and elucidate their roles and crosstalk in macrophage polarization. Furthermore, the effects of many environmental signals that influence macrophage polarization are investigated by modulating these pathways in vivo and in vitro. We thus detail the physiological and pathophysiological status of these six inflammatory signaling pathways and involvement in regulating macrophage polarization in cancer and beyond, as well as describe potential therapeutic approaches targeting these signaling pathways. In this review, the latest research advances in inflammatory signaling pathways regulating macrophage polarization are reviewed, as targeting these inflammatory signaling pathways provides suitable strategies to intervene in macrophage polarization and various tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Xiao Bai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yun-Ran Guo
- Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhe-Ming Zhao
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jia-Kui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yong-Shuang Li
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Chun-Dong Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
21
|
Chen R, Li Y, Zuo L, Xiong H, Sun R, Song X, Liu H. Astragalus polysaccharides inhibits tumor proliferation and enhances cisplatin sensitivity in bladder cancer by regulating the PI3K/AKT/FoxO1 axis. Int J Biol Macromol 2025; 311:143739. [PMID: 40318719 DOI: 10.1016/j.ijbiomac.2025.143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Cisplatin (DDP) resistance presents a major challenge in bladder cancer (BLCA) treatment. Recent evidence suggests that Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, may sensitize tumors to DDP. However, the precise mechanisms by which APS modulates DDP sensitivity in BLCA are not fully elucidated. The study employed computational biology, bioinformatics, and both in vitro and in vivo experiments to explore the role of APS in BLCA. The results demonstrate that APS inhibits BLCA cell proliferation, induces apoptosis in vitro, and suppresses tumor growth in vivo. Additionally, APS induces G0/G1 cell cycle arrest in BLCA cells by downregulating CCND1 expression. Moreover, APS further enhances DDP-induced apoptosis by downregulating PI3K-p110β and p-AKT expression, while upregulating FoxO1 expression. Bioinformatics analysis indicates that APS may remodel the tumor microenvironment (TME) and influence cell-cell interactions, specifically through modulation of macrophage M2 polarization and CD8+ T cell exhaustion, thereby overcoming DDP resistance. In conclusion, APS potentiates DDP-induced apoptosis in BLCA cells via the PI3K/AKT/FoxO1 axis and may act as an immunomodulator to remodel the TME, offering a potential strategy to combat DDP resistance in BLCA.
Collapse
Affiliation(s)
- Ruiqi Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Yutong Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524003, China
| | - Hong Xiong
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Ruixu Sun
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Xingyu Song
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Hongwei Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China.
| |
Collapse
|
22
|
Karimova AF, Khalitova AR, Suezov R, Markov N, Mukhamedshina Y, Rizvanov AA, Huber M, Simon HU, Brichkina A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur J Cancer 2025; 220:115332. [PMID: 40048925 DOI: 10.1016/j.ejca.2025.115332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment (TME), actively contributing to the formation of an immunosuppressive niche that fosters tumor progression. Consequently, there has been a growing interest in targeting TAMs as a promising avenue for cancer therapy. Recent advances in the field of immunometabolism have shed light on the influence of metabolic adaptations on macrophage physiology in the context of cancer. Here, we discuss the key metabolic pathways that shape the phenotypic diversity of macrophages. We place special emphasis on how metabolic reprogramming impacts the activation status of TAMs and their functions within the TME. Additionally, we explore alterations in TAM metabolism and their effects on phagocytosis, production of cytokines/chemokines and interaction with cytotoxic T and NK immune cells. Moreover, we examine the application of nanomedical approaches to target TAMs and assess the clinical significance of modulating the metabolism of TAMs as a strategy to develop new anti-cancer therapies. Taken together, in this comprehensive review article focusing on TAMs, we provide invaluable insights for the development of effective immunotherapeutic strategies and the enhancement of clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Adelya F Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya R Khalitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roman Suezov
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
23
|
Mavuluri J, Dhungana Y, Jones LL, Bhatara S, Shi H, Yang X, Lim SE, Reyes N, Chi H, Yu J, Geiger TL. GPR65 Inactivation in Tumor Cells Drives Antigen-Independent CAR T-cell Resistance via Macrophage Remodeling. Cancer Discov 2025; 15:1018-1036. [PMID: 39998425 PMCID: PMC12046320 DOI: 10.1158/2159-8290.cd-24-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
SIGNIFICANCE The study identifies GPR65 as an important determinant of B-cell acute lymphoblastic leukemia response to CAR T-cell therapy. Notably, GPR65 absence signals CAR T resistance. By emphasizing the therapeutic potential of targeting VEGFA or host macrophages, our study identifies routes to optimize CAR T-cell therapy outcomes in hematologic malignancies via tumor microenvironment manipulation.
Collapse
Affiliation(s)
- Jayadev Mavuluri
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lindsay L. Jones
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Song-Eun Lim
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Noemi Reyes
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hongbo Chi
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Terrence L. Geiger
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
24
|
Su Z, Yeung MCF, Han S, Yau RCH, Lam YL, Ho KWY, Shek TW, Shi F, Feng S, Chen H, Ho JWK, Xu Z, Cheung JPY, Cheung KSC. Denosumab Enhances Antitumor Immunity by Suppressing SPP1 and Boosting Cytotoxic T Cells. Cancer Immunol Res 2025; 13:646-660. [PMID: 40009710 DOI: 10.1158/2326-6066.cir-24-1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
Denosumab, a RANK ligand inhibitor, is primarily used to prevent osteoclastogenesis in the treatment of conditions such as osteoporosis, bone metastasis, and giant cell tumor of bone (GCTB). RANK ligand also plays an important role in immunity by activating NF-κB and its target genes, including the osteopontin-coding gene SPP1 (also known as OPN), which is linked to CXCL9:SPP1 macrophage polarization and prognosis. In this study, we explored an additional role of denosumab in enhancing antitumor immunity in patients. Single-cell RNA sequencing was performed on nine human GCTB samples, including six untreated and three treated only with denosumab, to exclude confounding treatment factors linked with bone metastasis samples. We further analyzed paired samples collected before and after denosumab treatment from a cohort of nine patients with GCTB and conducted a pan-cancer analysis of 34 distinct types of cancers. Our single-cell analysis of GCTB resulted in a comprehensive cell atlas revealing an antitumor role of denosumab in inhibiting SPP1 expression and augmenting active cytotoxic T-cell abundance. Furthermore, we validated this immunomodulatory role of denosumab using the paired GCTB samples. Finally, the pan-cancer analysis supported a negative correlation between SPP1 and CD8A levels, with the CD8A:SPP1 ratio correlating with overall survival in 14 cancer types, which was superior to either CD8A or SPP1 alone. Our research provides clinical evidence that denosumab improves antitumor immunity by decreasing SPP1 expression and enhancing cytotoxic T-cell activity, serving as a milestone in the development of innovative use of denosumab and offering potential benefits to patients with elevated levels of SPP1.
