1
|
Xu J, Guo J, Liu T, Yang C, Meng Z, Libby P, Zhang J, Shi GP. Differential roles of eosinophils in cardiovascular disease. Nat Rev Cardiol 2025; 22:165-182. [PMID: 39285242 DOI: 10.1038/s41569-024-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 02/20/2025]
Abstract
Eosinophils are essential innate immune cells in allergic responses. Accumulating evidence indicates that eosinophils also participate in the pathogenesis of cardiovascular diseases (CVDs). In clinical studies, high blood eosinophil counts and eosinophil cationic protein levels have been associated with an increased risk of CVD, including myocardial infarction (MI), cardiac hypertrophy, atrial fibrillation, abdominal aortic aneurysm (AAA) and atherosclerosis. However, low blood eosinophil counts have also been reported to be a risk factor for MI, heart failure, aortic dissection, AAA, deep vein thrombosis, pulmonary embolism and ischaemic stroke. Although these conflicting clinical observations remain unexplained, CVD status, timing of eosinophil data collection, and tissue eosinophil phenotypic and functional heterogeneities might account for these discrepancies. Preclinical studies suggest that eosinophils have protective actions in MI, cardiac hypertrophy, heart failure and AAA. By contrast, cationic proteins and platelet-activating factor from eosinophils have been shown to promote vascular smooth muscle cell proliferation, vascular calcification, thrombomodulin inactivation and platelet activation and aggregation, thereby exacerbating atherosclerosis, atrial fibrillation, thrombosis and associated complications. Therefore, eosinophils seem to promote calcification and thrombosis in chronic CVD but are protective in acute cardiovascular settings. In this Review, we summarize the available clinical and preclinical data on the different roles of eosinophils in CVD.
Collapse
Affiliation(s)
- Junyan Xu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Meng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Khalaf K, Chamieh M, Welc N, Singh C, Kaouk JL, Kaouk A, Mackiewicz A, Kaczmarek M, Perek B. Cellular aspects of immunity involved in the development of atherosclerosis. Front Immunol 2025; 16:1461535. [PMID: 39944697 PMCID: PMC11813763 DOI: 10.3389/fimmu.2025.1461535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/09/2025] [Indexed: 05/09/2025] Open
Abstract
Atherosclerosis, previously regarded as a lipid storage disease, has now been classified as a chronic inflammatory disease. The hardening of arterial vessels characterizes atherosclerosis due to the accumulation of lipids in the arterial walls, eliciting an inflammatory response. The development of atherosclerosis occurs in various stages and is facilitated by many clinical factors, such as hypertension, hyperlipidemia, and inflammatory status. A large arsenal of cells has been implicated in its development. This review will summarize the phases of atherosclerotic formation and all the cells involved in either promoting or inhibiting its development.
Collapse
Affiliation(s)
- Khalil Khalaf
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marc Chamieh
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Welc
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chandpreet Singh
- Department of Internal Medicine, University of California, Los Angeles (UCLA) - Kern Medical Center, Bakersfield, CA, United States
| | - Joanne Lynn Kaouk
- Department of Science, Louisiana State University, Lousiana, LA, United States
| | - Aiden Kaouk
- Department of Natural Sciences, The University of Texas at Austin, Texas, TX, United States
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
| | - Bartlomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. Emerging Anti-Inflammatory COPD Treatments: Potential Cardiovascular Impacts. Int J Chron Obstruct Pulmon Dis 2024; 19:2481-2495. [PMID: 39606712 PMCID: PMC11600434 DOI: 10.2147/copd.s498255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition often complicated by cardiovascular disease (CVD) due to shared inflammatory pathways. This review explores the cardiovascular impacts of emerging anti-inflammatory therapies in COPD. Phosphodiesterase (PDE) inhibitors may offer anti-inflammatory effects with improved lung function but pose potential risks for arrhythmias when PDE3 is inhibited although PDE4 inhibitors reduce cardiovascular events by improving endothelial function and reducing thrombosis. Similarly, p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) inhibitors target COPD-related inflammation and may benefit COPD patients with CVD. p38 MAPK inhibitors reduce cardiac fibrosis, enhance contractility and lower the risk of arrhythmia. PI3K inhibitors target the PI3K/Akt pathway, which drives atherosclerosis and cardiac fibrosis, and thus potentially mitigate both plaque instability and fibrosis. Biologic therapies, including monoclonal antibodies that inhibit IL-5, IL-13/IL-4, thymic stromal lymphopoietin, IL-33, and IL-17A, show promise in reducing exacerbations but require close cardiovascular