1
|
Stadelmann C, Franz J, Nessler S. Recent developments in multiple sclerosis neuropathology. Curr Opin Neurol 2025; 38:173-179. [PMID: 40178490 PMCID: PMC12052066 DOI: 10.1097/wco.0000000000001370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW Neuropathological studies in human brain tissue are indispensable for our understanding of disease mechanisms in multiple sclerosis (MS). They inform concepts of lesion evolution, tissue regeneration and disease progression, and ideally reveal new disease mechanisms and therapeutic targets. Here we review recent neuropathological studies that have advanced our knowledge of MS pathogenesis. RECENT FINDINGS Recent cohort studies support the notion that different clinical MS disease phenotypes share underlying pathological features, and that clinical and pathological heterogeneity is derived from a variable combination of innate and adaptive inflammation, demyelinating activity, and neuroaxonal loss. Importantly, emerging technologies for spatial transcriptome analysis enable an unprecedented glimpse into the cellular composition and molecular mechanisms involved in lesion evolution. These promising technologies will help identify the identification of molecular hubs governing tissue damage and regeneration. SUMMARY Recent neuropathological studies helped to identify tissue correlates of disability and disease progression. Substantial progress in molecular brain tissue analysis revealed the complexity of MS-related tissue features. Close collaboration between tissue-based, molecular, bioinformatic, pharmacologic, imaging and clinical experts is needed to continue to advance the field, particularly for the benefit of people with progressive MS.
Collapse
Affiliation(s)
- Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
2
|
Albelo-Martínez M, Rizvi S. Progressive multiple sclerosis: Evaluating current therapies and exploring future treatment strategies. Neurotherapeutics 2025:e00601. [PMID: 40345951 DOI: 10.1016/j.neurot.2025.e00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Progressive forms of multiple sclerosis (MS) include primary progressive MS (PPMS) and secondary progressive MS (SPMS). Unlike relapsing-remitting MS (RRMS), progressive MS is recognized by relentless progression with accumulating disability, rare to no relapses nor new activity on MRIs. Clinically, neurologic worsening in MS can occur in the relapsing-remitting (RRMS) phase of disease due to incomplete recovery from neuroinflammatory relapses. However, a progressive disease course is the dominant factor related to accumulating disability. There is persistent central nervous system (CNS) compartmentalized inflammation, mitochondrial dysfunction and altered immune responses. Unlike in RRMS, the efficacy of disease modifying agents (DMA) in progressive MS has been limited, highlighting the need for novel therapeutic approaches that address both inflammation and neurodegeneration. This article explores current management of progressive MS, and future directions in targeting the unique pathophysiology of this complex disease.
Collapse
Affiliation(s)
- Marelisa Albelo-Martínez
- Department of Neurology, Brown University Health and Rhode Island Hospital, Alpert Medical School of Brown University, USA.
| | - Syed Rizvi
- Department of Neurology, Brown University Health and Rhode Island Hospital, Alpert Medical School of Brown University, USA.
| |
Collapse
|
3
|
Londoño AC, Mora CA. High efficacy therapy to prevent the formation of meningeal tertiary lymphoid organs after CXCL13 index screening in early multiple sclerosis. Front Neurosci 2025; 19:1558810. [PMID: 40165834 PMCID: PMC11955623 DOI: 10.3389/fnins.2025.1558810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Postmortem studies have shown the presence of subpial inflammation with tertiary lymphoid organs (TLO) in the meninges of patients with progressive multiple sclerosis, playing an important role in the pathophysiology of the disease. The chemokine (C-X-C motif) ligand 13 (CXCL13) induces the formation of these lymphoid organs, thus promoting activity of disease. The progression to disability in multiple sclerosis has been reduced, thanks to the effect of disease modifying therapy. However, despite advances in the treatment of disease with immunomodulatory agents, we still lack specific laboratory biomarkers that could indicate the state of activity of disease, either at time of diagnosis or when escalation therapy seems to be mandatory. In patients with multiple sclerosis, MRI studies have not demonstrated the presence of TLO in the CNS, so far. The determination of the CXCL13 index (ICXCL 13), in clinical specimens, could become a reliable biomarker for the verification of the presence and activity of the TLO, thus contributing to improving therapy outcome, with high efficacy therapy, in the clinical setting.
Collapse
Affiliation(s)
- Ana C. Londoño
- Instituto Neurologico de Colombia (INDEC), Medellin, Colombia
- Retired (2022), Medellin, Colombia
| | - Carlos A. Mora
- Department of Medicine, Neurology Unit, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
4
|
Wang W, Guo M, Wu C, Huang B, Jiang ML, Zhang CJ. Low-dose lactate promotes neuroinflammation and induces the side effect of colitis. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2879-6. [PMID: 40095177 DOI: 10.1007/s11427-024-2879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Weiyan Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mengdi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chuyu Wu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bin Huang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mei-Ling Jiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Cun-Jin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
5
|
Guerra T, Iaffaldano P. A Window into New Insights on Progression Independent of Relapse Activity in Multiple Sclerosis: Role of Therapies and Current Perspective. Int J Mol Sci 2025; 26:884. [PMID: 39940654 PMCID: PMC11817336 DOI: 10.3390/ijms26030884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
In multiple sclerosis (MS), there is significant evidence indicating that both progression independent of relapse activity (PIRA) and relapse-related worsening events contribute to the accumulation of progressive disability from the onset of the disease and throughout its course. Understanding the compartmentalized pathophysiology of MS would enhance comprehension of disease progression mechanisms, overcoming the traditional distinction in phenotypes. Smoldering MS activity is thought to be maintained by a continuous interaction between the parenchymal chronic processes of neuroinflammation and neurodegeneration and the intrathecal compartment. This review provides a comprehensive and up-to-date overview of the neuropathological and immunological evidence related to the mechanisms underlying PIRA phenomena in MS, with a focus on studies investigating the impact of currently available therapies on these complex mechanisms.
