1
|
Zhang L, Li P, Li Y, Qu W, Shi Y, Zhang T, Chen Y. The role of immunoglobins in atherosclerosis development; friends or foe? Mol Cell Biochem 2025; 480:2737-2747. [PMID: 39592554 DOI: 10.1007/s11010-024-05158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Coronary artery disease, atherosclerosis, and its life-threatening sequels impose the hugest burden on the healthcare systems throughout the world. The intricate process of atherosclerosis is considered as an inflammatory-based disorder, and therefore, the components of the immune system are involved in different stages from formation of coronary plaques to its development. One of the major effectors in this way are the antibody producing entities, the B cells. These cells, which play a significant and unique role in responding to different stress, injuries, and infections, contribute differently to the development of atherosclerosis, either inhibitory or promoting, depending on the type of subsets. B cells implicate in both systemic and local immune responses of an atherosclerotic artery by cell-cell contact, cytokine production, and antigen presentation. In particular, natural antibodies bind to oxidized lipoproteins and cellular debris, which are abundant during plaque growth. Logically, any defects in B cells and consequent impairment in antibody production may greatly affect the shaping of the plaque and its clinical outcome. In this comprehensive review, we scrutinize the role of B cells and different classes of antibodies in atherosclerosis progression besides current novel B-cell-based therapeutic approaches that aim to resolve this affliction of mankind.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Peize Li
- Department of Orthopedics, Changchun Chinese Medicine Hospital, Changchun, 130022, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wantong Qu
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanyu Shi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tianyang Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Andrews PH, Zimring JC, McNamara CA. Clinical associations and potential cellular mechanisms linking G6PD deficiency and atherosclerotic cardiovascular disease. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:16. [PMID: 40292229 PMCID: PMC12021654 DOI: 10.1038/s44324-025-00061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Glucose 6-phosphate dehydrogenase deficiency (G6PD-d) is the most common enzymopathy in the world, occurring in 5-8% of the global population (half a billion people). Recent epidemiological evidence suggests that G6PD-d may be associated with increased cardiovascular disease (CVD). Atherosclerosis is the dominant cause of CVD, including myocardial infarction, heart failure, stroke, and peripheral artery disease. Atherosclerosis, in turn, is a chronic inflammatory disease, fueled by oxidized lipids and influenced by various immune and nonimmune cells including vascular endothelial and smooth muscle cells, monocytes and macrophages, T cells, B cells, and red blood cells. Here, we review the existing epidemiological evidence supporting a role for G6PD-d in CVD in humans and explore the data on potential cellular mechanisms by which G6PD-d may exacerbate atherosclerosis.
Collapse
Affiliation(s)
- Patrick H. Andrews
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA 22903 USA
| | - James C. Zimring
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA 22903 USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903 USA
| | - Coleen A. McNamara
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA 22903 USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903 USA
| |
Collapse
|
3
|
Endo-Umeda K, Makishima M. Exploring the Roles of Liver X Receptors in Lipid Metabolism and Immunity in Atherosclerosis. Biomolecules 2025; 15:579. [PMID: 40305368 PMCID: PMC12024750 DOI: 10.3390/biom15040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models and humans. These cells interact with each other and other cells, including non-immune cells such as endothelial cells and smooth muscle cells. They thereby regulate metabolic, inflammatory, phagocytic, and cell death processes, thus affecting the progression and stability of atherosclerotic plaques. The nuclear receptors liver X receptor (LXR)α and LXRβ are transcription factors that are activated by oxysterols and regulate lipid metabolism and immune responses. LXRs regulate cholesterol homeostasis by controlling cholesterol's transport, absorption, synthesis, and breakdown in the liver and intestine. LXRs are also highly expressed in tissue-resident and monocyte-derived macrophages and other immune cells, including both myeloid cells and lymphocytes, and they regulate both innate and adaptive immune responses. Interestingly, LXRs have immunosuppressive and immunoregulatory functions that are cell-type-dependent. In animal models of atherosclerosis, LXRs have been shown to be involved in both progression and regression phases. The pharmacological activation of LXR enhances cholesterol efflux from macrophages and promotes atherosclerosis progression. Deleting LXR in immune cells, especially myeloid cells, accelerates atherosclerosis by increasing monocyte migration, macrophage proliferation and activation, and neutrophil extracellular traps (NETs); furthermore, the deletion of hematopoietic LXRs impairs the regression of atherosclerotic plaques. Therefore, LXRs in immune cells may be a potent therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | | |
Collapse
|
4
|
He SQ, Huang B, Xu F, Yang JJ, Li C, Liu FR, Yuan LQ, Lin X, Liu J. Functions and application of circRNAs in vascular aging and aging-related vascular diseases. J Nanobiotechnology 2025; 23:216. [PMID: 40098005 PMCID: PMC11917153 DOI: 10.1186/s12951-025-03199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs), constituting a novel class of endogenous non-coding RNAs generated through the reverse splicing of mRNA precursors, possess the capacity to regulate gene transcription and translation. Recently, the pivotal role of circRNAs in controlling vascular aging, as well as the pathogenesis and progression of aging-related vascular diseases, has garnered substantial attention. Vascular aging plays a crucial role in the increased morbidity and mortality of the elderly. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are crucial components of the intima and media layers of the vascular wall, respectively, and are closely involved in the mechanisms underlying vascular aging and aging-related vascular diseases. The review aims to provide a comprehensive exploration of the connection between circRNAs and vascular aging, as well as aging-related vascular diseases. Besides, circRNAs, as potential diagnostic markers or therapeutic targets for vascular aging and aging-related vascular diseases, will be discussed thoroughly, along with the challenges and limitations of their clinical application. Investigating the role and molecular mechanisms of circRNAs in vascular aging and aging-related vascular diseases will provide a novel insight into early diagnosis and therapy, and even effective prognosis assessment of these conditions.
Collapse
Affiliation(s)
- Sha-Qi He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bei Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jun-Jie Yang
- Department of Radiology, the Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Cong Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng-Rong Liu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Quality Control Center in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
5
|
Zheng Z, Lu H, Wang X, Yang Z, Zhang Y, Li K, Shen C, Yin Z, Sha M, Ye J, Zhu L. Integrative analysis of genes provides insights into the molecular and immune characteristics of mitochondria-related genes in atherosclerosis. Genomics 2025; 117:111013. [PMID: 39914597 DOI: 10.1016/j.ygeno.2025.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation in arterial walls. The role of the interplay between mitochondrial dysfunction and immune inflammation in atherosclerosis is still unclear. This study aimed to investigate the molecular characteristics and immune landscape of mitochondrial hub genes involved in atherosclerosis. Based on bioinformatics analysis, three hub Mitochondria-related DEGs (MitoDEGs), including OXCT1, UCP2, and CPT1B, were screened out and showed good diagnostic performance in identifying atherosclerosis patients and controls. Immune analysis demonstrated strong correlations between hub MitoDEGs and immune cells, such as macrophages and T cells. Additionally, the predicted transcription factors of these hub MitoDEGs were significantly enriched in Th17, Th1 and Th2 cell differentiation signaling pathways. Both cell and animal experiments confirmed the expression trends of OXCT1 and CPT1B observed in the bioinformatics analysis. These hub MitoDEGs may play an important role in coordinating mitochondrial metabolism in the immune inflammation of atherosclerosis.