Collapse
Affiliation(s)
- Zezhuo Su
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maximus Chun Fai Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shan Han
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Ching Hing Yau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Lee Lam
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Wai Yip Ho
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tony Wai Shek
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Feng Shi
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuang Feng
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongtai Chen
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Zhiyuan Xu
- Oncology Medical Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kelvin Sin Chi Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
25
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025; 22:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
26
|
Hui T, Zhou J, Yao M, Xie Y, Zeng H. Advances in Spatial Omics Technologies. SMALL METHODS 2025; 9:e2401171. [PMID: 40099571 DOI: 10.1002/smtd.202401171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Rapidly developing spatial omics technologies provide us with new approaches to deeply understanding the diversity and functions of cell types within organisms. Unlike traditional approaches, spatial omics technologies enable researchers to dissect the complex relationships between tissue structure and function at the cellular or even subcellular level. The application of spatial omics technologies provides new perspectives on key biological processes such as nervous system development, organ development, and tumor microenvironment. This review focuses on the advancements and strategies of spatial omics technologies, summarizes their applications in biomedical research, and highlights the power of spatial omics technologies in advancing the understanding of life sciences related to development and disease.
Collapse
Affiliation(s)
- Tianxiao Hui
- State Key Laboratory of Gene Function and Modulation Research, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Zhou
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Muchen Yao
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yige Xie
- School of Nursing, Peking University, Beijing, 100871, China
| | - Hu Zeng
- State Key Laboratory of Gene Function and Modulation Research, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025; 46:403-415. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
28
|
Chen S, Wang Y, Dang J, Song N, Chen X, Wang J, Huang GN, Brown CE, Yu J, Weissman IL, Rosen ST, Feng M. CAR macrophages with built-In CD47 blocker combat tumor antigen heterogeneity and activate T cells via cross-presentation. Nat Commun 2025; 16:4069. [PMID: 40307254 PMCID: PMC12043996 DOI: 10.1038/s41467-025-59326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Macrophage-based cancer cellular therapy has gained substantial interest. However, the capability of engineered macrophages to target cancer heterogeneity and modulate adaptive immunity remains unclear. Here, exploiting the myeloid antibody-dependent cellular phagocytosis biology and phagocytosis checkpoint blockade, we report the enhanced synthetic phagocytosis receptor (eSPR) that integrate FcRγ-driven phagocytic chimeric antigen receptors (CAR) with built-in secreted CD47 blockers. The eSPR engineering empowers macrophages to combat tumor antigen heterogeneity. Transduced by adenoviral vectors, eSPR macrophages are intrinsically pro-inflammatory imprinted and resist tumoral polarization. Transcriptomically and phenotypically, eSPR macrophages elicit a more favorable tumor immune landscape. Mechanistically, eSPR macrophages in situ stimulate CD8 T cells via phagocytosis-dependent antigen cross-presentation. We also validate the functionality of the eSPR system in human primary macrophages.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nuozi Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Christine E Brown
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Steven T Rosen
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
29
|
Sun J, Zhou S, Sun Y, Zeng Y. The clinical significance and potential therapeutic target of tumor-associated macrophage in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1541104. [PMID: 40370720 PMCID: PMC12076932 DOI: 10.3389/fmed.2025.1541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
One of the leading causes of cancer-related mortality globally is non-small cell lung cancer (NSCLC). It has become a significant public health concern due to its rising incidence rate and fatality. Tumor-associated macrophage (TAM) is important in the tumor microenvironment (TME) of NSCLC because they have an impact on the development, metastasis, and incidence of tumors. As a crucial element of the TME, TAM contributes to tumor immune evasion, facilitates tumor proliferation and metastasis, and modulates tumor angiogenesis, immunosuppression, and treatment resistance through the secretion of diverse cytokines, chemokines, and growth factors. Consequently, TAM assumes a multifaceted and intricate function in the onset, progression, and therapeutic response of NSCLC, serving as a crucial focal point for comprehending the tumor microenvironment and formulating novel therapeutic methods. The study aims to review the biological properties and potential processes of TAM in NSCLC, investigate its involvement in the clinical of NSCLC patients, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiazheng Sun
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sirui Zhou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalu Sun
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Yulan Zeng
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Sheng R, Yin Y, Wang X. Mesothelial and immune cells interplay in the tumor microenvironment. Trends Mol Med 2025:S1471-4914(25)00086-3. [PMID: 40307075 DOI: 10.1016/j.molmed.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/21/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025]
Abstract
Mesothelial cells (MCs) constitute a dynamic mesothelium in which their numerous crucial functions synergistically interact with other cells to maintain serosal integrity and homeostasis. Previous studies have confirmed the crucial role of interactions between MCs and tumor cells in tumorigenesis and progression in the tumor microenvironment (TME). However, recent research has found that MCs can induce an immunosuppressive microenvironment by secreting various cytokines, chemokines, and exosomes which recruit immunosuppressive cells or interact with immune cells, thus contributing to tumor progression. This review primarily examines the immunoregulatory role of MCs in the TME of mesothelioma and metastatic pleural and peritoneal carcinomas. It also explores the potential mechanisms by which these interactions induce immunosuppression and their impact on tumor growth and therapy.