Collapse
Affiliation(s)
| | - Pietro Iaffaldano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
6
|
Ransohoff RM. Selected Aspects of the Neuroimmunology of Cell Therapies for Neurologic Disease: Perspective. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200352. [PMID: 39671535 PMCID: PMC11649171 DOI: 10.1212/nxi.0000000000200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/15/2024]
Abstract
Neurologic disease remains a cause of incalculable suffering, a formidable public health burden, and a wilderness of complex biology and medicine. At the same time, advances in basic science, technology, and the clinical development toolkit bring meaningful benefit for patients along with realistic hope for those whose conditions remain inadequately treated. This perspective focuses on cell-based therapies for neurologic disease, with particular emphasis on neuroimmunologic disorders and on the immunologic considerations of cell therapy for nonimmune conditions. I will consider the use of chimeric antigen receptor (CAR)-T effector cells and regulatory T-cell therapies for autoimmune conditions. I will briefly discuss the immune aspects of pluripotent stem cell (PSC)-derived neuronal therapies. With apologies for the omission, we do not discuss mesenchymal stem cells, glial progenitor cells, or CAR-NK cells, primarily for space limitations.
Collapse
|
7
|
Monreal E, Fernández-Velasco JI, Álvarez-Lafuente R, Sainz de la Maza S, García-Sánchez MI, Llufriu S, Casanova B, Comabella M, Martínez-Yélamos S, Galimberti D, Ramió-Torrentà L, Martínez-Ginés ML, Aladro Y, Ayuso L, Martínez-Rodríguez JE, Brieva L, Villarrubia N, Eichau S, Zamora J, Rodero-Romero A, Espiño M, Blanco Y, Saiz A, Montalbán X, Tintoré M, Domínguez-Mozo MI, Cuello JP, Romero-Pinel L, Ghezzi L, Pilo de la Fuente B, Pérez-Miralles F, Quiroga-Varela A, Rubio L, Rodríguez-Jorge F, Chico-García JL, Sainz-Amo R, Masjuan J, Costa-Frossard L, Villar LM. Serum biomarkers at disease onset for personalized therapy in multiple sclerosis. Brain 2024; 147:4084-4093. [PMID: 39101570 DOI: 10.1093/brain/awae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 08/06/2024] Open
Abstract
The potential for combining serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels to predict worsening disability in multiple sclerosis remains underexplored. We aimed to investigate whether sNfL and sGFAP values identify distinct subgroups of patients according to the risk of disability worsening and their response to disease-modifying treatments (DMTs). This multicentre study, conducted across 13 European hospitals, spanned from 15 July 1994 to 18 August 2022, with follow-up until 26 September 2023. We enrolled patients with multiple sclerosis who had serum samples collected within 12 months from disease onset and before initiating DMTs. Multivariable regression models were used to estimate the risk of relapse-associated worsening (RAW), progression independent of relapse activity (PIRA) and Expanded Disability Status Scale (EDSS) score of 3. Of the 725 patients included, the median age was 34.2 (interquartile range, 27.6-42.4) years, and 509 patients (70.2%) were female. The median follow-up duration was 6.43 (interquartile range, 4.65-9.81) years. Higher sNfL values were associated with an elevated risk of RAW [hazard ratio (HR) of 1.45; 95% confidence interval (CI) 1.19-1.76; P < 0.001], PIRA (HR of 1.43; 95% CI 1.13-1.81; P = 0.003) and reaching an EDSS of 3 (HR of 1.55; 95% CI 1.29-1.85; P < 0.001). Moreover, higher sGFAP levels were linked to a higher risk of achieving an EDSS score of 3 (HR of 1.36; 95% CI 1.06-1.74; P = 0.02) and, in patients with low sNfL values, to PIRA (HR of 1.86; 95% CI 1.01-3.45; P = 0.04). We also examined the combined effect of sNfL and sGFAP levels. Patients with low sNfL and sGFAP values exhibited a low risk of all outcomes and served as a reference. Untreated patients with high sNfL levels showed a higher risk of RAW, PIRA and reaching an EDSS of 3. Injectable or oral DMTs reduced the risk of RAW in these patients but failed to mitigate the risk of PIRA and reaching an EDSS of 3. Conversely, high-efficacy DMTs counteracted the heightened risk of these outcomes, except for the risk of PIRA in patients with high sNfL and sGFAP levels. Patients with low sNfL and high sGFAP values showed an increased risk of PIRA and achieving an EDSS of 3, which remained unchanged with either high-efficacy or other DMTs. In conclusion, evaluating sNfL and sGFAP levels at disease onset in multiple sclerosis might identify distinct phenotypes associated with diverse immunological pathways of disability acquisition and therapeutic response.