Collapse
Affiliation(s)
- Zhipeng Zheng
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Huimin Lu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Xiaowen Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | - Yubin Zhang
- Dalian Medical University, Dalian 116000, China
| | - Kaiyuan Li
- Dalian Medical University, Dalian 116000, China
| | - Cheng Shen
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhifeng Yin
- Jiangsu Hanjiang Biotechnology Co., LTD, Taizhou 225300, China
| | - Min Sha
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Jun Ye
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Li Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China; Nanjing University of Chinese Medicine, Nanjing 210023, China; Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
6
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Wang Z, Li X, Moura AK, Hu JZ, Wang YT, Zhang Y. Lysosome Functions in Atherosclerosis: A Potential Therapeutic Target. Cells 2025; 14:183. [PMID: 39936975 PMCID: PMC11816498 DOI: 10.3390/cells14030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Lysosomes in mammalian cells are recognized as key digestive organelles, containing a variety of hydrolytic enzymes that enable the processing of both endogenous and exogenous substrates. These organelles digest various macromolecules and recycle them through the autophagy-lysosomal system. Recent research has expanded our understanding of lysosomes, identifying them not only as centers of degradation but also as crucial regulators of nutrient sensing, immunity, secretion, and other vital cellular functions. The lysosomal pathway plays a significant role in vascular regulation and is implicated in diseases such as atherosclerosis. During atherosclerotic plaque formation, macrophages initially engulf large quantities of lipoproteins, triggering pathogenic responses that include lysosomal dysfunction, foam cell formation, and subsequent atherosclerosis development. Lysosomal dysfunction, along with the inefficient degradation of apoptotic cells and the accumulation of modified low-density lipoproteins, negatively impacts atherosclerotic lesion progression. Recent studies have highlighted that lysosomal dysfunction contributes critically to atherosclerosis in a cell- and stage-specific manner. In this review, we discuss the mechanisms of lysosomal biogenesis and its regulatory role in atherosclerotic lesions. Based on these lysosomal functions, we propose that targeting lysosomes could offer a novel therapeutic approach for atherosclerosis, shedding light on the connection between lysosomal dysfunction and disease progression while offering new insights into potential anti-atherosclerotic strategies.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| |
Collapse
|
8
|
Bleckwehl T, Babler A, Tebens M, Maryam S, Nyberg M, Bosteen M, Halder M, Shaw I, Fleig S, Pyke C, Hvid H, Voetmann LM, van Buul JD, Sluimer JC, Das V, Baumgart S, Kramann R, Hayat S. Encompassing view of spatial and single-cell RNA sequencing renews the role of the microvasculature in human atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2025; 4:26-44. [PMID: 39715784 DOI: 10.1038/s44161-024-00582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 11/04/2024] [Indexed: 12/25/2024]
Abstract
Atherosclerosis is a pervasive contributor to ischemic heart disease and stroke. Despite the advance of lipid-lowering therapies and anti-hypertensive agents, the residual risk of an atherosclerotic event remains high, and developing therapeutic strategies has proven challenging. This is due to the complexity of atherosclerosis with a spatial interplay of multiple cell types within the vascular wall. In this study, we generated an integrative high-resolution map of human atherosclerotic plaques combining single-cell RNA sequencing from multiple studies and spatial transcriptomics data from 12 human specimens with different stages of atherosclerosis. Here we show cell-type-specific and atherosclerosis-specific expression changes and spatially constrained alterations in cell-cell communication. We highlight the possible recruitment of lymphocytes via ACKR1 endothelial cells of the vasa vasorum, the migration of vascular smooth muscle cells toward the lumen by transforming into fibromyocytes and cell-cell communication in the plaque region, indicating an intricate cellular interplay within the adventitia and the subendothelial space in human atherosclerosis.
Collapse
Affiliation(s)
- Tore Bleckwehl
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Anne Babler
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Merel Tebens
- Department of Medical Biochemistry, Vascular Cell Biology Lab at Amsterdam UMC, location AMC, Sanquin Research and Landsteiner Laboratory and Leeuwenhoek Centre for Advanced Microscopy at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, The Netherlands
| | - Sidrah Maryam
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | | | | - Maurice Halder
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac Shaw
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Susanne Fleig
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Charles Pyke
- Pathology & Imaging, Global Drug Development, Novo Nordisk A/S, Måløv, Denmark
| | - Henning Hvid
- Pathology & Imaging, Global Drug Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Jaap D van Buul
- Department of Medical Biochemistry, Vascular Cell Biology Lab at Amsterdam UMC, location AMC, Sanquin Research and Landsteiner Laboratory and Leeuwenhoek Centre for Advanced Microscopy at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, ARIM School for Cardiovascular Sciences, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| | - Vivek Das
- Digital Science and Innovation, Computational Biology - AI & Digital Research, Novo Nordisk A/S, Måløv, Denmark
| | - Simon Baumgart
- Digital Science and Innovation, Computational Biology - AI & Digital Research, Novo Nordisk A/S, Måløv, Denmark
| | - Rafael Kramann
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Sikander Hayat
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany.
| |
Collapse
|
9
|
Qing G, Yuan Z. Identification of key genes in gout and atherosclerosis and construction of molecular regulatory networks. Front Cardiovasc Med 2024; 11:1471633. [PMID: 39677038 PMCID: PMC11638179 DOI: 10.3389/fcvm.2024.1471633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Background Gout is a type of chronic inflammatory disease linked to the accumulation of monosodium urate crystals, leading to arthritis. Studies have shown that patients with gout are more likely to develop atherosclerosis, but the specific mechanisms involved remain unknown. The purpose of the research was to explore the key molecules and potential mechanisms between gout and atherosclerosis. Methods Gene expression profiles for gout as well as atherosclerosis were obtained from the Gene Expression Omnibus (GEO) database, then differential analysis was utilized to identify common differentially expressed genes (DEGs) between the two diseases. The analysis of functional enrichment was conducted to investigate the biological processes that the DEGs might be involved in. The Cytoscape software was utilized to develop a protein-protein interaction (PPI) network as well as identify hub genes, while LASSO analysis was employed to select key genes. The TRRUST database was utilized to forecast transcription factors (TFs), and the miRTarBase database was utilized to forecast miRNAs. Results Four key genes, CCL3, TNF, CCR2, and CCR5, were identified. The receiver operating characteristic (ROC) curves showed that the areas under ROC curve (AUC) for these four key genes in both gout and atherosclerosis were greater than 0.9. The analysis of functional enrichment revealed that the DEGs were primarily involved in "regulation of T-cell activation", "chemokine signaling pathway", and other biological processes. The TRRUST prediction results indicated that RELA and NFKB1 are common regulatory transcription factors for CCR2, CCR5, CCL3, and TNF. The miRTarBase prediction results showed that hsa-miR-203a-3p is a common regulatory miRNA for TNF and CCR5. Conclusion This study preliminarily explored the potential key molecules and mechanisms between gout and atherosclerosis. These findings provide new insights for further research into identifying potential biomarkers and clinical treatment strategies for these two diseases.