Collapse
Affiliation(s)
- Rong Sheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
31
|
Ma Z, Wang Y, Wang W, Wei C, Liu Z, Li Z, Ye Y, Mao Y, Yuan Y, Huang Z, Zhang J, Cao Y, Mao X, Zhang Y, Jin X, Yin J, Li G, Zheng L, Liu Z, Li X, Liang X, Liu Z. Targeting VSIG4 + tissue-resident macrophages enhances T cell cytotoxicity and immunotherapy efficacy in cancer. Dev Cell 2025:S1534-5807(25)00249-7. [PMID: 40339578 DOI: 10.1016/j.devcel.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/23/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025]
Abstract
Tissue-resident macrophage (TRM) is crucial for organ development and homeostasis. However, the role of TRM-derived tumor-associated macrophage (TAM) subpopulations in cancer remains unclear. Using single-cell RNA sequencing and lineage tracing, we reported a TRM-derived TAM subpopulation, characterized by VSIG4 overexpression in testicular cancer. Macroscopically, such subpopulation was also found in tumors such as hepatocellular carcinoma, lung cancer, and glioblastoma. It was associated with poor prognosis and the suppression of CD8+ T-cell-dependent immunity via VSIG4. Notably, VSIG4 promoted immunosuppressive effects through direct or indirect modes, including interacting with receptors on CD8+ T cells or inducing transcription of IL-11 in TAMs. More importantly, MEF2C was identified as a key transcription factor that maintained VSIG4 expression and determined the biological behaviors of VSIG4+ TAMs. In preclinical models, targeting VSIG4+ TAMs via VSIG4 or MEF2C demonstrated a favorable effect of enhancing the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zikun Ma
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Yuzhao Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Weikai Wang
- BGI Research, Chongqing 401329, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wei
- BGI Research, Chongqing 401329, China
| | - Zhenhua Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhiyong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yunlin Ye
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yize Mao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yunfei Yuan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhenkun Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Ji Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yun Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Xiaopeng Mao
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Guibo Li
- BGI Research, Chongqing 401329, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Limin Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangdong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Xiaoyu Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, China.
| |
Collapse
|
32
|
Timosenko E, Gabrilovich DI. Regulating the fate of tumor-associated macrophages. Cancer Cell 2025:S1535-6108(25)00165-5. [PMID: 40345187 DOI: 10.1016/j.ccell.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Tumor-associated macrophages (TAMs) are key players in tumor progression, yet their role in this process remains only partially understood. In this issue of Cancer Cell, Sheban et al. demonstrate that zinc finger E-box-binding homeobox 2 (ZEB2) acts as a master regulator that reprograms TAMs toward a pro-tumor phenotype and that therapeutic targeting of ZEB2 exhibits anti-tumor activity.
Collapse
|
33
|
Liu L, Zhang S, Ren Y, Wang R, Zhang Y, Weng S, Zhou Z, Luo P, Cheng Q, Xu H, Ba Y, Zuo A, Liu S, Liu Z, Han X. Macrophage-derived exosomes in cancer: a double-edged sword with therapeutic potential. J Nanobiotechnology 2025; 23:319. [PMID: 40287762 PMCID: PMC12034189 DOI: 10.1186/s12951-025-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Solid cancer contains a complicated communication network between cancer cells and components in the tumor microenvironment (TME), significantly influencing the progression of cancer. Exosomes function as key carriers of signaling molecules in these communications, including the intricate signalings of tumor-associated macrophages (TAMs) on cancer cells and the TME. With their natural lipid bilayer structures and biological activity that relates to their original cell, exosomes have emerged as efficient carriers in studies on cancer therapy. Intrigued by the heterogeneity and plasticity of both macrophages and exosomes, we regard macrophage-derived exosomes in cancer as a double-edged sword. For instance, TAM-derived exosomes, educated by the TME, can promote resistance to cancer therapies, while macrophage-derived exosomes generated in vitro have shown favorable potential in cancer therapy. Here, we depict the reasons for the heterogeneity of TAM-derived exosomes, as well as the manifold roles of TAM-derived exosomes in cancer progression, metastasis, and resistance to cancer therapy. In particular, we emphasize the recent advancements of modified macrophage-derived exosomes in diverse cancer therapies, arguing that these modified exosomes are endowed with unique advantages by their macrophage origin. We outline the challenges in translating these scientific discoveries into clinical cancer therapy, aiming to provide patients with safe and effective treatments.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Siying Zhang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruizhi Wang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
34
|
Hu W, Chen ZM, Wang Y, Yang C, Wu ZY, You LJ, Zhai ZY, Huang ZY, Zhou P, Huang SL, Li XX, Yang GH, Bao CJ, Cui XB, Xia GL, Ou Yang MP, Zhang L, Wu WKK, Li LF, Tan LK, Zhang YX, Gong W. Single-cell RNA sequencing dissects the immunosuppressive signatures in Helicobacter pylori-infected human gastric ecosystem. Nat Commun 2025; 16:3903. [PMID: 40281037 PMCID: PMC12032416 DOI: 10.1038/s41467-025-59339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Helicobacter pylori (H. pylori) manipulates the host immune system to establish a persistent colonization, posing a serious threat to human health, but the mechanisms remain poorly understood. Here we integrate single-cell RNA sequencing and TCR profiling for analyzing 187,192 cells from 11 H. pylori-negative and 12 H. pylori-positive individuals to describe the human gastric ecosystem reprogrammed by H. pylori infection, as manifested by impaired antigen presentation and phagocytosis function. We further delineate a monocyte-to-C1QC+ macrophage differentiation trajectory driven by H. pylori infection, while T cell responses exhibit broad functional impairment and hyporesponsiveness with restricted clonal expansion capacity. We also identify an HLA-DRs- and CTLA4-expressing T cell population residing in H. pylori-inhabited stomach that potentially contribute to immune evasion. Together, our findings provide single-cell resolution information into the immunosuppressive microenvironment shaped by H. pylori infection, offering critical insights for developing novel therapeutic approaches to eliminate this globally prevalent pathogen.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Chao Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zi Ying Wu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Lin Huang
- Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Long Fei Li