monitoring due to their immunomodulatory effects. Single-target inhibitors of neutrophil elastase or matrix metalloproteinases show limited efficacy in COPD but may aid cardiovascular patients by stabilizing atherosclerotic plaques through promoting vascular smooth muscle cell proliferation. However, their tendency to degrade the extracellular matrix and attract immune cells may heighten plaque rupture risk, contraindicating use in CVD. Alpha-1 antitrypsin replacement therapy holds promise, potentially reducing COPD exacerbations and providing cardiovascular protection, especially in myocardial injury. Understanding the influence of these innovative therapies on CVD is vital, making it imperative to examine these molecules in COPD patients with CVD at an early stage.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘tor Vergata’, Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome ‘tor Vergata’, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania ‘luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
4
|
Cazzola M, Page CP, Hanania NA, Calzetta L, Matera MG, Rogliani P. Asthma and Cardiovascular Diseases: Navigating Mutual Pharmacological Interferences. Drugs 2024; 84:1251-1273. [PMID: 39327397 PMCID: PMC11512905 DOI: 10.1007/s40265-024-02086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Asthma and cardiovascular disease (CVD) often co-exist. When a patient has both conditions, management requires an approach that addresses the unique challenges of each condition separately, while also considering their potential interactions. However, specific guidance on the management of asthma in patients with CVD and on the management of CVD in patients with asthma is still lacking. Nevertheless, health care providers need to adopt a comprehensive approach that includes both respiratory and CVD health. The management of CVD in patients with asthma requires a delicate balance between controlling respiratory symptoms and minimising potential cardiovascular (CV) risks. In the absence of specific guidelines for the management of patients with both conditions, the most prudent approach would be to follow established guidelines for each condition independently. Careful selection of asthma medications is essential to avoid exacerbation of CV symptoms. In addition, optimal management of CV risk factors is essential. However, close monitoring of these patients is important as there is evidence that some asthma medications may have adverse effects on CVD and, conversely, that some CVD medications may worsen asthma symptoms. On the other hand, there is also increasing evidence of the potential beneficial effects of asthma medications on CVD and, conversely, that some CVD medications may reduce the severity of asthma symptoms. We aim to elucidate the potential risks and benefits associated with the use of asthma medications in patients with CVD, and the potential pulmonary risks and benefits for patients with asthma who are prescribed CVD medications.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
5
|
Liu T, Chen Y, Hou L, Yu Y, Ma D, Jiang T, Zhao G. Immune cell-mediated features of atherosclerosis. Front Cardiovasc Med 2024; 11:1450737. [PMID: 39234608 PMCID: PMC11371689 DOI: 10.3389/fcvm.2024.1450737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.
Collapse
Affiliation(s)
- Tingting Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yanjun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yulu Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
6
|
de Miguel-Díez J, Núñez Villota J, Santos Pérez S, Manito Lorite N, Alcázar Navarrete B, Delgado Jiménez JF, Soler-Cataluña JJ, Pascual Figal D, Sobradillo Ecenarro P, Gómez Doblas JJ. Multidisciplinary Management of Patients With Chronic Obstructive Pulmonary Disease and Cardiovascular Disease. Arch Bronconeumol 2024; 60:226-237. [PMID: 38383272 DOI: 10.1016/j.arbres.2024.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD) frequently coexist, increasing the prevalence of both entities and impacting on symptoms and prognosis. CVD should be suspected in patients with COPD who have high/very high risk scores on validated scales, frequent exacerbations, precordial pain, disproportionate dyspnea, or palpitations. They should be referred to cardiology if they have palpitations of unknown cause or angina pain. COPD should be suspected in patients with CVD if they have recurrent bronchitis, cough and expectoration, or disproportionate dyspnea. They should be referred to a pulmonologist if they have rhonchi or wheezing, air trapping, emphysema, or signs of chronic bronchitis. Treatment of COPD in cardiovascular patients should include long-acting muscarinic receptor antagonists (LAMA) or long-acting beta-agonists (LABA) in low-risk or high-risk non-exacerbators, and LAMA/LABA/inhaled corticosteroids in exacerbators who are not controlled with bronchodilators. Cardioselective beta-blockers should be favored in patients with CVD, the long-term need for amiodarone should be assessed, and antiplatelet drugs should be maintained if indicated.