Collapse
|
10
|
Zierden M, Berghausen EM, Gnatzy-Feik L, Millarg C, Picard FSR, Kiljan M, Geißen S, Polykratis A, Zimmermann L, Nies RJ, Pasparakis M, Baldus S, Valasarajan C, Pullamsetti SS, Winkels H, Vantler M, Rosenkranz S. Hematopoietic PI3Kδ deficiency aggravates murine atherosclerosis through impairment of Tregs. JCI Insight 2024; 9:e155626. [PMID: 39378110 PMCID: PMC11601942 DOI: 10.1172/jci.insight.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Chronic activation of the adaptive immune system is a hallmark of atherosclerosis. As PI3Kδ is a key regulator of T and B cell differentiation and function, we hypothesized that alleviation of adaptive immunity by PI3Kδ inactivation may represent an attractive strategy counteracting atherogenesis. As expected, lack of hematopoietic PI3Kδ in atherosclerosis-prone Ldlr-/- mice resulted in lowered T and B cell numbers, CD4+ effector T cells, Th1 response, and immunoglobulin levels. However, despite markedly impaired peripheral pro-inflammatory Th1 cells and atheromatous CD4+ T cells, the unexpected net effect of hematopoietic PI3Kδ deficiency was aggravated vascular inflammation and atherosclerosis. Further analyses revealed that PI3Kδ deficiency impaired numbers, immunosuppressive functions, and stability of regulatory CD4+ T cells (Tregs), whereas macrophage biology remained largely unaffected. Adoptive transfer of wild-type Tregs fully restrained the atherosclerotic plaque burden in Ldlr-/- mice lacking hematopoietic PI3Kδ, whereas PI3Kδ-deficient Tregs failed to mitigate disease. Numbers of atheroprotective B-1 and pro-atherogenic B-2 cells as well as serum immunoglobulin levels remained unaffected by adoptively transferred wild-type Tregs. In conclusion, we demonstrate that hematopoietic PI3Kδ ablation promotes atherosclerosis. Mechanistically, we identified PI3Kδ signaling as a powerful driver of atheroprotective Treg responses, which outweigh PI3Kδ-driven pro-atherogenic effects of adaptive immune cells like Th1 cells.
Collapse
Affiliation(s)
- Mario Zierden
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Eva Maria Berghausen
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Leoni Gnatzy-Feik
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Christopher Millarg
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
| | - Felix Simon Ruben Picard
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | | | - Simon Geißen
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Apostolos Polykratis
- Institute for Genetics; and
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Lea Zimmermann
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Richard Julius Nies
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Manolis Pasparakis
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
- Institute for Genetics; and
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Chanil Valasarajan
- Center for Infection and Genomics of the Lung (CIGL), Justus Liebig University, Giessen, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Center for Infection and Genomics of the Lung (CIGL), Justus Liebig University, Giessen, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Holger Winkels
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| | - Marius Vantler
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center, Faculty of Medicine and University Hospital Cologne
- Center for Molecular Medicine Cologne (CMMC)
- Cologne Cardiovascular Research Center (CCRC)
| |
Collapse
|
11
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
12
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
13
|
Kerns S, Owen KA, Daamen A, Kain J, Grammer AC, Lipsky PE. Genetic association with autoimmune diseases identifies molecular mechanisms of coronary artery disease. iScience 2024; 27:110715. [PMID: 39262791 PMCID: PMC11387803 DOI: 10.1016/j.isci.2024.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Autoimmune patients have a significantly increased risk of developing coronary artery disease (CAD) compared to the general population. However, autoimmune patients often lack traditional risk factors for CAD and there is increasing recognition of inflammation in CAD development. In this study, we leveraged genome-wide association study (GWAS) data to understand whether there is a genetic relationship between CAD and autoimmunity. Statistical genetic comparison methods were used to identify correlated and causal SNPs between various autoimmune diseases and CAD. Pleiotropic SNPs were identified by cross-phenotype association analysis (CPASSOC) and overlap between GWAS. Causal SNPs were identified using Mendelian Randomization (MR) and Colocalization (COLOC). Using SNP-to-gene mapping, we additionally identified pleiotropic and causal genes and pathways associated between autoimmunity and CAD, which were contextualized by documentation of enrichment in individual cell types identified from coronary atherosclerotic plaques by single-cell RNA sequencing. These results provide insight into potential inflammatory therapeutic targets for CAD.
Collapse
Affiliation(s)
- Sophia Kerns
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Katherine A Owen
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Andrea Daamen
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Jessica Kain
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
- Stanford University Department of Genetics, Stanford, CA 94305, USA
| | - Amrie C Grammer
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Peter E Lipsky
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| |
Collapse
|
14
|
Chen Z, Wang Z, Cui Y, Xie H, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, Ding F, Quan W, Zhang R, Wang Y, Yan X. Serum BAFF level is associated with the presence and severity of coronary artery disease and acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:471. [PMID: 39227771 PMCID: PMC11370111 DOI: 10.1186/s12872-024-04146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between circulating levels of B cell activating factor (BAFF) and the presence and severity of coronary artery disease (CAD) and acute myocardial infarction (AMI) in humans, as its biological functions in this context remain unclear. METHODS Serum BAFF levels were measured in a cohort of 723 patients undergoing angiography, including 204 patients without CAD (control group), 220 patients with stable CAD (CAD group), and 299 patients with AMI (AMI group). Logistic regression analyses were used to assess the association between BAFF and CAD or AMI. RESULTS Significantly elevated levels of BAFF were observed in patients with CAD and AMI compared to the control group. Furthermore, BAFF levels exhibited a positive correlation with the SYNTAX score (r = 0.3002, P < 0.0001) and the GRACE score (r = 0.5684, P < 0.0001). Logistic regression analysis demonstrated that increased BAFF levels were an independent risk factor for CAD (adjusted OR 1.305, 95% CI 1.078-1.580) and AMI (adjusted OR 2.874, 95% CI 1.708-4.838) after adjusting for confounding variables. Additionally, elevated BAFF levels were significantly associated with a high GRACE score (GRACE score 155 to 319, adjusted OR 4.297, 95% CI 1.841-10.030). BAFF exhibited a sensitivity of 75.0% and specificity of 71.4% in differentiating CAD patients with a high SYNTAX score, and a sensitivity of 75.5% and specificity of 72.8% in identifying AMI patients with a high GRACE score. CONCLUSION Circulating BAFF levels serve as a valuable diagnostic marker for CAD and AMI. Elevated BAFF levels are associated with the presence and severity of these conditions, suggesting its potential as a clinically relevant biomarker in cardiovascular disease.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Yueying Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
15
|
Ransegnola BP, Pattarabanjird T, McNamara CA. Tipping the Scale: Atheroprotective IgM-Producing B Cells in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1906-1915. [PMID: 39022832 PMCID: PMC11338718 DOI: 10.1161/atvbaha.124.319847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease whose progression is fueled by proinflammatory moieties and limited by anti-inflammatory mediators. Whereas oxidative damage and the generation of oxidation-specific epitopes that act as damage-associated molecular patterns are highly inflammatory, IgM antibodies produced by B-1 and marginal zone B cells counteract unrestricted inflammation by neutralizing and encouraging clearance of these proinflammatory signals. In this review, we focus on describing the identities of IgM-producing B cells in both mice and humans, elaborating the mechanisms underlying IgM production, and discussing the potential strategies to augment the production of atheroprotective IgM. In addition, we will discuss promising therapeutic interventions in humans to help tip the scale toward augmentation of IgM production and to provide atheroprotection.