Collapse
Affiliation(s)
- Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - José Ignacio Fernández-Velasco
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo Investigación de factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Susana Sainz de la Maza
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - María Isabel García-Sánchez
- Nodo Biobanco Hospital Virgen Macarena (Biobanco del Sistema Sanitario Público de Andalucía), Hospital Universitario Virgen Macarena, 41013 Seville, Spain
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Bonaventura Casanova
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, 46026 Valencia, Spain
| | - Manuel Comabella
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Department of Neurology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20126 Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, 17001, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, 17001, Catalonia, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17001 Girona, Spain
| | | | - Yolanda Aladro
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Lucía Ayuso
- Department of Neurology, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Spain
| | | | - Luis Brieva
- Hospital Arnau de Vilanova de Lleida, UdL Medicine Department, IRBLLEIDA, 25198 Lleida, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Sara Eichau
- Multiple Sclerosis Unit, Hospital Virgen Macarena, 41013 Sevilla, Spain
| | - Javier Zamora
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Unidad de Bioestadística Clínica, Hospital Ramón y Cajal, 28034 Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28034 Madrid, Spain
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexander Rodero-Romero
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Mercedes Espiño
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Yolanda Blanco
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Albert Saiz
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Xavier Montalbán
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - María Inmaculada Domínguez-Mozo
- Grupo Investigación de factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Juan Pablo Cuello
- Department of Neurology, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Lucía Romero-Pinel
- Department of Neurology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20126 Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Belén Pilo de la Fuente
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Francisco Pérez-Miralles
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, 46026 Valencia, Spain
| | - Ana Quiroga-Varela
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, 17001, Girona, Spain
| | - Lluïsa Rubio
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Fernando Rodríguez-Jorge
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Juan Luís Chico-García
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Raquel Sainz-Amo
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Luisa M Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| |
Collapse
|
8
|
Malucchi S, Bava CI, Valentino P, Martire S, Lo Re M, Bertolotto A, Di Sapio A. In multiple sclerosis patients a single serum neurofilament light chain (sNFL) dosage is strongly associated with 12 months outcome: data from a real-life clinical setting. J Neurol 2024; 271:7494-7501. [PMID: 39313638 DOI: 10.1007/s00415-024-12701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Neurofilament light chain (NFL) is a neuroaxonal cytoskeletal protein released into cerebrospinal fluid (CSF) and eventually into blood upon neuronal injury. Its detection in serum (sNFL) makes it a promising marker in multiple sclerosis (MS). OBJECTIVE To evaluate the usefulness of a single dosage of sNFL in clinical practice. METHODS 626 consecutive relapsing-remitting (RR) MS patients treated with disease modifying treatments (DMTs) for at least 12 months underwent a single sNFL dosage. 553 patients had NEDA-3 status (no relapses, no disability progression, no new/enlarging or contrast-enhancing lesions on brain magnetic resonance imaging) in the 12 months prior blood sampling. sNFL levels were measured by single molecule array (Simoa™). Association between sNFL levels and NEDA-3 status at 12, 24, and 36 months was evaluated with logistic regression models adjusted for sex, EDSS, disease duration, and type of DMTs. RESULTS 469 out of the 553 NEDA-3 patients had normal sNFL level, whereas 42 had elevated level. The two groups did not differ regarding baseline characteristics. A very strong association between elevated sNFL levels and loss of NEDA-3 status within 12 months was found, with an odds ratio [OR] of 10.74 (95% CI 4.34-26.57); 15 and 10 patients with normal and elevated sNFL, respectively lost NEDA-3 (p < 0.001). The effect was not detected during the subsequent 13-24 and 25-36 months. CONCLUSIONS A single elevated sNFL is strongly associated with NEDA-3 loss within 1 year. Elevated sNFL in apparently stable patients suggests an ongoing disease activity below the detection threshold of standard parameters.
Collapse
Affiliation(s)
- Simona Malucchi
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Paola Valentino
- NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Serena Martire
- NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Marianna Lo Re
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Antonio Bertolotto
- NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Koelliker Hospital, C.so Galileo Ferraris, 247/255, 10134, Turin, Italy
| | - Alessia Di Sapio
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
9
|
Toru Asahina A, Lu J, Chugh P, Sharma S, Sharma P, Tan S, Kovoor J, Stretton B, Gupta A, Sorby-Adams A, Goh R, Harroud A, Clarke MA, Evangelou N, Patel S, Dwyer A, Agzarian M, Bacchi S, Slee M. Prognostic significance of paramagnetic rim lesions in multiple sclerosis: A systematic review. J Clin Neurosci 2024; 129:110810. [PMID: 39232367 DOI: 10.1016/j.jocn.2024.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
The diagnostic potential of paramagnetic rim lesions (PRLs) has been previously established; however, the prognostic significance of these lesions has not previously been consistently described. This study aimed to establish the prognostic role of PRLs in MS with respect to the Expanded Disability Status Scale (EDSS) and rates of disability progression. Databases of PubMed, EMBASE, Scopus and reference lists of selected articles were searched up to 29/04/2023. The review was conducted in accordance with PRISMA guidelines and was registered prospectively on PROSPERO (CRD42023422052). 7 studies were included in the final review. All of the eligible studies found that patients with PRLs tend to have higher baseline EDSS scores. Longitudinal assessments revealed greater EDSS progression in patients with PRLs over time in most studies. However, the effect of location of PRLs within the central nervous system were not assessed across the studies. Only one study investigated progression independent of relapse activity (PIRA) and showed that this clinical entity occurred in a greater proportion in patients with PRLs. This review supports PRLs as a predictor of EDSS progression. This measure has widespread applicability, however further multicentre studies are needed. Future research should explore the impact of PRLs on silent disability, PIRA, take into account different MS phenotypes and the topography of PRLs in prognosis.