Collapse
Affiliation(s)
- Javier de Miguel-Díez
- Servicio de Neumología, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain.
| | - Julio Núñez Villota
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Salud Santos Pérez
- Servicio de Neumología, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nicolás Manito Lorite
- Unidad de Insuficiencia Cardiaca y Trasplante Cardiaco, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Juan Francisco Delgado Jiménez
- Servicio de Cardiología e Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain; Departamento de Medicina, UCM, CIBERCV, Madrid, Spain
| | - Juan José Soler-Cataluña
- Servicio de Neumología, Hospital Arnau de Vilanova-Lliria, Valencia, Spain; Departamento de Medicina, Universitat de València, Valencia, Spain
| | - Domingo Pascual Figal
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | | | | |
Collapse
|
7
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. CELL GENOMICS 2024; 4:100465. [PMID: 38190101 PMCID: PMC10794848 DOI: 10.1016/j.xgen.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Kral M, van der Vorst EP, Surnov A, Weber C, Döring Y. ILC2-mediated immune crosstalk in chronic (vascular) inflammation. Front Immunol 2023; 14:1326440. [PMID: 38179045 PMCID: PMC10765502 DOI: 10.3389/fimmu.2023.1326440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Kral
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Alexey Surnov
- Type 1 Diabetes Immunology (TDI), Helmholtz Diabetes Center (HDC), Helmholtz Center Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR) Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Cazzola M, Rogliani P, Ora J, Calzetta L, Matera MG. Cardiovascular diseases or type 2 diabetes mellitus and chronic airway diseases: mutual pharmacological interferences. Ther Adv Chronic Dis 2023; 14:20406223231171556. [PMID: 37284143 PMCID: PMC10240559 DOI: 10.1177/20406223231171556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic airway diseases (CAD), mainly asthma and chronic obstructive pulmonary disease (COPD), are frequently associated with different comorbidities. Among them, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) pose problems for the simultaneous treatment of CAD and comorbidity. Indeed, there is evidence that some drugs used to treat CAD negatively affect comorbidity, and, conversely, some drugs used to treat comorbidity may aggravate CAD. However, there is also growing evidence of some beneficial effects of CAD drugs on comorbidities and, conversely, of the ability of some of those used to treat comorbidity to reduce the severity of lung disease. In this narrative review, we first describe the potential cardiovascular risks and benefits for patients using drugs to treat CAD and the potential lung risks and benefits for patients using drugs to treat CVD. Then, we illustrate the possible negative and positive effects on T2DM of drugs used to treat CAD and the potential negative and positive impact on CAD of drugs used to treat T2DM. The frequency with which CAD and CVD or T2DM are associated requires not only considering the effect that drugs used for one disease condition may have on the other but also providing an opportunity to develop therapies that simultaneously favorably impact both diseases.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
10
|
Alton P, Hughes DM, Zhao SS. Cardiovascular safety of genetically proxied interleukin-5 inhibition: A mendelian randomization study. Respir Investig 2023; 61:149-152. [PMID: 36682083 DOI: 10.1016/j.resinv.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Interleukin-5 (IL-5) inhibitors have revolutionized the management of eosinophilic asthma. However, IL-5 is thought to play a protective role in atherosclerosis, and cardiovascular safety data for IL-5i are scarce. We used population-level data to examine the association between genetically proxied IL-5i and the risk of cardiovascular diseases. Genetic instruments for IL-5i were selected from a genome-wide association study of eosinophil count in 563,946 individuals. Genetic association data for coronary artery disease were obtained from 60,801 cases, 40,585 stroke cases, 7988 venous thromboembolism cases, and up to 406,111 controls. We used the inverse-variance weighted method and a series of sensitivity analyses. Nine genetic variants were selected to instrument IL-5i. Genetically proxied IL-5i was not associated with the risk of coronary heart disease (OR 0.82, 95%CI 0.65-1.03), stroke (OR 1.10; 0.95-1.27), or venous thromboembolism (OR 0.87; 0.64-1.17). We found no genetic evidence to suggest that IL-5i affects the risk of adverse cardiovascular and thromboembolic events.