Collapse
Affiliation(s)
- Brett Patrick Ransegnola
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tanyaporn Pattarabanjird
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Wang H, Zhao R, Peng L, Yu A, Wang Y. A Dual-Function CD47-Targeting Nano-Drug Delivery System Used to Regulate Immune and Anti-Inflammatory Activities in the Treatment of Atherosclerosis. Adv Healthc Mater 2024; 13:e2400752. [PMID: 38794825 DOI: 10.1002/adhm.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Atherosclerosis is a primary contributor to cardiovascular disease. Current studies have highlighted the association between the immune system, particularly immune cells, and atherosclerosis, although treatment options and clinical trials remain scarce. Immunotherapy for cardiovascular disease is still in its infancy. Bruton's tyrosine kinase (BTK), widely expressed in various immune cells, represents a promising therapeutic target for atherosclerosis by modulating the anti-inflammatory function of immune cells. This study introduces a polydopamine-based nanocarrier system to deliver the BTK inhibitor, ibrutinib, to atherosclerotic plaques with an active targeting property via an anti-CD47 antibody. Leveraging polydopamine's pH-sensitive reversible disassembly, the system offers responsive, controlled release within the pathologic microenvironment. This allows precise and efficient ibrutinib delivery, concurrently inhibiting the activation of the NF-κB pathway in B cells and the NLRP3 inflammasome in macrophages within the plaques. This treatment also modulates both the immune cell microenvironment and inflammatory conditions in atherosclerotic lesions, thereby conveying promising therapeutic effects for atherosclerosis in vivo. This strategy also provides a novel option for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ao Yu
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Ma Z, Liu L, Tian J, Tu C, Zhang D, Zhang M, Zhang H, An Z, Sun M, Zhang H, Song X. Causal Relationships between Lymphocyte Subsets and Risk of Coronary Artery Disease: A Two-Sample Mendelian Randomization Study. Rev Cardiovasc Med 2024; 25:326. [PMID: 39355583 PMCID: PMC11440411 DOI: 10.31083/j.rcm2509326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background Currently, the causal relationship between lymphocyte subsets and coronary artery disease (CAD) remains unclear. Therefore, we utilized Mendelian randomization (MR) to assess the association between lymphocyte subsets and CAD. Methods We performed a two-sample MR analysis using publicly available genome-wide association studies (GWAS) datasets. The primary method of analysis to comprehensively evaluate causal effects was the inverse variance-weighted (IVW) method. The four additional MR approaches were MR-Egger, weighted median, simple mode, and weighted mode. Sensitivity analysis incorporated Cochran's Q and MR-Egger intercept tests to identify residual heterogeneity and potential horizontal pleiotropy, respectively. The MR-PRESSO distortion test was applied to identify potential pleiotropic outliers. Leave-one-out analysis confirmed that no single single-nucleotide polymorphism (SNP) significantly affected the MR estimate. We conducted reverse MR analysis to investigate the impact of variables correlated with outcomes in forward MR analysis. Results The IVW method revealed a significant positive association between B cell count and CAD (odds ratio (OR) = 1.08 (95% CI: 1.04, 1.11), p = 2.67 × 10-5). A similar association was observed between B cell count and myocardial infarction (MI) (OR = 1.07 (95% CI: 1.03, 1.11), p = 5.69 × 10-4). Sensitivity analyses detected no outliers, heterogeneity, or pleiotropy. The reverse MR analysis was conducted to investigate the impact of CAD and MI on B cell count, and the IVW results showed no statistical significance. Conclusions Our study suggests that a higher absolute B cell count is linked to an increased risk of CAD and MI.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Mingduo Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Hongjia Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
18
|
Cao W, Wang K, Wang J, Chen Y, Gong H, Xiao L, Pan W. Causal relationship between immune cells and risk of myocardial infarction: evidence from a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416112. [PMID: 39257847 PMCID: PMC11384581 DOI: 10.3389/fcvm.2024.1416112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hanxian Gong
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Lei Xiao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
19
|
Qi Y, Zhang Y, Guan S, Liu L, Wang H, Chen Y, Zhou Q, Xu F, Zhang Y. Common ground on immune infiltration landscape and diagnostic biomarkers in diabetes-complicated atherosclerosis: an integrated bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1381229. [PMID: 39145311 PMCID: PMC11323117 DOI: 10.3389/fendo.2024.1381229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a major cause of atherosclerosis (AS). However, definitive evidence regarding the common molecular mechanisms underlying these two diseases are lacking. This study aimed to investigate the mechanisms underlying the association between T2DM and AS. Methods The gene expression profiles of T2DM (GSE159984) and AS (GSE100927) were obtained from the Gene Expression Omnibus, after which overlapping differentially expressed gene identification, bioinformatics enrichment analyses, protein-protein interaction network construction, and core genes identification were performed. We confirmed the discriminatory capacity of core genes using receiver operating curve analysis. We further identified transcription factors using TRRUST database to build a transcription factor-mRNA regulatory network. Finally, the immune infiltration and the correlation between core genes and differential infiltrating immune cells were analyzed. Results A total of 27 overlapping differentially expressed genes were identified under the two-stress conditions. Functional analyses revealed that immune responses and transcriptional regulation may be involved in the potential pathogenesis. After protein-protein interaction network deconstruction, external datasets, and qRT-PCR experimental validation, four core genes (IL1B, C1QA, CCR5, and MSR1) were identified. ROC analysis further showed the reliable value of these core genes. Four common differential infiltrating immune cells (B cells, CD4+ T cells, regulatory T cells, and M2 macrophages) between T2DM and AS datasets were selected based on immune cell infiltration. A significant correlation between core genes and common differential immune cells. Additionally, five transcription factors (RELA, NFκB1, JUN, YY1, and SPI1) regulating the transcription of core genes were mined using upstream gene regulator analysis. Discussion In this study, common target genes and co-immune infiltration landscapes were identified between T2DM and AS. The relationship among five transcription factors, four core genes, and four immune cells profiles may be crucial to understanding T2DM complicated with AS pathogenesis and therapeutic direction.