Collapse
Affiliation(s)
- Adon Toru Asahina
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| | - Joe Lu
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Pooja Chugh
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Srishti Sharma
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Prakriti Sharma
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Sheryn Tan
- University of Adelaide, Adelaide, SA 5005, Australia
| | - Joshua Kovoor
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Brandon Stretton
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Aashray Gupta
- University of Adelaide, Adelaide, SA 5005, Australia; Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Annabel Sorby-Adams
- University of Adelaide, Adelaide, SA 5005, Australia; Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02138, USA
| | - Rudy Goh
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Lyell McEwin Hospital, Elizabeth Vale, SA 5112, Australia
| | - Adil Harroud
- McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Margareta A Clarke
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikos Evangelou
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sandy Patel
- South Australia Medical Imaging, Adelaide, SA 5000, Australia
| | - Andrew Dwyer
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marc Agzarian
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia
| | - Stephen Bacchi
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02138, USA
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| |
Collapse
|
10
|
Bastos A, Soares M, Guimarães J. Markers of secondary progression in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105881. [PMID: 39277977 DOI: 10.1016/j.msard.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION There is no globally accepted definition of Secondary Progressive Multiple Sclerosis (SPMS) or set of unambiguous clinical, radiological, or other criteria that can accurately identify patients who transition to SPMS. Thus, the SPMS diagnosis is almost always a retrospective and frequently delayed process. OBJECTIVE The aim of this study was to elucidate the current understanding of phenotypic changes throughout MS course and provide insights into the detection of SPMS from the available literature on this diagnostic landscape. METHODS Comprehensive literature review aiming at detecting the transition from RRMS to SPMS. A search for relevant publications was conducted across different databases, scrutinizing studies that investigated tools and biomarkers for an accurate diagnosis of SPMS. RESULTS 62 studies from the past two decades were included. The EDSS-plus was shown to be more sensitive than the EDSS alone in identifying disability progression. We found some helpful indicators for diagnosing SPMS, including cognitive impairment, particularly on working memory, information processing speed, and verbal fluency; presence of slowly expanding lesions on MRI; thinning of retinal layers on OCT. Also, glial markers as Glial Fibrillary Acidic Protein and Chitinase-3-like protein 1 might be more suitable to identify the conversion to progressive disease than Neurofilament light chain. Certain subjective symptoms seem to be more prevalent in the SPMS phase, although further studies are needed to understand whether patient reported outcomes' measures (PROMs) and which ones could be useful in detecting the transition to a progressive phenotype. CONCLUSION Our review highlights the emergence of useful biomarkers in early detection of progression of MS, such as cognitive impairment, MRI, and glial markers. We are getting closer to revolutionising the SPMS diagnosis and clinical management as we get a deeper understanding of these biomarkers.
Collapse
Affiliation(s)
- André Bastos
- Faculty of Medicine of University of Porto, Porto, Portugal.
| | - Mafalda Soares
- Faculty of Medicine of University of Porto, Porto, Portugal; Department of Neurology, Saint Joseph's Local Health Unit, Lisbon, Portugal
| | - Joana Guimarães
- Faculty of Medicine of University of Porto, Porto, Portugal; Department of Neurology, Saint John's Local Health Unit, Porto, Portugal
| |
Collapse
|
11
|
Rodriguez-Mogeda C, van Gool MM, van der Mast R, Nijland R, Keasberry Z, van de Bovekamp L, van Delft MA, Picon C, Reynolds R, Killestein J, Teunissen CE, de Vries HE, van Egmond M, Witte ME. Intrathecal IgG and IgM synthesis correlates with neurodegeneration markers and corresponds to meningeal B cell presence in MS. Sci Rep 2024; 14:25540. [PMID: 39462090 PMCID: PMC11513002 DOI: 10.1038/s41598-024-76969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Intrathecal synthesis of immunoglobulins (Igs) is a key hallmark of multiple sclerosis (MS). B cells are known to accumulate in the leptomeninges of MS patients and associate with pathology in the underlying cortex and a more severe disease course. However, the role of locally produced antibodies in MS brain pathology is poorly understood. Here, we quantified the protein levels of IgA, IgM, IgG and albumin in serum and cerebrospinal fluid (CSF) samples of 80 MS patients and 28 neurological controls to calculate Ig indices. In addition, we quantified presence of meningeal IgA+, IgM+ and IgG+ B cells in post-mortem brain tissue of 20 MS patients and 6 controls using immunostainings. IgM and IgG, but not IgA, indices were increased in CSF of MS patients compared to controls, with no observed differences between MS disease types. Both IgM and IgG indices correlated significantly with neurofilament light (NfL) levels in CSF, but not with clinical or radiological parameters of disease. Similarly, IgG+ and IgM+ B cells were increased in MS meninges compared to controls, whereas IgA+ B cells were not. Neuronal loss did not differ between sections with low or high IgA+, IgM+ and IgG+ B cells, but was increased in sections with high numbers of all CD19+ meningeal B cells. Similarly, high presence of CD19+ meningeal B cells and IgG+ meningeal B cells associated with increased microglial density in the underlying cortex. Taken together, intrathecal synthesis of IgG and IgM is elevated in MS, which corresponds to an increased number of IgG+ and IgM+ B cells in MS meninges. The significant correlation between intrathecal IgG and IgM production and NfL levels, and increased microglial activation in cortical areas adjacent to meningeal infiltrates with high levels of IgG+ B cells indicate a role for intrathecal IgM- and IgG-producing B cells in neuroinflammatory and degenerative processes in MS.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - Melissa Mj van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Richard van der Mast
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rutger Nijland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Zoë Keasberry
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lisanne van de Bovekamp
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Myrthe Am van Delft
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carmen Picon
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Joep Killestein
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Neurochemistry Lab, Department of Laboratory Medicine Chemistry, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Fuchs TA, Schoonheim MM, Zivadinov R, Dwyer MG, Colato E, Weinstock Z, Weinstock-Guttman B, Strijbis EM, Benedict RH. Cognitive progression independent of relapse in multiple sclerosis. Mult Scler 2024; 30:1468-1478. [PMID: 39193699 DOI: 10.1177/13524585241256540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND Substantial physical-disability worsening in relapsing-remitting multiple sclerosis (RRMS) occurs outside of clinically recorded relapse. This phenomenon, termed progression independent of relapse activity (PIRA), is yet to be established for cognitive decline. METHODS Retrospective analysis of RRMS patients. Cognitive decline was defined using reliable-change-index cut-offs for each test (Symbol Digit Modalities Test, Brief Visuospatial Memory Test-Revised, California Verbal Learning Test-II). Decline was classified as PIRA if the following conditions were met: no relapse observed between assessments nor within 9 months of cognitive decline. RESULTS The study sample (n = 336) was 80.7% female with a mean (standard deviation (SD)) age, disease duration, and observation period of 43.1 (9.5), 10.8 (8.4), and 8.1 (3.1) years, respectively. A total of 169 (50.3%) subjects were cognitively impaired at baseline relative to age-, sex-, and education-matched HCs. Within subjects who experienced cognitive decline (n = 167), 89% experienced cognitive PIRA. A total of 141 (68.1%) cognitive decline events were observed independent of EDSS worsening. Cognitive PIRA was more likely to be observed with increased assessments (p < 0.001) and lower assessment density (p < 0.001), accounting for baseline clinical factors. CONCLUSION These results establish the concept of cognitive PIRA and further our understanding of progressive cognitive decline in RRMS.