Collapse
Affiliation(s)
- Philip Alton
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David M Hughes
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
11
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Integrative multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285622. [PMID: 36824883 PMCID: PMC9949190 DOI: 10.1101/2023.02.09.23285622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWAS and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotype information to identify quantitative trait loci (QTL) for gene expression and splicing in coronary arteries obtained from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary arteries and 19% exhibited cell-type-specific expression. Colocalization analysis with GWAS identified subgroups of eGenes unique to CAD and blood pressure. Fine-mapping highlighted additional eGenes of interest, including TBX20 and IL5 . Splicing (s)QTLs for 1,690 genes were also identified, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing events to accurately identify disease-relevant gene expression. Our work provides the first human coronary artery eQTL resource from a patient sample and exemplifies the necessity of diverse study populations and multi-omic approaches to characterize gene regulation in critical disease processes. Study Design Overview
Collapse
|
12
|
Zhang W, He J, Liu M, Huang M, Chen Q, Dong J, Zhang H, Xie T, Yuan J, Zha L. Genetic Analysis Reveals Different Mechanisms of IL-5 Involved in the Development of CAD in a Chinese Han Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1700857. [PMID: 36760349 PMCID: PMC9904894 DOI: 10.1155/2023/1700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Background Coronary artery disease (CAD) is a complex disease and the leading cause of death worldwide. It is caused by genetic and environmental factors or their interactions. Candidate gene association studies are an important genetic strategy for the study of complex diseases, and multiple variants of inflammatory cytokines have been found to be associated with CAD using this method. Interleukin-5 (IL-5) is an important inflammatory immune response factor that plays a role in a various inflammatory disease. Clinical tests and animal experiments indicated that IL-5 is involved in CAD development, but the exact mechanisms are unclear. This study investigated the genetic relationship between the single nucleotide polymorphisms (SNPs) in IL5 and CAD. Materials and Methods Based on the Chinese Han population, we collected 1,824 patients with CAD and 1,920 control subjects and performed a two-stage case-control association analysis for three SNPs in IL5 (rs2057687, rs78546665, and rs2069812) using the high resolution melt (HRM) technology. Logistic regression analyses were applied to adjust for traditional risk factors for CAD and to perform haplotype and gene interaction analyses. Multiple linear regression analyses were used to study relationships between the selected SNPs and serum lipid levels. Results In this study, two-stage case-control association analysis revealed that the allele and genotype frequency distributions of the three IL5 SNPs were not statistically significant between the case and control groups. In addition, none of the IL5 haplotypes were associated with CAD. Further stratified analyses were conducted by sex, age, hypertension, and disease status, respectively, and the results revealed that the rs2057687 and rs2069812 of IL5 were associated with CAD in the male group (p adj = 0.025, OR, 0.77 (95% CI, 0.62-0.97); p adj = 0.016, OR, 0.82 (95% CI, 0.70-0.97), respectively); the rs2057687 and rs78546665 of IL5 were associated with late-onset CAD (p adj = 0.039, OR, 0.78 (95% CI, 0.62-0.99); p adj = 0.036, OR, 1.46 (95% CI, 1.02-1.53), respectively); the rs2069812 of IL5 was associated with CAD in the hypertension group (p adj = 0.036, OR, 0.84 (95% CI, 0.71-0.99)); and none of the SNPs in IL5 were associated with different CAD states (anatomical CAD and clinical CAD). In addition, the association between SNPs and the serum lipid levels indicated that rs78546665 was positively correlated with triglyceride levels (p = 0.012). Finally, SNP-SNP interaction analyses revealed that interactions of rs2057687 and rs2069812 were associated with CAD (p adj = 0.046, OR, 0.77 (95% CI, 0.13-4.68)). Conclusion This study suggested that the common variants of IL5 might play a role in CAD by affecting the risk factors for CAD and through SNP-SNP interactions, which provides a new target for specific treatment of CAD patients and a theoretical basis for personalized medicine.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingkai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