Collapse
Affiliation(s)
- Yifei Qi
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongqin Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Chen
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
O’Brien JW, Case A, Kemper C, Zhao TX, Mallat Z. Therapeutic Avenues to Modulate B-Cell Function in Patients With Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:1512-1522. [PMID: 38813699 PMCID: PMC11208059 DOI: 10.1161/atvbaha.124.319844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The adaptive immune system plays an important role in the development and progression of atherosclerotic cardiovascular disease. B cells can have both proatherogenic and atheroprotective roles, making treatments aimed at modulating B cells important therapeutic targets. The innate-like B-cell response is generally considered atheroprotective, while the adaptive response is associated with mixed consequences for atherosclerosis. Additionally, interactions of B cells with components of the adaptive and innate immune system, including T cells and complement, also represent key points for therapeutic regulation. In this review, we discuss therapeutic approaches based on B-cell depletion, modulation of B-cell survival, manipulation of both the antibody-dependent and antibody-independent B-cell response, and emerging immunization techniques.
Collapse
Affiliation(s)
- James W. O’Brien
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Ayden Case
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.K.)
| | - Tian X. Zhao
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Department of Cardiology, Royal Papworth Hospital, Cambridge, United Kingdom (T.X.Z.)
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, France (Z.M.)
| |
Collapse
|
21
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Meher AK, McNamara CA. B-1 lymphocytes in adipose tissue as innate modulators of inflammation linked to cardiometabolic disease. Immunol Rev 2024; 324:95-103. [PMID: 38747455 PMCID: PMC11262958 DOI: 10.1111/imr.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.
Collapse
Affiliation(s)
- Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Coleen A. McNamara
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Hu H, Zhou M, Zhao Y, Mao J, Yang X. Effects of immune cells on ischemic stroke and the mediating roles of metabolites. Front Neurol 2024; 15:1405108. [PMID: 38863512 PMCID: PMC11165215 DOI: 10.3389/fneur.2024.1405108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Objective Previous studies have not shown an association between IgD-CD24-B-cell absolute count (IgD-CD24-AC) and ischemic stroke (IS). Our study aimed to assess the causal effect of IgD-CD24-AC on IS and to explore the role of ascorbic acid 2-sulfate (AA2S) as a potential mediator. Methods Our study was based on the largest available genome-wide association study (GWAS). Inverse variance weighting (IVW), MR-Egger, weighted median (WMN), simple mode, and weighted mode methods were used to assess causal effects, with IVW as the primary outcome. Subsequently, we further performed a two-step MR analysis to evaluate whether AA2S mediated this causal effect. In addition, several sensitivity analyses were conducted to evaluate heterogeneity, including Cochran's Q test, the MR-Egger intercept test, the MR-PRESSO global test, and the leave-one-out analysis. Results Using the IVW approach, the risk ratio of IgD-CD24-AC to IS was estimated to be 1.216 (95% CI = 1.079-1.371, p = 0.001). This result was supported by the WMN method (OR = 1.204, 95% CI = 1.020-1.421, p = 0.028) and the MR-Egger method (OR = 1.177, 95% CI = 0.962-1.442, p = 0.133). We also observed the same trend with the simple model and weighted model. Furthermore, the proportion of genetically predicted IgD-CD24-AC mediated through AA2S levels was 3.73%. Conclusion Our study revealed a causal relationship between IgD-CD24-AC and IS, a small part of which was mediated by AA2S. These findings offer critical insights for developing immune-targeted therapies in the future and lay a strong foundation for advancements in precision medicine.
Collapse
Affiliation(s)
| | | | | | | | - Xiaokai Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University, Third Afffliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| |
Collapse
|
24
|
You H, Han W. Identification of necroptosis-related diagnostic biomarkers in coronary heart disease. Heliyon 2024; 10:e30269. [PMID: 38726127 PMCID: PMC11079106 DOI: 10.1016/j.heliyon.2024.e30269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Background The implication of necroptosis in cardiovascular disease was already recognized. However, the molecular mechanism of necroptosis has not been extensively studied in coronary heart disease (CHD). Methods The differentially expressed genes (DEGs) between CHD and control samples were acquired in the GSE20681 dataset downloaded from the GEO database. Key necroptosis-related DEGs were captured and ascertained by bioinformatics analysis techniques, including weighted gene co-expression network analysis (WGCNA) and two machine learning algorithms, while single-gene gene set enrichment analysis (GSEA) revealed their molecular mechanisms. The diagnostic biomarkers were selected via receiver operating characteristic (ROC) analysis. Moreover, an analysis of immune elements infiltration degree was carried out. Authentication of pivotal gene expression at the mRNA level was investigated in vitro utilizing quantitative real-time PCR (qRT-PCR). Results A total of 94 DE-NRGs were recognized here, among which, FAM166B, NEFL, POLDIP3, PRSS37, and ZNF594 were authenticated as necroptosis-related biomarkers, and the linear regression model based on them presented an acceptable ability to different sample types. Following regulatory analysis, the ascertained biomarkers were markedly abundant in functions pertinent to blood circulation, calcium ion homeostasis, and the MAPK/cAMP/Ras signaling pathway. Single-sample GSEA exhibited that APC co-stimulation and CCR were more abundant, and aDCs and B cells were relatively scarce in CHD patients. Consistent findings from bioinformatics and qRT-PCR analyses confirmed the upregulation of NEFL and the downregulation of FAM166B, POLDIP3, and PRSS37 in CHD. Conclusion Our current investigation identified 5 necroptosis-related genes that could be diagnostic markers for CHD and brought a novel comprehension of the latent molecular mechanisms of necroptosis in CHD.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| |
Collapse
|
25
|
Deng X, Hou S, Wang Y, Yang H, Wang C. Genetic insights into the relationship between immune cell characteristics and ischemic stroke: A bidirectional Mendelian randomization study. Eur J Neurol 2024; 31:e16226. [PMID: 38323746 PMCID: PMC11236043 DOI: 10.1111/ene.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke, a major contributor to global disability and mortality, is underpinned by intricate pathophysiological mechanisms, notably neuroinflammation and immune cell dynamics. Prior research has identified a nuanced and often paradoxical link between immune cell phenotypes and ischemic stroke susceptibility. The aim of this study was to elucidate the potential causal links between the median fluorescence intensity (MFI) and morphological parameters (MP) of 731 immune cell types and ischemic stroke risk. METHODS By analyzing extensive genetic datasets, we conducted comprehensive Mendelian randomization (MR) analyses to discern the genetic correlations between diverse immune cell attributes (MFI and MP) and ischemic stroke risk. RESULTS Our study identified key immune cell signatures linked to ischemic stroke risk. Both B cells and T cells, among other immune cell types, have a bidirectional influence on stroke risk. Notably, the regulatory T-cell phenotype demonstrates significant neuroprotective properties, with all odds ratio (OR) values and confidence intervals (CIs) being less than 1. Furthermore, CD39 phenotype immune cells, particularly CD39+ CD8+ T cells (inverse variance weighting [IVW] OR 0.92, 95% CI 0.87-0.97; p = 0.002) and CD39+ activated CD4 regulatory T cells (IVW OR 0.93, 95% CI 0.90-0.97; p < 0.001), show notable neuroprotection against ischemic stroke. CONCLUSION This investigation provides new genetic insights into the interplay between various immune cells and ischemic stroke, underscoring the complex role of immune processes in stroke pathogenesis. These findings lay a foundation for future research, which may confirm and expand upon these links, potentially leading to innovative immune-targeted therapies for stroke prevention and management.