Collapse
Affiliation(s)
- Tom A Fuchs
- MS Center Amsterdam, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Menno M Schoonheim
- MS Center Amsterdam, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Robert Zivadinov
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Elisa Colato
- MS Center Amsterdam, Department of Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Zachary Weinstock
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Eva Mm Strijbis
- MS Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, The Netherlands
| | - Ralph Hb Benedict
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Portaccio E, Magyari M, Havrdova EK, Ruet A, Brochet B, Scalfari A, Di Filippo M, Tur C, Montalban X, Amato MP. Multiple sclerosis: emerging epidemiological trends and redefining the clinical course. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100977. [PMID: 39444703 PMCID: PMC11496978 DOI: 10.1016/j.lanepe.2024.100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis is a chronic, inflammatory, and neurodegenerative disease of the central nervous system and a major cause of neurological disability in young adults. Its prevalence and incidence are increasing, and it has been estimated at over 2.8 million cases worldwide, in addition to recent trends towards a shift in MS prevalence to older ages, with peak prevalence estimates in the sixth decade of life. Although historically the relapsing and progressive phases of the disease have been considered separate clinical entities, recent evidence of progression independent of relapse activity (PIRA) has led to a reconsideration of multiple sclerosis as a continuum, in which relapsing and progressive features variably coexist from the earliest stages of the disease, challenging the traditional view of the disease course. In this Series article, we provide an overview of how the traditional description of the clinical course of MS and epidemiological trends in Europe have evolved. For this purpose, we focus on the concept of PIRA, discussing its potential as the main mechanism by which patients acquire disability, how its definition varies between studies, and ongoing research in this field. We emphasise the importance of incorporating the assessment of hidden clinical manifestations into patient management to help uncover and quantify the PIRA phenomenon and the possible implications for future changes in the clinical classification of the disease. At the same time, we provide insights into overcoming the challenges of identifying and defining PIRA and adopting a new understanding of the clinical course of MS.
Collapse
Affiliation(s)
- Emilio Portaccio
- Department of NEUROFARBA, Unviersity of Florence, Florence, Italy
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Aurelie Ruet
- Magendie, INSERM U 1215, Université de Bordeaux, 30776, Bordeaux Cedex, France
- Service de Neurologie et Maladies Inflammatoires du Système Nerveux Central, Centre de Ressources et Compétences Sclérose en plaques CHU de Bordeaux, 33076, Bordeaux Cedex, France
| | - Bruno Brochet
- Magendie, INSERM U 1215, Université de Bordeaux, 30776, Bordeaux Cedex, France
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK
| | | | - Carmen Tur
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Amato
- Department of NEUROFARBA, Unviersity of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
14
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
16
|
Cooze B, Neal J, Vineed A, Oliveira JC, Griffiths L, Allen KH, Hawkins K, Yadanar H, Gerhards K, Farkas I, Reynolds R, Howell O. Digital Pathology Identifies Associations between Tissue Inflammatory Biomarkers and Multiple Sclerosis Outcomes. Cells 2024; 13:1020. [PMID: 38920650 PMCID: PMC11201856 DOI: 10.3390/cells13121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically heterogeneous disease underpinned by inflammatory, demyelinating and neurodegenerative processes, the extent of which varies between individuals and over the course of the disease. Recognising the clinicopathological features that most strongly associate with disease outcomes will inform future efforts at patient phenotyping. AIMS We used a digital pathology workflow, involving high-resolution image acquisition of immunostained slides and opensource software for quantification, to investigate the relationship between clinical and neuropathological features in an autopsy cohort of progressive MS. METHODS Sequential sections of frontal, cingulate and occipital cortex, thalamus, brain stem (pons) and cerebellum including dentate nucleus (n = 35 progressive MS, females = 28, males = 7; age died = 53.5 years; range 38-98 years) were immunostained for myelin (anti-MOG), neurons (anti-HuC/D) and microglia/macrophages (anti-HLA). The extent of demyelination, neurodegeneration, the presence of active and/or chronic active lesions and quantification of brain and leptomeningeal inflammation was captured by digital pathology. RESULTS Digital analysis of tissue sections revealed the variable extent of pathology that characterises progressive MS. Microglia/macrophage activation, if found at a higher level in a single block, was typically elevated across all sampled blocks. Compartmentalised (perivascular/leptomeningeal) inflammation was associated with age-related measures of disease severity and an earlier death. CONCLUSION Digital pathology identified prognostically important clinicopathological correlations in MS. This methodology can be used to prioritise the principal pathological processes that need to be captured by future MS biomarkers.