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Li Kai Tan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Xuan Zhang
- Department of Pharmacology and Therapeutics, King's College London, London, UK
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
35
|
Zhang G, Yu H, Liu J, Dong G, Cai Z. Myeloid-lineage-specific membrane protein LRRC25 suppresses immunity in solid tumor and is a potential cancer immunotherapy checkpoint target. Cell Rep 2025; 44:115631. [PMID: 40279244 DOI: 10.1016/j.celrep.2025.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 04/27/2025] Open
Abstract
Leucine-rich repeat containing 25 (LRRC25), a type I membrane protein, is specifically expressed in myeloid cells including neutrophils and macrophages. The anti-inflammatory role of LRRC25 was suggested in a few pathogenic models. However, its role in cancer immunity has not been interrogated. Here, we demonstrate that LRRC25 is robustly expressed in tumor-associated macrophages (TAMs). Lrrc25 deficiency in the tumor microenvironment (TME) suppresses growth of multiple murine tumor models by reprogramming TAMs toward an anti-tumor phenotype and thereby enhancing infiltration and activation of CD8+ T cells. The Nox2-ROS-Nlrp3-Il1β pathway is elevated in Lrrc25-deficient TAMs. Furthermore, a human myeloid cell line or mice with loss of Lrrc25 appear normal, indicating that LRRC25 is a safe immune target. Our results suggest that as an unappreciated immune checkpoint for tumor immunotherapy, the myeloid-specific membrane protein LRRC25 orchestrates the activity of TAMs via the canonical Nlrp3-IL1β inflammatory pathway and influences CD8+ T cell chemotaxis to the TME.
Collapse
Affiliation(s)
- Guorong Zhang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hanzhi Yu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ge Dong
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zhigang Cai
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| |
Collapse
|
36
|
Pei G, Min J, Rajapakshe KI, Branchi V, Liu Y, Selvanesan BC, Thege F, Sadeghian D, Zhang D, Cho KS, Chu Y, Dai E, Han G, Li M, Yee C, Takahashi K, Garg B, Tiriac H, Bernard V, Semaan A, Grem JL, Caffrey TC, Burks JK, Lowy AM, Aguirre AJ, Grandgenett PM, Hollingsworth MA, Guerrero PA, Wang L, Maitra A. Spatial mapping of transcriptomic plasticity in metastatic pancreatic cancer. Nature 2025:10.1038/s41586-025-08927-x. [PMID: 40269162 DOI: 10.1038/s41586-025-08927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Patients with treatment-refractory pancreatic cancer often succumb to systemic metastases1-3; however, the transcriptomic heterogeneity that underlies therapeutic recalcitrance remains understudied, particularly in a spatial context. Here we construct high-resolution maps of lineage states, clonal architecture and the tumour microenvironment (TME) using spatially resolved transcriptomics from 55 samples of primary tumour and metastases (liver, lung and peritoneum) collected from rapid autopsies of 13 people. We observe discernible transcriptomic shifts in cancer-cell lineage states as tumours transition from primary sites to organ-specific metastases, with the most pronounced intra-patient distinctions between liver and lung. Phylogenetic trees constructed from inferred copy number variations in primary and metastatic loci in each patient highlight diverse patient-specific evolutionary trajectories and clonal dissemination. We show that multiple tumour lineage states co-exist in each tissue, including concurrent metastatic foci in the same organ. Agnostic to tissue site, lineage states correlate with distinct TME features, such as the spatial proximity of TGFB1-expressing myofibroblastic cancer-associated fibroblasts (myCAFs) to aggressive 'basal-like' cancer cells, but not to cells in the 'classical' or 'intermediate' states. These findings were validated through orthogonal and cross-species analyses using mouse tissues and patient-derived organoids. Notably, basal-like cancer cells aligned with myCAFs correlate with plasma-cell exclusion from the tumour milieu, and neighbouring cell analyses suggest that CXCR4-CXCL12 signalling is the underlying basis for observed immune exclusion. Collectively, our findings underscore the profound transcriptomic heterogeneity and microenvironmental dynamics that characterize treatment-refractory pancreatic cancer.
Collapse
Affiliation(s)
- Guangsheng Pei
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jimin Min
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal I Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vittorio Branchi
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benson Chellakkan Selvanesan
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fredrik Thege
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dorsay Sadeghian
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kazuki Takahashi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bharti Garg
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Herve Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Vincent Bernard
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Semaan
- Department of Surgery, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jean L Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jared K Burks
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paola A Guerrero
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
- James P. Allison Institute, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
37
|
Saris J, Li Yim AYF, Bootsma S, Lenos KJ, Franco Fernandez R, Khan HN, Verhoeff J, Poel D, Mrzlikar NM, Xiong L, Schijven MP, van Grieken NCT, Kranenburg O, Wildenberg ME, Logiantara A, Jongerius C, Garcia Vallejo JJ, Gisbertz SS, Derks S, Tuynman JB, D'Haens GRAM, Vermeulen L, Grootjans J. Peritoneal resident macrophages constitute an immunosuppressive environment in peritoneal metastasized colorectal cancer. Nat Commun 2025; 16:3669. [PMID: 40246872 PMCID: PMC12006467 DOI: 10.1038/s41467-025-58999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Patients with peritoneal metastasized colorectal cancer (PM-CRC) have a dismal prognosis. We hypothesized that an immunosuppressive environment in the peritoneal cavity underlies poor prognosis. We define the composition of the human peritoneal immune system (PerIS) using single-cell technologies in 18 patients with- and without PM-CRC, as well as in matched peritoneal metastases (n = 8). Here we show that the PerIS contains abundant immunosuppressive C1Q+VSIG4+ and SPP1+VSIG4+ peritoneal-resident macrophages (PRMs), as well as monocyte-like cavity macrophages (mono-CMs), which share features with tumor-associated macrophages, even in homeostasis. In PM-CRC, expression of immunosuppressive cytokines IL10 and VEGF increases, while simultaneously expression of antigen-presenting molecules decreases in PRMs. These intratumoral suppressive PRMs originate from the PerIS, and intraperitoneal depletion of PRMs in vivo using anti-CSF1R combined with anti-PD1 significantly reduces tumor burden and improves survival. Thus, PRMs define a metastatic site-specific immunosuppressive niche, and targeting PRMs is a promising treatment strategy for PM-CRC.