Collapse
Affiliation(s)
- Xia Deng
- Shandong Second Medical UniversityWeifangChina
| | - Shuai Hou
- Shandong Second Medical UniversityWeifangChina
| | - Yanqiang Wang
- Department II of NeurologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan hospitalYantaiChina
| | | |
Collapse
|
26
|
Wang M, Zhang X, Fan R, Zhang L. Causal role of immune cell traits in stroke: A Mendelian randomization study. J Stroke Cerebrovasc Dis 2024; 33:107625. [PMID: 38316285 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVES Immune mechanisms play a crucial role in the development of stroke. However, immune-related phenotypes are diverse and their associations with stroke are largely unknown. Here, we aimed to systematically explore the causal role of immune cell traits in stroke and its subtypes by leveraging data from genome-wide association studies (GWASs). MATERIALS AND METHODS Exposure data were obtained from a recent GWAS on 731 immune cell traits profiled by flow cytometry involving 3757 individuals. By conducting two-sample univariable Mendelian randomization (MR) analyses, each immune cell trait was assessed for causal relationships with stroke outcomes from the MEGASTROKE Consortium (40,585 cases and 406,111 controls). The robustness of the MR results was verified by a series of sensitivity analyses. RESULTS We identified three significant associations after Bonferroni correction (P < 1.37E-05). Increased CD27 expression on memory B cell (OR = 1.23, 95% CI = 1.14-1.33, P = 2.78E-08), IgD-CD38dim B cell (OR = 1.16, 95% CI = 1.09-1.23, P = 5.98E-06) and unswitched memory B cell (OR = 1.18, 95% CI = 1.10-1.27, P = 1.09E-05) were associated with a higher risk of large-artery atherosclerotic stroke (LAS). Furthermore, expression quantitative trait loci data also indicated elevated blood CD27 mRNA level was a risk factor for LAS (OR = 1.37, 95% CI = 1.02-1.84, P = 0.037). CONCLUSIONS This study provided genetic evidence of the causal relationship between immune cell traits and stroke, highlighting the role of CD27 on memory B cell as a novel factor for LAS risk.
Collapse
Affiliation(s)
- Maiqiu Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou, China.
| | - Xu Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou, China.
| | - Rongli Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou, China.
| | - Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China; Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou, China; School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China.
| |
Collapse
|
27
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
29
|
Zhang YJ, Huang C, Zu XG, Liu JM, Li YJ. Use of Machine Learning for the Identification and Validation of Immunogenic Cell Death Biomarkers and Immunophenotypes in Coronary Artery Disease. J Inflamm Res 2024; 17:223-249. [PMID: 38229693 PMCID: PMC10790656 DOI: 10.2147/jir.s439315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Objective Immunogenic cell death (ICD) is part of the immune system's response to coronary artery disease (CAD). In this study, we bioinformatically evaluated the diagnostic and therapeutic utility of immunogenic cell death-related genes (IRGs) and their relationship with immune infiltration features in CAD. Methods We acquired the CAD-related datasets GSE12288, GSE71226, and GSE120521 from the Gene Expression Omnibus (GEO) database and the IRGs from the GeneCards database. After identifying the immune cell death-related differentially expressed genes (IRDEGs), we developed a risk model and detected immune subtypes in CAD. IRDEGs were identified using least absolute shrinkage and selection operator (LASSO) analysis. Using a nomogram, we confirmed that both the LASSO model and ICD signature genes had good diagnostic performance. Results There was a high degree of coincidence and immune representativeness between two CAD groups based on characteristic genes and hub genes. Hub genes were associated with the interaction of neuroactive ligands with receptors and cell adhesion receptors. The two groups differed in terms of adipogenesis, allograft rejection, and apoptosis, as well as the ICD signature and hub gene expression levels. The two CAD-ICD subtypes differed in terms of immune infiltration. Conclusion Quantitative real-time PCR (qRT-PCR) correlated CAD with the expression of OAS3, ITGAV, and PIBF1. The ICD signature genes are candidate biomarkers and reference standards for immune grouping in CAD and can be beneficial in precise immune-targeted therapy.
Collapse
Affiliation(s)
- Yan-jiao Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Chao Huang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, People’s Republic of China
| | - Xiu-guang Zu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Jin-ming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yong-jun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
30
|
Pattarabanjird T, Srikakulapu P, Ransegnola B, Marshall MA, Ghosheh Y, Gulati R, Durant C, Drago F, Taylor AM, Ley K, McNamara CA. Single-cell profiling of CD11c+ B cells in atherosclerosis. Front Immunol 2024; 14:1296668. [PMID: 38259450 PMCID: PMC10800418 DOI: 10.3389/fimmu.2023.1296668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Circulating CD11c+ B cells, a novel subset of activated B cells, have been linked to autoimmunity and shown to expand with age. Atherosclerosis is an age-associated disease that involves innate and adaptive immune responses to modified self-antigens. Yet, the expression of CD11c on specific B-cell subtypes and its link to atherosclerosis are poorly understood. In this study, we characterized the frequency of CD11c+ B cells in tissues in mice with aging. We observed an age-associated increase in CD11c+ B cells in the spleen and bone marrow of ApoE-/- mice, and this was associated with an increase in aortic plaque. In addition, we also utilized single-cell multi-omics profiling of 60 human subjects undergoing advanced imaging for coronary artery disease (CAD) to subtype CD11c+ B cells and determine their frequency in subjects with high and low severity of CAD. Using unsupervised clustering, we identified four distinct clusters of CD11c+ B cells, which include CD27 and IgD double negative 2 (DN2), age-associated (ABC), CD11c+ unswitched memory (USWM), and activated Naïve (aNav) B cells. We observed an increase in the frequency of both ABC B cells and DN2 B cells in patients with high CAD severity. Pathway analysis further demonstrated augmentation of autophagy, IFNg signaling, and TLR signaling in DN2 cells in high-severity CAD patients. On the other hand, an increase in the negative regulator of BCR signaling through CD72 was found in ABC cells in low-severity CAD patients. Through investigating scRNAseq of atheroma, these DN2 cells were also found to infiltrate human coronary atheroma.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Brett Ransegnola
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Angela M. Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
31
|