Collapse
Affiliation(s)
- Benjamin Cooze
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - James Neal
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Alka Vineed
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - J. C. Oliveira
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Lauren Griffiths
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - K. H. Allen
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Kristen Hawkins
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Htoo Yadanar
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Krisjanis Gerhards
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Ildiko Farkas
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Owain Howell
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| |
Collapse
|
17
|
Gosetti di Sturmeck T, Malimpensa L, Ferrazzano G, Belvisi D, Leodori G, Lembo F, Brandi R, Pascale E, Cattaneo A, Salvetti M, Conte A, D’Onofrio M, Arisi I. Exploring miRNAs' Based Modeling Approach for Predicting PIRA in Multiple Sclerosis: A Comprehensive Analysis. Int J Mol Sci 2024; 25:6342. [PMID: 38928049 PMCID: PMC11203572 DOI: 10.3390/ijms25126342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The current hypothesis on the pathophysiology of multiple sclerosis (MS) suggests the involvement of both inflammatory and neurodegenerative mechanisms. Disease Modifying Therapies (DMTs) effectively decrease relapse rates, thus reducing relapse-associated disability in people with MS. In some patients, disability progression, however, is not solely linked to new lesions and clinical relapses but can manifest independently. Progression Independent of Relapse Activity (PIRA) significantly contributes to long-term disability, stressing the urge to unveil biomarkers to forecast disease progression. Twenty-five adult patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled in a cohort study, according to the latest McDonald criteria, and tested before and after high-efficacy Disease Modifying Therapies (DMTs) (6-24 months). Through Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells. Multivariate logistic and linear models with interactions were generated. Robustness was assessed by randomization tests in R. A subset of miRNAs, correlated with PIRA, and the Expanded Disability Status Scale (EDSS), was selected. To refine the patient stratification connected to the disease trajectory, we computed a robust logistic classification model derived from baseline miRNA expression to predict PIRA status (AUC = 0.971). We built an optimal multilinear model by selecting four other miRNA predictors to describe EDSS changes compared to baseline. Multivariate modeling offers a promising avenue to uncover potential biomarkers essential for accurate prediction of disability progression in early MS stages. These models can provide valuable insights into developing personalized and effective treatment strategies.
Collapse
Affiliation(s)
- Tommaso Gosetti di Sturmeck
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
| | - Leonardo Malimpensa
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Daniele Belvisi
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Giorgio Leodori
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Flaminia Lembo
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Rossella Brandi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
| | - Esterina Pascale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore (SNS), 56126 Pisa, Italy
| | - Marco Salvetti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonella Conte
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy; (L.M.); (D.B.); (G.L.); (M.S.); (A.C.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (F.L.)
| | - Mara D’Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
| | - Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (T.G.d.S.); (R.B.); (A.C.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| |
Collapse
|
18
|
Singer BA, Feng J, Chiong-Rivero H. Early use of high-efficacy therapies in multiple sclerosis in the United States: benefits, barriers, and strategies for encouraging adoption. J Neurol 2024; 271:3116-3130. [PMID: 38615277 PMCID: PMC11136864 DOI: 10.1007/s00415-024-12305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/15/2024]
Abstract
Multiple sclerosis (MS) is characterized by progressive neuroinflammation and neurodegeneration from disease onset that, if left untreated, can result in the accumulation of irreversible neurological disability. Early intervention with high-efficacy therapies (HETs) is increasingly recognized as the best strategy to delay or mitigate disease progression from the earliest stages of the disease and to prevent long-term neurodegeneration. Although there is growing clinical and real-world evidence supporting early HET intervention, foregoing this strategy in favor of a traditional escalation approach prioritizing lower-efficacy disease-modifying therapies remains a common approach in clinical practice. This review explores potential health care professional- and patient-related barriers to the early use of HETs in patients with MS in the United States. Barriers can include regulatory and reimbursement restrictions; knowledge gaps and long-term safety concerns among health care professionals; and various individual, cultural, and societal factors affecting patients. Potential strategies for overcoming these barriers and encouraging early HET use are proposed.
Collapse
Affiliation(s)
- Barry A Singer
- The MS Center for Innovations in Care, Missouri Baptist Medical Center, St Louis, MO, USA.
| | - Jenny Feng
- Ochsner Medical Center, New Orleans, LA, USA
| | | |
Collapse
|
19
|
Haghikia A, Schett G, Mougiakakos D. B cell-targeting chimeric antigen receptor T cells as an emerging therapy in neuroimmunological diseases. Lancet Neurol 2024; 23:615-624. [PMID: 38760099 DOI: 10.1016/s1474-4422(24)00140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Neuroimmunology research and development has been marked by substantial advances, particularly in the treatment of neuroimmunological diseases, such as multiple sclerosis, myasthenia gravis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody disease. With more than 20 drugs approved for multiple sclerosis alone, treatment has become more personalised. The approval of disease-modifying therapies, particularly those targeting B cells, has highlighted the role of immunotherapeutic interventions in the management of these diseases. Despite these successes, challenges remain, particularly for patients who do not respond to conventional therapies, underscoring the need for innovative approaches. RECENT DEVELOPMENTS The approval of monoclonal antibodies, such as ocrelizumab and ofatumumab, which target CD20, and inebilizumab, which targets CD19, for the treatment of various neuroimmunological diseases reflects progress in the understanding and management of B-cell activity. However, the limitations of these therapies in halting disease progression or activity in patients with multiple sclerosis or neuromyelitis optica spectrum disorders have prompted the exploration of cell-based therapies, particularly chimeric antigen receptor (CAR) T cells. Initially successful in the treatment of B cell-derived malignancies, CAR T cells offer a novel therapeutic mechanism by directly targeting and eliminating B cells, potentially overcoming the shortcomings of antibody-mediated B cell depletion. WHERE NEXT?: The use of CAR T cells in autoimmune diseases and B cell-driven neuroimmunological diseases shows promise as a targeted and durable option. CAR T cells act autonomously, penetrating deep tissue and effectively depleting B cells, especially in the CNS. Although the therapeutic potential of CAR T cells is substantial, their application faces hurdles such as complex logistics and management of therapy-associated toxic effects. Ongoing and upcoming clinical trials will be crucial in determining the safety, efficacy, and applicability of CAR T cells. As research progresses, CAR T cell therapy has the potential to transform treatment for patients with neuroimmunological diseases. It could offer extended periods of remission and a new standard in the management of autoimmune and neuroimmunological disorders.