13
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Cui Y, Wang XH, Zhao Y, Chen SY, Sheng BY, Wang LH, Chen HS. Association of serum biomarkers with early neurologic improvement after intravenous thrombolysis in ischemic stroke. PLoS One 2022; 17:e0277020. [PMID: 36315566 PMCID: PMC9621449 DOI: 10.1371/journal.pone.0277020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Early neurologic improvement (ENI) after intravenous thrombolysis is associated with favorable outcome, but associated serum biomarkers were not fully determined. We aimed to investigate the issue based on a prospective cohort. METHODS In INTRECIS study, five centers were designed to consecutively collect blood sample from enrolled patients. The patients with ENI and without ENI were matched by propensity score matching with a ratio of 1:1. Preset 49 biomarkers were measured through microarray analysis. Enrichment of gene ontology and pathway, and protein-protein interaction network were analyzed in the identified biomarkers. RESULTS Of 358 patients, 19 patients with ENI were assigned to ENI group, while 19 matched patients without ENI were assigned to Non ENI group. A total of nine biomarkers were found different between two groups, in which serum levels of chemokine (C-C motif) ligand (CCL)-23, chemokine (C-X-C motif) ligand (CXCL)-12, insulin-like growth factor binding protein (IGFBP)-6, interleukin (IL)-5, lymphatic vessel endothelial hyaluronan receptor (LYVE)-1, plasminogen activator inhibitor (PAI)-1, platelet-derived growth factor (PDGF)-AA, suppression of tumorigenicity (ST)-2, and tumor necrosis factor (TNF)-α were higher in the ENI group, compared with those in the Non ENI group. CONCLUSIONS We found that serum levels of CCL-23, CXCL-12, IGFBP-6, IL-5, LYVE-1, PAI-1, PDGF-AA, ST-2, and TNF-α at admission were associated with post-thrombolytic ENI in stroke. The role of biomarkers warrants further investigation. TRIAL REGISTRATION Clinical Trial Registration: https://www.clinicaltrials.gov; identifier: NCT02854592.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Xin-Hong Wang
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People’s Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| |
Collapse
|
15
|
Guidance for Administering Biologics for Severe Asthma and Allergic Conditions. Can Respir J 2022; 2022:9355606. [PMID: 36124286 PMCID: PMC9482537 DOI: 10.1155/2022/9355606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma is a common respiratory disorder in Canada for which biologics may be prescribed for poorly controlled illness. Treatment with biologics, however, is sometimes inappropriately discontinued due to misconceptions regarding their potential immunologic effects, and concerns surrounding their continued use in severe asthma during the COVID-19 pandemic continue to propagate. Biologics can still be administered in a majority of health and treatment conditions. With regard to cardiac-related issues such as hypertension or cardiovascular disease (CVD), there is no solid evidence that suggests biologics should be withheld, as the benefits of treatment outweigh the risks. Asthmatic patients on biologic treatment should also continue treatment if they have, or are currently being treated for, a respiratory infection, including COVID-19. Evidence also indicates the importance of maintaining asthma control to reduce the risk of severe COVID-19 infection. Biologic treatment can be administered in severe asthmatic patients with bronchiectasis, though further evidence is needed to better understand the benefits. Biologic treatment should be continued postsurgery to reduce postoperative respiratory complications, as well as throughout the course of pregnancy. Regarding concerns over vaccine administration, nearly all vaccines can be given without interruption of biologic treatment in patients with severe asthma or allergic conditions. Appropriate screening for respiratory illnesses, such as COVID-19, continues to be warranted in clinical practices to reduce the risk of transmission. As recommendations from public health and regulatory agencies have been lacking, this guidance document addresses the administration of biologics in different health circumstances and respiratory illness screening during the COVID-19 pandemic.