Liu X, Zheng Y, Li D, Zhao Y, Lv H, Guan L, Fu S. A synergistic impact of body mass index and gamma gap on heart failure and mortality rate among older patients with coronary artery disease: a prospective study with 10-year follow-up. Nutr Diabetes 2023; 13:25. [PMID: 38052781 PMCID: PMC10697953 DOI: 10.1038/s41387-023-00255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE This prospective study with 10-year follow-up aimed to analyze potential impact of body mass index (BMI) and gamma gap on heart failure and mortality rate in older patients with coronary artery disease (CAD). METHODS There were 987 consecutive older patients with CAD included and divided into four groups according to BMI and gamma gap levels. RESULTS Median age was 86 years. The highest proportion of heart failure (46.2%) and the highest mortality rate (84.4%) was observed in patients with low BMI and high gamma gap, whereas the lowest proportion of heart failure (18.9%) and the lowest mortality rate (62.9%) was observed in those with high BMI and low gamma gap. After full adjustment in multivariate Logistic regression analysis, heart failure was most common in patients with low BMI and high gamma gap compared with those with high BMI and low gamma gap (hazard ratio [HR]: 2.82, 95% confidence interval [CI]: 1.79-4.48, P < 0.05). Meanwhile, multivariate Cox regression analysis showed that mortality rate was the highest in those with low BMI and high gamma gap compared with patients with high BMI and low gamma gap (HR: 1.65, 95% CI: 1.32-2.07, P < 0.05). CONCLUSION The combination of low BMI and high gamma gap could further promote heart failure and increase mortality rate in older patients with CAD. Future studies should explore the underlying mechanisms linking low BMI, high gamma gap, and mortality rate, as well as the potential benefits of nutritional and immunological interventions to improve health prognosis in older patients with CAD.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Rheumatology and Immunology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Yangrui Zheng
- Neurosurgery Department, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
| | - Houchen Lv
- Orthopedics Department, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Lixun Guan
- Hematology Department, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
32
|
Kott KA, Chan AS, Vernon ST, Hansen T, Kim T, de Dreu M, Gunasegaran B, Murphy AJ, Patrick E, Psaltis PJ, Grieve SM, Yang JY, Fazekas de St Groth B, McGuire HM, Figtree GA. Mass cytometry analysis reveals altered immune profiles in patients with coronary artery disease. Clin Transl Immunology 2023; 12:e1462. [PMID: 37927302 PMCID: PMC10621005 DOI: 10.1002/cti2.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023] Open
Abstract
Objective The importance of inflammation in atherosclerosis is well accepted, but the role of the adaptive immune system is not yet fully understood. To further explore this, we assessed the circulating immune cell profile of patients with coronary artery disease (CAD) to identify discriminatory features by mass cytometry. Methods Mass cytometry was performed on patient samples from the BioHEART-CT study, gated to detect 82 distinct cell subsets. CT coronary angiograms were analysed to categorise patients as having CAD (CAD+) or having normal coronary arteries (CAD-). Results The discovery cohort included 117 patients (mean age 61 ± 12 years, 49% female); 79 patients (68%) were CAD+. Mass cytometry identified changes in 15 T-cell subsets, with higher numbers of proliferating, highly differentiated and cytotoxic cells and decreases in naïve T cells. Five T-regulatory subsets were related to an age and gender-independent increase in the odds of CAD incidence when expressing CCR2 (OR 1.12), CCR4 (OR 1.08), CD38 and CD45RO (OR 1.13), HLA-DR (OR 1.06) and Ki67 (OR 1.22). Markers of proliferation and differentiation were also increased within B cells, while plasmacytoid dendritic cells were decreased. This combination of changes was assessed using SVM models in discovery and validation cohorts (area under the curve = 0.74 for both), confirming the robust nature of the immune signature detected. Conclusion We identified differences within immune subpopulations of CAD+ patients which are indicative of a systemic immune response to coronary atherosclerosis. This immune signature needs further study via incorporation into risk scoring tools for the precision diagnosis of CAD.
Collapse
Affiliation(s)
- Katharine A Kott
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Adam S Chan
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Stephen T Vernon
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Thomas Hansen
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
| | - Taiyun Kim
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Macha de Dreu
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Bavani Gunasegaran
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | | | - Ellis Patrick
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | | | - Stuart M Grieve
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of RadiologyRoyal Prince Alfred HospitalSydneyNSWAustralia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jean Y Yang
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Barbara Fazekas de St Groth
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Gemma A Figtree
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
33
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
34
|
Feng Y, Xiao X, Verfaillie C. Editorial: New insights of immune cells in cardiovascular and metabolic disorders. Front Immunol 2023; 14:1282078. [PMID: 37841242 PMCID: PMC10569415 DOI: 10.3389/fimmu.2023.1282078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiangwei Xiao
- Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
35
|
Slysz J, Sinha A, DeBerge M, Singh S, Avgousti H, Lee I, Glinton K, Nagasaka R, Dalal P, Alexandria S, Wai CM, Tellez R, Vescovo M, Sunderraj A, Wang X, Schipma M, Sisk R, Gulati R, Vallejo J, Saigusa R, Lloyd-Jones DM, Lomasney J, Weinberg S, Ho K, Ley K, Giannarelli C, Thorp EB, Feinstein MJ. Single-cell profiling reveals inflammatory polarization of human carotid versus femoral plaque leukocytes. JCI Insight 2023; 8:e171359. [PMID: 37471165 PMCID: PMC10544225 DOI: 10.1172/jci.insight.171359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Femoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles. Inflammatory foam cell-like macrophages and monocytes comprised higher proportions of myeloid cells in carotid plaques, whereas noninflammatory foam cell-like macrophages and LYVE1-overexpressing macrophages comprised higher proportions of myeloid cells in femoral plaque (P < 0.001 for all). A significant comparative excess of CCR2+ macrophages in carotid versus plaque was observed by flow cytometry in a separate validation cohort. B cells were more prevalent and exhibited a comparatively antiinflammatory profile in femoral plaque, whereas cytotoxic CD8+ T cells were more prevalent in carotid plaque. In conclusion, human femoral plaques exhibit distinct macrophage phenotypic and transcriptional profiles as well as diminished CD8+ T cell populations compared with human carotid plaques.