Collapse
Affiliation(s)
- J Saris
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - A Y F Li Yim
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - S Bootsma
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - K J Lenos
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - R Franco Fernandez
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H N Khan
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Verhoeff
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D Poel
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - N M Mrzlikar
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L Xiong
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M P Schijven
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Digital Health, Amsterdam, The Netherlands
| | - N C T van Grieken
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - O Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands
| | - M E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Logiantara
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - C Jongerius
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J J Garcia Vallejo
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S S Gisbertz
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - S Derks
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J B Tuynman
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - L Vermeulen
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - J Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Feng X, Luo Z, Zhang W, Wan R, Chen Y, Li F, He Y, Lin Z, Hui JH, Conde J, Chen S, Zhao Z, Wang X. Zn‐DHM Nanozymes Enhance Muscle Regeneration Through ROS Scavenging and Macrophage Polarization in Volumetric Muscle Loss Revealed by Single‐Cell Profiling. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202506476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Indexed: 04/23/2025]
Abstract
Abstract
Volumetric muscle loss (VML) is a severe condition in which the loss of skeletal muscle surpasses the body's intrinsic repair capabilities, leading to irreversible functional deficits and potential disability, with persistent inflammation and impaired myogenic differentiation. To address these challenges, a novel zinc‐dihydromyricetin (Zn‐DHM) nanozyme with superoxide dismutase (SOD)‐like activity is developed, designed to neutralize excessive reactive oxygen species (ROS) and restore oxidative balance. Zn‐DHM mitigates oxidative stress and promotes polarization of macrophages from the proinflammatory M1 phenotype to the anti‐inflammatory M2 phenotype, thereby reducing chronic inflammation and creating a conducive environment for muscle repair. Further, Zn‐DHM significantly enhances the myogenic differentiation of C2C12 cells, accelerating wound healing processes. These studies confirm the biosafety and low toxicity of Zn‐DHM. As per a murine tibialis anterior VML model, Zn‐DHM effectively suppresses inflammation and markedly improves skeletal muscle repair outcomes. Single‐cell RNA sequencing reveals that Zn‐DHM treatment increases the expression of M2 macrophage markers and enhances the proliferation and differentiation capacity of muscle stem cells (MuSCs). In addition, intercellular communication analysis reveals interactions between MuSCs and macrophages in the Zn‐DHM treatment group, suggesting that these interactions may drive tissue regeneration through the activation of the GAS and Notch signaling pathways.
Collapse
Affiliation(s)
- Xinting Feng
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119228 Singapore
| | - Wei Zhang
- School of Biomedical Engineering Anhui Medical University Hefei 230032 China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Yisheng Chen
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Fangqi Li
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Yanwei He
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhiheng Lin
- Department of Gynecology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai 200032 China
| | - James Hoipo Hui
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119228 Singapore
| | - João Conde
- Comprehensive Health Research Centre (CHRC) NOVA Medical School Faculdade de Ciências Médicas NMS FCM Universidade NOVA de Lisboa Lisboa 1169‐056 Portugal
| | - Shiyi Chen
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Xianwen Wang
- School of Biomedical Engineering Anhui Medical University Hefei 230032 China
| |
Collapse
|
39
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
40
|
Sunil HS, Clemenceau J, Barnfather I, Nakkireddy SR, Grichuk A, Izzo L, Evers BM, Thomas L, Subramaniyan I, Li L, Putnam WT, Zhu J, Updegraff B, Minna JD, DeBerardinis RJ, Gao J, Hwang TH, Oliver TG, O'Donnell KA. Transmembrane Serine Protease TMPRSS11B promotes an acidified tumor microenvironment and immune suppression in lung squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646727. [PMID: 40235980 PMCID: PMC11996519 DOI: 10.1101/2025.04.01.646727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Existing therapeutic options have limited efficacy, particularly for lung squamous cell carcinoma (LUSC), underscoring the critical need for the identification of new therapeutic targets. We previously demonstrated that the Transmembrane Serine Protease TMPRSS11B promotes transformation of human bronchial epithelial cells and enhances lactate export from LUSC cells. To determine the impact of TMPRSS11B activity on the host immune system and the tumor microenvironment (TME), we evaluated the effect of Tmprss11b depletion in a syngeneic mouse model. Tmprss11b depletion significantly reduced tumor burden in immunocompetent mice and triggered an infiltration of immune cells. RNA FISH analysis and spatial transcriptomics in the autochthonous Rosa26-Sox2-Ires-Gfp LSL/LSL ; Nkx2-1 fl/fl ; Lkb 1 fl/fl (SNL) model revealed an enrichment of Tmprss11b expression in LUSC tumors, specifically in Krt13 + hillock-like cells. Ultra-pH sensitive nanoparticle imaging and metabolite analysis identified regions of acidification, elevated lactate, and enrichment of M2-like macrophages in LUSC tumors. These results demonstrate that TMPRSS11B promotes an acidified and immunosuppressive TME and nominate this enzyme as a therapeutic target in LUSC.