Collapse
|
16
|
Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi GP. Allergic asthma is a risk factor for human cardiovascular diseases. NATURE CARDIOVASCULAR RESEARCH 2022; 1:417-430. [PMID: 39195946 DOI: 10.1038/s44161-022-00067-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 08/29/2024]
Abstract
Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.
Collapse
Affiliation(s)
- Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
18
|
Lutgens E, Joffre J, van Os B, Ait-Oufella H. Targeting cytokines and immune checkpoints in atherosclerosis with monoclonal antibodies. Atherosclerosis 2021; 335:98-109. [PMID: 34593238 DOI: 10.1016/j.atherosclerosis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Over the past fifteen years, treatments using monoclonal antibodies specifically targeting cytokines have been developed to treat chronic inflammatory diseases, including rheumatoid arthritis or psoriasis, both associated with increased cardiovascular risk. The cardiovascular impact of these therapies allows us to validate the clinical relevance of the knowledge acquired from experimental studies about the role of cytokines in atherosclerosis. Several clinical studies have confirmed the protective effects of anti-TNFα and anti-IL-6R monoclonal antibodies against athero-thrombotic cardiovascular risk in patients with chronic inflammatory diseases. Yet, caution is needed since anti-TNFα treatment can aggravate chronic heart failure. More recently, the CANTOS study showed for the first time that an anti-inflammatory treatment using anti-IL-1β monoclonal antibody in coronary artery disease patients significantly reduced cardiovascular events. The effects of IL-23/IL-17 axis blockade on cardiovascular risk in patients with psoriasis or arthritis remain controversial. Several monoclonal antibodies targeting costimulatory molecules have also been developed, a direct way to confirm their involvement in atherothrombotic cardiovascular diseases. Blocking the CD28-CD80/86 axis with Abatacept has been shown to reduce cardiovascular risk. In contrast, the treatment of cancer patients with antibodies blocking immune checkpoint inhibitory receptors, such as CTLA-4, PD1, or PDL1, could worsen the risk of atherothrombotic events. In the future, cardiologists will be increasingly solicited to assess the cardiovascular risk of patients suffering from chronic inflammatory diseases or cancer and participate in choosing the most appropriate treatment. At the same time, immunomodulatory approaches directly targeting cardiovascular diseases will be developed as a complement to the usual treatment strategies.
Collapse
Affiliation(s)
- Esther Lutgens
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, 80336, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Pettenkoferstraße 8a & 9, 80336, Munich, Germany.
| | - Jeremie Joffre
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France; Department of Anesthesia and Perioperative Care, UCSF School of Medicine, San Francisco, CA, USA
| | - Bram van Os
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands
| | - Hafid Ait-Oufella
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France.
| |
Collapse
|
19
|
Kim BJ, Youn DH, Chang IB, Kang K, Jeon JP. Identification of Differentially-Methylated Genes and Pathways in Patients with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage. J Korean Neurosurg Soc 2021; 65:4-12. [PMID: 34320780 PMCID: PMC8752893 DOI: 10.3340/jkns.2021.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Objective We reported the differentially methylated genes in patients with subarachnoid hemorrhage (SAH) using bioinformatics analyses to explore the biological characteristics of the development of delayed cerebral ischemia (DCI). Methods DNA methylation profiles obtained from 40 SAH patients from an epigenome-wide association study were analyzed. Functional enrichment analysis, protein-protein interaction (PPI) network, and module analyses were carried out. Results A total of 13 patients (32.5%) experienced DCI during the follow-up. In total, we categorized the genes into the two groups of hypermethylation (n=910) and hypomethylation (n=870). The hypermethylated genes referred to biological processes of organic cyclic compound biosynthesis, nucleobase-containing compound biosynthesis, heterocycle biosynthesis, aromatic compound biosynthesis and cellular nitrogen compound biosynthesis. The hypomethylated genes referred to biological processes of carbohydrate metabolism, the regulation of cell size, and the detection of a stimulus, and molecular functions of amylase activity, and hydrolase activity. Based on PPI network and module analysis, three hypermethylation modules were mainly associated with antigen-processing, Golgi-to-ER retrograde transport, and G alpha (i) signaling events, and two hypomethylation modules were associated with post-translational protein phosphorylation and the regulation of natural killer cell chemotaxis. VHL, KIF3A, KIFAP3, RACGAP1, and OPRM1 were identified as hub genes for hypermethylation, and ALB and IL5 as hub genes for hypomethylation. Conclusion This study provided novel insights into DCI pathogenesis following SAH. Differently methylated hub genes can be useful biomarkers for the accurate DCI diagnosis.