Collapse
Affiliation(s)
- Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy and Oncology and Health Campus Immunology, Infectiology, and Inflammation (GCI(3)), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
20
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
21
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
22
|
Miscioscia A, Treaba CA, Barletta VT, Herranz E, Sloane JA, Barbuti E, Mainero C. White matter paramagnetic rim and non-rim lesions share a periventricular gradient in multiple sclerosis: A 7-T imaging study. Mult Scler 2024; 30:166-176. [PMID: 38279672 PMCID: PMC10922980 DOI: 10.1177/13524585231224681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Paramagnetic rim white matter (WM) lesions (PRL) are thought to be a main driver of non-relapsing multiple sclerosis (MS) progression. It is unknown whether cerebrospinal fluid (CSF)-soluble factors diffusing from the ventricles contribute to PRL formation. OBJECTIVE To investigate the distribution of PRL and non-rim brain WM lesions as a function of distance from ventricular CSF, their relationship with cortical lesions, the contribution of lesion phenotype, and localization to neurological disability. METHODS Lesion count and volume of PRL, non-rim WM, leukocortical lesion (LCL), and subpial/intracortical lesions were obtained at 7-T. The brain WM was divided into 1-mm-thick concentric rings radiating from the ventricles to extract PRL and non-rim WM lesion volume from each ring. RESULTS In total, 61 MS patients with ⩾1 PRL were included in the study. Both PRL and non-rim WM lesion volumes were the highest in the periventricular WM and declined with increasing distance from ventricles. A CSF distance-independent association was found between non-rim WM lesions, PRL, and LCL, but not subpial/intracortical lesions. Periventricular non-rim WM lesion volume was the strongest predictor of neurological disability. CONCLUSIONS Non-rim and PRL share a gradient of distribution from the ventricles toward the cortex, suggesting that CSF proximity equally impacts the prevalence of both lesion phenotypes.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- University of Padova, Padova, Italy
| | - Constantina A. Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T. Barletta
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jacob A. Sloane
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elena Barbuti
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Ospedale Sant’Andrea, University La Sapienza, Rome, Italy
| | - Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
24
|
Subhash S, Chaurawal N, Raza K. Promises of Lipid-Based Nanocarriers for Delivery of Dimethyl Fumarate to Multiple Sclerosis Brain. Methods Mol Biol 2024; 2761:457-475. [PMID: 38427255 DOI: 10.1007/978-1-0716-3662-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) infecting 2.5 million people worldwide. It is the most common nontraumatic neurological impairment in young adults. The blood-brain barrier rupture for multiple sclerosis pathogenesis has two effects: first, during the onset of the immunological attack, and second, for the CNS self-sustained "inside-out" demyelination and neurodegeneration processes. In addition to genetic variations, environmental and lifestyle variables can also significantly increase the risk of developing MS. Dimethyl fumarate (DMF) and sphingosine-1-phosphate (S1P) receptor modulators that may pass the blood-brain barrier and have positive direct effects in the CNS with quite diverse mechanisms of action raise the possibility that a combination therapy could be successful in treating MS. Lipid nanocarriers are recognized as one of the best drug delivery techniques to the brain for effective brain delivery. Numerous scientific studies have shown that lipid nanoparticles can enhance the lipid solubility, oral bioavailability, and brain availability of the drugs. Nanolipidic carriers for DMF delivery could be derived through vitamin D, tocopherol acetate, stearic acid, quercetin, cell-mimicking platelet-based, and chitosan-alginate core-shell-corona-shaped nanoparticles. Clinical and laboratory diagnosis of MS can be performed mainly through magnetic resonance imaging. The advancements in nanotechnology have enabled the clinicians to cross the blood-brain barrier and to target the brain and central nervous system of the patient with multiple sclerosis.
Collapse
Affiliation(s)
- Sreya Subhash
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Nishtha Chaurawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India.
| |
Collapse
|
25
|
Quintana JF, Sinton MC, Chandrasegaran P, Kumar Dubey L, Ogunsola J, Al Samman M, Haley M, McConnell G, Kuispond Swar NR, Ngoyi DM, Bending D, de Lecea L, MacLeod A, Mabbott NA. The murine meninges acquire lymphoid tissue properties and harbour autoreactive B cells during chronic Trypanosoma brucei infection. PLoS Biol 2023; 21:e3002389. [PMID: 37983289 PMCID: PMC10723712 DOI: 10.1371/journal.pbio.3002389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTβ signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.
Collapse
Affiliation(s)
- Juan F. Quintana
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Matthew C. Sinton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Praveena Chandrasegaran
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | | | - John Ogunsola
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Moumen Al Samman
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Michael Haley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Nono-Raymond Kuispond Swar
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Annette MacLeod
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Sharrad D, Chugh P, Slee M, Bacchi S. Defining progression independent of relapse activity (PIRA) in adult patients with relapsing multiple sclerosis: A systematic review ✰. Mult Scler Relat Disord 2023; 78:104899. [PMID: 37499338 DOI: 10.1016/j.msard.2023.104899] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Progression Independent of Relapse Activity (PIRA) is heterogeneously described in patients with multiple sclerosis (MS) regarding the frequency and nature of PIRA. This systematic review was conducted to characterise and define the elements of PIRA. METHOD This systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was conducted of the databases Embase, Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science, ClinicalTrials.gov and Google Scholar. RESULTS 5,812 studies were identified by the initial search. 13 studies satisfied the inclusion criteria and were included in the systematic review. PIRA definitions varied considerably between studies. In the context of these variable definitions, along with other methodological differences relating to disease modifying therapy (DMT) use and follow-up duration, the reported proportion of patients experiencing PIRA varied from 4% to 24%. CONCLUSIONS The currently available research supports the presence of PIRA in relapsing MS. Based on review of the existing literature, we propose a definition of PIRA that is clinically relevant and minimises confounding from inclusion of patients who have reached the secondary progressive phase of the disease.