Collapse
|
41
|
Wang X, Gu J, Tang H, Gu L, Bi Y, Kong Y, Shan Q, Yin J, Lou M, Li S, Liu Y. Single-Cell Profiling and Proteomics-Based Insights Into mTORC1-Mediated Angio+TAMs Polarization in Recurrent IDH-Mutant Gliomas. CNS Neurosci Ther 2025; 31:e70371. [PMID: 40202138 PMCID: PMC11979715 DOI: 10.1111/cns.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND IDH mutant gliomas often exhibit recurrence and progression, with the mTORC1 pathway and tumor-associated macrophages potentially contributing to these processes. However, the precise mechanisms are not fully understood. This study seeks to investigate these relationships using proteomic, phosphoproteomic, and multi-dimensional transcriptomic approaches. METHODS This study established a matched transcriptomic, proteomic, and phosphoproteomic cohort of IDH-mutant gliomas with recurrence and progression, incorporating multiple glioma-related datasets. We first identified the genomic landscape of recurrent IDH-mutant gliomas through multi-dimensional differential enrichment, GSVA, and deconvolution analyses. Next, we explored tumor-associated macrophage subpopulations using single-cell sequencing in mouse models of IDH-mutant and wild-type gliomas, analyzing transcriptional changes via AddmodelScore and pseudotime analysis. We then identified these subpopulations in matched primary and recurrent IDH-mutant datasets, investigating their interactions with the tumor microenvironment and performing deconvolution to explore their contribution to glioma progression. Finally, spatial transcriptomics was used to map these subpopulations to glioma tissue sections, revealing spatial co-localization with mTORC1 and angiogenesis-related pathways. RESULTS Multi-dimensional differential enrichment, GSVA, and deconvolution analyses indicated that the mTORC1 pathway and the proportion of M2 macrophages are upregulated during the recurrence and progression of IDH-mutant gliomas. CGGA database analysis showed that mTORC1 activity is significantly higher in recurrent IDH-mutant gliomas compared to IDH-wildtype, with a correlation to M2 macrophage infiltration. KSEA revealed that AURKA is enriched during progression, and its inhibition reduces mTORC1 pathway activity. Single-cell sequencing in mouse models identified a distinct glioma subpopulation with upregulated mTORC1, exhibiting both M2 macrophage and angiogenesis transcriptional features, which increased after implantation of IDH-mutant tumor cells. Similarly, human glioma single-cell data revealed the same subpopulation, with cell-cell communication analysis showing active VEGF signaling. Finally, spatial transcriptomics deconvolution confirmed the co-localization of this subpopulation with mTORC1 and VEGFA in high-grade IDH-mutant gliomas. CONCLUSIONS Our findings suggest mTORC1 activation and Angio-TAMs play key roles in the recurrence and progression of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Xu Wang
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Jingyan Gu
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongyu Tang
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianping Gu
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Nanjing Medical UniversityJiangsuChina
| | - Yunke Bi
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Yue Kong
- Sun Yat‐Sen University Guanghua School of StomatologyGuangzhouChina
| | - Qiao Shan
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Jian Yin
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Meiqing Lou
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
- Nanjing Medical UniversityJiangsuChina
| | - Shouwei Li
- Department of NeurosurgeryCapital Medical University Sanbo Brain HospitalBeijingChina
| | - Yaohua Liu
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
42
|
Mikulak J, Terzoli S, Marzano P, Cazzetta V, Martiniello G, Piazza R, Viano ME, Vitobello D, Portuesi R, Grizzi F, Hegazi MAAA, Fiamengo B, Basso G, Parachini L, Mannarino L, D'Incalci M, Marchini S, Mavilio D. Immune evasion mechanisms in early-stage I high-grade serous ovarian carcinoma: insights into regulatory T cell dynamics. Cell Death Dis 2025; 16:229. [PMID: 40164596 PMCID: PMC11958665 DOI: 10.1038/s41419-025-07557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
The mechanisms driving immune evasion in early-stage I high-grade serous ovarian carcinoma (HGSOC) remain poorly understood. To investigate this, we performed single-cell RNA-sequencing analysis. Our findings revealed a highly immunosuppressive HGSOC microenvironment, characterized by abundant infiltration of regulatory T cells (Tregs). Trajectory analysis uncovered differentiation pathways of naïve Tregs, which underwent either activation and proliferation or transcriptional instability. The predicted Treg-cell interaction network, including crosstalk within tumor cells, facilitates Treg mobility and maturation while reinforcing their immunosuppressive function and persistence in the tumor. Moreover, their interactions with immune cells likely inhibit CD8 T cells and antigen-presenting cells, supporting tumor immune escape. Additionally, more immunogenic tumor conditions, marked by IFNγ production, may contribute to Treg destabilization. Our findings underscore the pivotal role of Tregs in early immune evasion of HGSOC and provide insights into potential therapeutic strategies targeting their activity and differentiation fate.
Collapse
Affiliation(s)
- Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giampaolo Martiniello
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Maria Estefania Viano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Vitobello
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rosalba Portuesi
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A A A Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Fiamengo
- Unit of Pathological Anatomy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gianluca Basso
- Humanitas Genomic Facility, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lara Parachini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
43
|
Levenson D, Romero R, Miller D, Galaz J, Garcia-Flores V, Neshek B, Pique-Regi R, Gomez-Lopez N. The maternal-fetal interface at single-cell resolution: uncovering the cellular anatomy of the placenta and decidua. Am J Obstet Gynecol 2025; 232:S55-S79. [PMID: 40253083 DOI: 10.1016/j.ajog.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 04/21/2025]
Abstract
The maternal-fetal interface represents a critical site of immunological interactions that can greatly influence pregnancy outcomes. The unique cellular composition and cell-cell interactions taking place within these tissues has spurred substantial research efforts focused on the maternal-fetal interface. With the recent advent of single-cell technologies, multiple investigators have applied such methods to gain an unprecedented level of insight into maternal-fetal communication. Here, we provide an overview of the dynamic cellular composition and cell-cell communications at the maternal-fetal interface as reported by single-cell investigations. By primarily focusing on data from pregnancies in the second and third trimesters, we aim to showcase how single-cell technologies have bolstered the foundational understanding of each cell's contribution to physiologic gestation. Indeed, single-cell technologies have enabled the examination of classical placental cells, such as the trophoblast, as well as uncovered new roles for structural cells now recognized as active participants in pregnancy and parturition, such as decidual and fetal stromal cells, which are reviewed herein. Furthermore, single-cell data investigating the ontogeny, function, differentiation, and interactions among immune cells present at the maternal-fetal interface, namely macrophages, T cells, dendritic cells, neutrophils, mast cells, innate lymphoid cells, natural killer cells, and B cells are discussed in this review. Moreover, a key output of single-cell investigations is the inference of cell-cell interactions, which has been leveraged to not only dissect the intercellular communications within specific tissues but also between compartments such as the decidua basalis and placental villi. Collectively, this review emphasizes the ways by which single-cell technologies have expanded the understanding of cell composition and cellular processes underlying pregnancy in mid-to-late gestation at the maternal-fetal interface, which can prompt their continued application to reveal new pathways and targets for the treatment of obstetrical disease.