Collapse
Affiliation(s)
- Bong Jun Kim
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.,Genetic and Research Inc., Chuncheon, Korea
| |
Collapse
|
20
|
Xu JY, Xiong YY, Tang RJ, Jiang WY, Ning Y, Gong ZT, Huang PS, Chen GH, Xu J, Wu CX, Hu MJ, Xu J, Xu Y, Huang CR, Jin C, Lu XT, Qian HY, Li XD, Yang YJ. Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovasc Res 2021; 118:2165-2178. [PMID: 34259869 DOI: 10.1093/cvr/cvab237] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Interleukin (IL)-5 mediates the development of eosinophils (EOS) that are essential for tissue post-injury repair. It remains unknown whether IL-5 plays a role in heart repair after myocardial infarction (MI). This study aims to test whether IL-5-induced EOS population promotes the healing and repair process post-MI and to reveal the underlying mechanisms. METHOD AND RESULTS MI was induced by permanent ligation of the left anterior descending coronary artery in wild-type C57BL/6 mice. Western blot and real-time polymerase chain reaction revealed elevated expression of IL-5 in the heart at 5 days post-MI. Immunohistostaining indicated that IL-5 was secreted mainly from macrophages and type 2 innate lymphoid cells in the setting of experimental MI. External supply of recombinant mouse IL-5 (20 min, 1 day, and 2 days after MI surgery) reduced the infarct size and increased ejection fraction and angiogenesis in the border zone. A significant expansion of EOS was detected in both the peripheral blood and infarcted myocardium after IL-5 administration. Pharmacological depletion of EOS by TRFK5 pretreatment muted the beneficial effects of IL-5 in MI mice. Mechanistic studies demonstrated that IL-5 increased the accumulation of CD206+ macrophages in infarcted myocardium at 7 days post-MI. In vitro co-culture experiments showed that EOS shifted bone marrow-derived macrophage polarization towards the CD206+ phenotypes. This activity of EOS was abolished by IL-4 neutralizing antibody, but not IL-10 or IL-13 neutralization. Western blot analyses demonstrated that EOS promoted the macrophage downstream signal transducer and activator of transcription 6 (STAT6) phosphorylation. CONCLUSION IL-5 facilitates the recovery of cardiac dysfunction post-MI by promoting EOS accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis. TRANSLATIONAL PERSPECTIVE Accumulating evidence suggests that modulation of innate and adaptive immune responses is a promising therapeutic strategy for myocardial infarction. In this study, we demonstrate that IL-5 exerts cardioprotective effects on infarcted myocardium by promoting eosinophil accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis. Hence, regulation of cardiac IL-5 level or eosinophil count may become a therapeutic approach for post-myocardial infarction cardiac repair in humans.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chun-Xiao Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Meng-Jin Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Cun-Rong Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hai-Yan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xiang-Dong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| |
Collapse
|
21
|
Inflammation-Related Risk Loci in Genome-Wide Association Studies of Coronary Artery Disease. Cells 2021; 10:cells10020440. [PMID: 33669721 PMCID: PMC7921935 DOI: 10.3390/cells10020440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.
Collapse
|