Collapse
Affiliation(s)
- Dale Sharrad
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia
| | - Pooja Chugh
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia.
| | - Mark Slee
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia
| | - Stephen Bacchi
- SA Health, Department of Neurology, Flinders Medical Centre, Bedford Park SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, Bedford Park SA 5042, Australia
| |
Collapse
|
27
|
López-Muguruza E, Matute C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int J Mol Sci 2023; 24:12912. [PMID: 37629092 PMCID: PMC10454078 DOI: 10.3390/ijms241612912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system (CNS), characterized by demyelination and neurodegeneration. Oligodendrocytes play a vital role in maintaining the integrity of myelin, the protective sheath around nerve fibres essential for efficient signal transmission. However, in MS, oligodendrocytes become dysfunctional, leading to myelin damage and axonal degeneration. Emerging evidence suggests that metabolic changes, including mitochondrial dysfunction and alterations in glucose and lipid metabolism, contribute significantly to the pathogenesis of MS. Mitochondrial dysfunction is observed in both immune cells and oligodendrocytes within the CNS of MS patients. Impaired mitochondrial function leads to energy deficits, affecting crucial processes such as impulse transmission and axonal transport, ultimately contributing to neurodegeneration. Moreover, mitochondrial dysfunction is linked to the generation of reactive oxygen species (ROS), exacerbating myelin damage and inflammation. Altered glucose metabolism affects the energy supply required for oligodendrocyte function and myelin synthesis. Dysregulated lipid metabolism results in changes to the composition of myelin, affecting its stability and integrity. Importantly, low levels of polyunsaturated fatty acids in MS are associated with upregulated lipid metabolism and enhanced glucose catabolism. Understanding the intricate relationship between these mechanisms is crucial for developing targeted therapies to preserve myelin and promote neurological recovery in individuals with MS. Addressing these metabolic aspects may offer new insights into potential therapeutic strategies to halt disease progression and improve the quality of life for MS patients.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
28
|
Evonuk KS, Wang S, Mattie J, Cracchiolo CJ, Mager R, Ferenčić Ž, Sprague E, Carrier B, Schofield K, Martinez E, Stewart Z, Petrosino T, Johnson GA, Yusuf I, Plaisted W, Naiman Z, Delp T, Carter L, Marušić S. Bruton's tyrosine kinase inhibition reduces disease severity in a model of secondary progressive autoimmune demyelination. Acta Neuropathol Commun 2023; 11:115. [PMID: 37438842 PMCID: PMC10337138 DOI: 10.1186/s40478-023-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is an emerging target in multiple sclerosis (MS). Alongside its role in B cell receptor signaling and B cell development, BTK regulates myeloid cell activation and inflammatory responses. Here we demonstrate efficacy of BTK inhibition in a model of secondary progressive autoimmune demyelination in Biozzi mice with experimental autoimmune encephalomyelitis (EAE). We show that late in the course of disease, EAE severity could not be reduced with a potent relapse inhibitor, FTY720 (fingolimod), indicating that disease was relapse-independent. During this same phase of disease, treatment with a BTK inhibitor reduced both EAE severity and demyelination compared to vehicle treatment. Compared to vehicle treatment, late therapeutic BTK inhibition resulted in fewer spinal cord-infiltrating myeloid cells, with lower expression of CD86, pro-IL-1β, CD206, and Iba1, and higher expression of Arg1, in both tissue-resident and infiltrating myeloid cells, suggesting a less inflammatory myeloid cell milieu. These changes were accompanied by decreased spinal cord axonal damage. We show similar efficacy with two small molecule inhibitors, including a novel, highly selective, central nervous system-penetrant BTK inhibitor, GB7208. These results suggest that through lymphoid and myeloid cell regulation, BTK inhibition reduced neurodegeneration and disease progression during secondary progressive EAE.
Collapse
Affiliation(s)
| | - Sen Wang
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Josh Mattie
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - C. J. Cracchiolo
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Reine Mager
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Željko Ferenčić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Ethan Sprague
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Brandon Carrier
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Kai Schofield
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Evelyn Martinez
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Zachary Stewart
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Tara Petrosino
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | | | - Isharat Yusuf
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Warren Plaisted
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Zachary Naiman
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Timothy Delp
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Laura Carter
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Suzana Marušić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| |
Collapse
|
29
|
Boukhvalova MS, Kastrukoff L, Blanco JCG. Alzheimer's disease and multiple sclerosis: a possible connection through the viral demyelinating neurodegenerative trigger (vDENT). Front Aging Neurosci 2023; 15:1204852. [PMID: 37396655 PMCID: PMC10310923 DOI: 10.3389/fnagi.2023.1204852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) and multiple sclerosis (MS) are two CNS disorders affecting millions of people, for which no cure is available. AD is usually diagnosed in individuals age 65 and older and manifests with accumulation of beta amyloid in the brain. MS, a demyelinating disorder, is most commonly diagnosed in its relapsing-remitting (RRMS) form in young adults (age 20-40). The lack of success in a number of recent clinical trials of immune- or amyloid-targeting therapeutics emphasizes our incomplete understanding of their etiology and pathogenesis. Evidence is accumulating that infectious agents such as viruses may contribute either directly or indirectly. With the emerging recognition that demyelination plays a role in risk and progression of AD, we propose that MS and AD are connected by sharing a common environmental factor (a viral infection such as HSV-1) and pathology (demyelination). In the viral DEmyelinating Neurodegenerative Trigger (vDENT) model of AD and MS, the initial demyelinating viral (e.g., HSV-1) infection provokes the first episode of demyelination that occurs early in life, with subsequent virus reactivations/demyelination and associated immune/inflammatory attacks resulting in RRMS. The accumulating damage and/or virus progression deeper into CNS leads to amyloid dysfunction, which, combined with the inherent age-related defects in remyelination, propensity for autoimmunity, and increased blood-brain barrier permeability, leads to the development of AD dementia later in life. Preventing or diminishing vDENT event(s) early in life, thus, may have a dual benefit of slowing down the progression of MS and reducing incidence of AD at an older age.
Collapse
Affiliation(s)
| | - Lorne Kastrukoff
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|