Collapse
Affiliation(s)
- Dustyn Levenson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Derek Miller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Jose Galaz
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Barbara Neshek
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
44
|
Lim J, Goh MJ, Song BG, Sinn DH, Kang W, Gwak GY, Choi MS, Lee JH, Cha DI, Gu K, Ha SY, Hwang I, Park WY, Paik YH. Unraveling the immune-activated tumor microenvironment correlated with clinical response to atezolizumab plus bevacizumab in advanced HCC. JHEP Rep 2025; 7:101304. [PMID: 40124166 PMCID: PMC11929055 DOI: 10.1016/j.jhepr.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/25/2025] Open
Abstract
Background & Aims Despite atezolizumab plus bevacizumab being a standard treatment for advanced hepatocellular carcinoma (HCC), a significant proportion of patients do not achieve durable benefit. This study aimed to identify predictive biomarkers for this therapy by investigating the role of immune activation within the tumor microenvironment (TME). Methods We characterized the intratumoral TME of patients with advanced HCC treated with atezolizumab plus bevacizumab using single cell transcriptomics on pretreatment tumor biopsies from 12 patients. To complement and support these findings, we integrated our single cell data with publicly available bulk RNA-sequencing data from independent clinical trial cohorts. Results Patients who responded to combination therapy with atezolizumab plus bevacizumab demonstrated an immune-activated TME, marked by enhanced cytotoxicity and a tumor-specific T cell response. These patients also exhibited an increased proportion of inflammatory cytokine-enriched tumor-associated macrophage clusters with stronger interactions with T cells, an increased population of conventional dendritic cells, and activated antigen-presenting function in tumor endothelial cells. When publicly available bulk RNA-sequencing data from independent clinical trial cohorts were analyzed, these immune activation features were associated with improved progression-free survival (median 10.8 months, 95% CI: 7.3-not reached versus 5.5 months, 95% CI: 4.0-6.7; p <0.001). Conclusions These findings suggest that the existence of an activated immune TME before treatment is crucial for a favorable clinical response in patients with HCC treated with atezolizumab plus bevacizumab. Impact and implications Only a subset of patients with HCC benefit from combination therapy with atezolizumab plus bevacizumab, limiting its clinical utility. In this study, we used single cell RNA analysis to identify TME features associated with a clinical response to this therapy. Our findings suggest that a pre-existing immune-activated TME is crucial for predicting the response to atezolizumab plus bevacizumab. Specifically, features such as enhanced T cell cytotoxicity, inflammatory cytokine-enriched macrophage clusters, active antigen presentation in endothelial cells, and an increased presence of dendritic cells may aid patient selection and inform therapeutic strategies.
Collapse
Affiliation(s)
- Jinyeong Lim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Myung Ji Goh
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong Geun Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wonseok Kang
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geum-Youn Gwak
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hyeok Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Inwoo Hwang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yong-Han Paik
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
45
|
Yuan X, Rosen JM. Histone acetylation modulators in breast cancer. Breast Cancer Res 2025; 27:49. [PMID: 40165290 PMCID: PMC11959873 DOI: 10.1186/s13058-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. Aberrant epigenetic reprogramming such as dysregulation of histone acetylation has been associated with the development of breast cancer. Histone acetylation modulators have been targeted as potential treatments for breast cancer. This review comprehensively discusses the roles of these modulators and the effects of their inhibitors on breast cancer. In addition, epigenetic reprogramming not only affects breast cancer cells but also the immunosuppressive myeloid cells, which can facilitate breast cancer progression. Therefore, the review also highlights the roles of these immunosuppressive myeloid cells and summarizes how histone acetylation modulators affect their functions and phenotypes. This review provides insights into histone acetylation modulators as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
46
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
47
|
Dong M, Su DG, Kluger H, Fan R, Kluger Y. SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data. Nat Commun 2025; 16:2990. [PMID: 40148341 PMCID: PMC11950362 DOI: 10.1038/s41467-025-58089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular interactions, and may thus fail to reliably capture spatial regulations. Here, we present Spatial Interaction Modeling using Variational Inference (SIMVI), an annotation-free deep learning framework that disentangles cell intrinsic and spatial-induced latent variables in spatial omics data with rigorous theoretical support. By this disentanglement, SIMVI enables estimation of spatial effects at a single-cell resolution, and empowers various downstream analyses. We demonstrate the superior performance of SIMVI across datasets from diverse platforms and tissues. SIMVI illuminates the cyclical spatial dynamics of germinal center B cells in human tonsil. Applying SIMVI to multiome melanoma data reveals potential tumor epigenetic reprogramming states. On our newly-collected cohort-level CosMx melanoma data, SIMVI uncovers space-and-outcome-dependent macrophage states and cellular communication machinery in tumor microenvironments.
Collapse
Affiliation(s)
- Mingze Dong
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - David G Su
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Harriet Kluger
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Rong Fan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
- Applied Mathematics Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
48
|
Zhao T, Luo Y, Sun Y, Wei Z. Characterizing macrophage diversity in colorectal malignancies through single-cell genomics. Front Immunol 2025; 16:1526668. [PMID: 40191203 PMCID: PMC11968368 DOI: 10.3389/fimmu.2025.1526668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract, with increasing incidence and mortality rates, posing a significant burden on human health. Its progression relies on various mechanisms, among which the tumor microenvironment and tumor-associated macrophages (TAMs) have garnered increasing attention. Macrophage infiltration in various solid tumors is associated with poor prognosis and is linked to chemotherapy resistance in many cancers. These significant biological behaviors depend on the heterogeneity of macrophages. Tumor-promoting TAMs comprise subpopulations characterized by distinct markers and unique transcriptional profiles, rendering them potential targets for anticancer therapies through either depletion or reprogramming from a pro-tumoral to an anti-tumoral state. Single-cell RNA sequencing technology has significantly enhanced our research resolution, breaking the traditional simplistic definitions of macrophage subtypes and deepening our understanding of the diversity within TAMs. However, a unified elucidation of the nomenclature and molecular characteristics associated with this diversity remains lacking. In this review, we assess the application of conventional macrophage polarization subtypes in colorectal malignancies and explore several unique subtypes defined from a single-cell omics perspective in recent years, categorizing them based on their potential functions.
Collapse
Affiliation(s)
- Tingshuo Zhao
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yinyi Luo
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yuanjie Sun
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Zhigang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Shanxi Medical University, Tai Yuan, China
| |
Collapse
|
49
|
de Souza S, Melo GA, Calôba C, Campos MCS, Pimenta JV, Dutra FF, Pereira RM, Echevarria-Lima J. HTLV-1-infected cells drive the differentiation of monocytes into macrophages in vitro. BMC Immunol 2025; 26:24. [PMID: 40114046 PMCID: PMC11927243 DOI: 10.1186/s12865-024-00670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/14/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic inflammatory neurodegenerative disease characterized by leukocyte infiltration in the spinal cord. T-lymphocytes are the most important targets of HTLV-1 infection, but monocytes are also infected. Monocytes from HTLV-1-infected individuals exhibit important functional differences compared to cells from uninfected donors. Here, we investigated the effects of cell-cell physical contact and/or secreted factors of HTLV-1-infected cells in monocyte activation and differentiation. METHODS The THP-1 human monocytic cell line was co-cultured with a human cell line transformed by HTLV-1 (MT-2) for 6 days. To determine the effects of co-culturing HTLV-1-infected cells in THP-1 monocytes cells were characterized by flow cytometry, immunofluorescence microscopy, and real-time PCR. Computational analysis of published transcriptomic datasets was realized to compare molecular profiles of macrophages and mononuclear cells from HTLV-1 carriers. RESULTS Co-culture of monocytes with HTLV-1-infected cells induced macrophage differentiation and upregulation of typical macrophages-associated molecules (HLA-DR, CD80, and CD86), increased cytokine (TNFα, IL-6, and IL-1β) levels and their coding genes expression. Consistently, published transcriptomic datasets showed changes in important genes associated with inflammation during HAM/TSP in patients. The presence of HTLV-1-infected cells in the culture also induced significant upregulation of Interferon Stimulated Genes (ISG), indicating viral infection. Monocyte activation and differentiation into pro-inflammatory macrophages occurred in a cell-to-cell contact-independent manner, suggesting the role of factors secreted by infected cells. CONCLUSIONS Together, our results indicated that HTLV-1-infected cells induced monocyte differentiation into macrophages inflammatory, predominantly.
Collapse
Affiliation(s)
- Sabrina de Souza
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Guilherme Affonso Melo
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Carolina Calôba
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Maria Clara Salgado Campos
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Juliana Vieira Pimenta
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Renata Meirelles Pereira
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil.
- Instituto de Microbiologia Paulo de Góes, CCS, Sala I-43, UFRJ, Rio de Janeiro, CEP 21941-590, Brazil.
| |
Collapse
|
50
|
Yu F, Yu N, Zhang L, Xu X, Zhao Y, Cao Z, Wang F. Emodin Decreases Tumor-Associated Macrophages Accumulation and Suppresses Bladder Cancer Development by Inhibiting CXCL1 Secretion from Cancer-Associated Fibroblasts. Nutr Cancer 2025; 77:706-721. [PMID: 40114381 DOI: 10.1080/01635581.2025.2480309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are the most abundant stromal cells in the bladder cancer (BC) microenvironment (TME). However, the detailed mechanisms underlying TAM-CAF communication and their contributions to BC progression remain incompletely understood. Emerging evidence shows that Emodin exerts anti-tumor effect on several tumor models by targeting TME. To date, the impact of Emodin on BC has not been previously reported. Our study firstly demonstrated that Emodin significantly inhibited tumor growth and reduced TAM accumulation in a murine BC model. Emodin markedly decreased serum levels of multiple chemokines in tumor-bearing mice, with CXCL1 showing the most pronounced reduction. Strikingly, Emodin selectively suppressed CXCL1 secretion in CAFs but not in TAMs or tumor cells. Furthermore, the decrease in TAM migration induced by Emodin was dependent on CAF-derived CXCL1. Using a subcutaneous tumor model, we found that Emodin failed to inhibit tumor growth when CXCL1-deficient CAFs were co-injected with tumor cells, underscoring the critical role of CXCL1 in this process. Bioinformatics analysis further revealed that elevated CXCL1 levels correlated negatively with invasive/metastatic potential and overall survival in BC patients. In conclusion, our findings establish that Emodin delays BC progression by disrupting CXCL1-mediated crosstalk between CAFs and TAMs.
Collapse
Affiliation(s)
- Fang Yu
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Nan Yu
- Department of Ophthalmology, Heping Hospital affiliated with Changzhi Medical College, Changzhi, China
| | - Lei Zhang
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaona Xu
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Basic Science, Fourth Military Medical University, Xi'an, China
| | - Zipeng Cao
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Feng Wang
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|