Collapse
Affiliation(s)
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine
| | | | | | | | - Inhyeok Lee
- Division of Cardiology, Department of Medicine
| | - Kristofor Glinton
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Shaina Alexandria
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | - Ching Man Wai
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ricardo Tellez
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Xinkun Wang
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Matthew Schipma
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ryan Sisk
- Division of Cardiology, Department of Medicine
| | - Rishab Gulati
- La Jolla Institute of Immunology, La Jolla, California, USA
| | | | | | - Donald M. Lloyd-Jones
- Division of Cardiology, Department of Medicine
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | | | | | - Karen Ho
- Division of Vascular Surgery, NUFSM, Chicago, Illinois, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta, Georgia, USA
| | - Chiara Giannarelli
- Department of Medicine and
- Department of Pathology, New York University, New York, New York, USA
| | | | - Matthew J. Feinstein
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| |
Collapse
|
36
|
Xu J, Yang Y, Li X, Ding S, Zheng L, Xiong C, Yang Y. Pleiotropic activities of succinate: The interplay between gut microbiota and cardiovascular diseases. IMETA 2023; 2:e124. [PMID: 38867936 PMCID: PMC10989957 DOI: 10.1002/imt2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant contributor to global mortality, imposing a substantial burden and emphasizing the urgent need for disease control to save lives and prevent disability. With advancements in technology and scientific research, novel mechanisms underlying CVDs have been uncovered, leading to the exploration of promising treatment targets aimed at reducing the global burden of the disease. One of the most intriguing findings is the relationship between CVDs and gut microbiota, challenging the traditional understanding of CVDs mechanisms and introducing the concept of the gut-heart axis. The gut microbiota, through changes in microbial compositions and functions, plays a crucial role in influencing local and systemic effects on host physiology and disease development, with its metabolites acting as key regulators. In previous studies, we have emphasized the importance of specific metabolites such as betaine, putrescine, trimethylamine oxide, and N,N,N-trimethyl-5-aminovaleric acid in the potential treatment of CVDs. Particularly noteworthy is the gut microbiota-associated metabolite succinate, which has garnered significant attention due to its involvement in various pathophysiological pathways closely related to CVDs pathogenesis, including immunoinflammatory responses, oxidative stress, and energy metabolism. Furthermore, we have identified succinate as a potential biomarker, highlighting its therapeutic feasibility in managing aortic dissection and aneurysm. This review aims to comprehensively outline the characteristics of succinate, including its biosynthetic process, summarize the current evidence linking it to CVDs causation, and emphasize the host-microbial crosstalk involved in modulating CVDs. The insights presented here offer a novel paradigm for future management and control of CVDs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yicheng Yang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Li
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science CenterPeking UniversityBeijingChina
| | - Changming Xiong
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejin Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
37
|
Sabat R, Šimaitė D, Gudjonsson JE, Brembach TC, Witte K, Krause T, Kokolakis G, Bartnik E, Nikolaou C, Rill N, Coulibaly B, Levin C, Herrmann M, Salinas G, Leeuw T, Volk HD, Ghoreschi K, Wolk K. Neutrophilic granulocyte-derived B-cell activating factor supports B cells in skin lesions in hidradenitis suppurativa. J Allergy Clin Immunol 2023; 151:1015-1026. [PMID: 36481267 DOI: 10.1016/j.jaci.2022.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/17/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by painful inflamed nodules, abscesses, and pus-draining tunnels appearing in axillary, inguinal, and perianal skin areas. HS lesions contain various types of immigrated immune cells. OBJECTIVE This study aimed to characterize mediators that support lesional B/plasma cell persistence in HS. METHODS Skin samples from several cohorts of HS patients and control cohorts were assessed by mRNA sequencing, quantitative PCR on reverse-transcribed RNA, flow cytometry, and immunohistofluorescence. Blood plasma and cultured skin biopsy samples, keratinocytes, dermal fibroblasts, neutrophilic granulocytes (neutrophils), monocytes, and B cells were analyzed. Complex systems biology approaches were used to evaluate bulk and single-cell RNA sequencing data. RESULTS Proportions of B/plasma cells, neutrophils, CD8+ T cells, and M0 and M1 macrophages were elevated in HS lesions compared to skin of healthy and perilesional intertriginous areas. There was an association between B/plasma cells, neutrophils, and B-cell activating factor (BAFF, aka TNFSF13B). BAFF was abundant in HS lesions, particularly in nodules and abscesses. Among the cell types present in HS lesions, myeloid cells were the main BAFF producers. Mechanistically, granulocyte colony-stimulating factor in the presence of bacterial products was the major stimulus for neutrophils' BAFF secretion. Lesional upregulation of BAFF receptors was attributed to B cells (TNFRSF13C/BAFFR and TNFRSF13B/TACI) and plasma cells (TNFRSF17/BCMA). Characterization of the lesional BAFF pathway revealed molecules involved in migration/adhesion (eg, CXCR4, CD37, CD53, SELL), proliferation/survival (eg, BST2), activation (eg, KLF2, PRKCB), and reactive oxygen species production (eg, NCF1, CYBC1) of B/plasma cells. CONCLUSION Neutrophil-derived BAFF supports B/plasma cell persistence and function in HS lesions.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Deimantė Šimaitė
- Data and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Johann Eli Gudjonsson
- Department of Dermatology, University of Michigan, and Taubman Medical Research Institute, University of Michigan Medical School, Ann Arbor, Mich
| | - Theresa-Charlotte Brembach
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Katrin Witte
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart Bartnik
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Christos Nikolaou
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Natascha Rill
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Béma Coulibaly
- Molecular Histopathology & Bio-Imaging, R&D, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Clément Levin
- Molecular Histopathology & Bio-Imaging, R&D, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Leeuw
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Duni A, Kitsos A, Bechlioulis A, Markopoulos GS, Lakkas L, Baxevanos G, Mitsis M, Vartholomatos G, Naka KK, Dounousi E. Differences in the Profile of Circulating Immune Cell Subsets in Males with Type 2 Cardiorenal Syndrome versus CKD Patients without Established Cardiovascular Disease. Biomedicines 2023; 11:biomedicines11041029. [PMID: 37189647 DOI: 10.3390/biomedicines11041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Maladaptive activation of the immune system plays a key role in the pathogenesis of chronic kidney disease (CKD). Our aim was to investigate differences in circulating immune cells between type 2 cardiorenal syndrome (CRS-2) patients and CKD patients without cardiovascular disease (CVD). CRS-2 patients were prospectively followed up, with the primary endpoint being all-cause and cardiovascular mortality. Method: A total of 39 stable males with CRS-2 and 24 male CKD patients matched for eGFR (CKD-EPI) were enrolled. A selected panel of immune cell subsets was measured by flow cytometry. Results: Compared to CKD patients, CRS-2 patients displayed higher levels of proinflammatory CD14++CD16+ monocytes (p = 0.04) and T regulatory cells (Tregs) (p = 0.03), lower lymphocytes (p = 0.04), and lower natural killer cells (p = 0.001). Decreased lymphocytes, T-lymphocytes, CD4+ T-cells, CD8+ T-cells, Tregs, and increased CD14++CD16+ monocytes were associated with mortality at a median follow-up of 30 months (p < 0.05 for all). In a multivariate model including all six immune cell subsets, only CD4+ T-lymphocytes remained independent predictors of mortality (OR 0.66; 95% CI 0.50–0.87; p = 0.004). Conclusion: Patients with CRS-2 exhibit alterations in immune cell profile compared to CKD patients of similar kidney function but without CVD. In the CRS-2 cohort, CD4+ T-lymphocytes independently predicted fatal cardiovascular events.
Collapse
|
39
|
Wang Y, Zhang L, Chen H, Yang J, Cui Y, Wang H. Coronary artery disease-associated immune gene RBP1 and its pan-cancer analysis. Front Cardiovasc Med 2023; 10:1091950. [PMID: 36970364 PMCID: PMC10034062 DOI: 10.3389/fcvm.2023.1091950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
PurposeTo identify immune-related biomarkers in coronary artery disease (CAD), investigate their possible function in the immunological milieu of tumors, and initially investigate the mechanisms and therapeutic targets shared by CAD and cancer.MethodsDownload the CAD-related dataset GSE60681 from the GEO database. GSVA and WGCNA analyses were performed based on the GSE60681 dataset to identify the modules most pertinent to CAD, identify candidate hub genes and finally intersect the genes associated with immunity downloaded from the import database to find the hub genes. The GTEx, CCLE, and TCGA database were used to examine the expression of the hub gene in normal tissues, tumor cell lines, tumor tissues, and different tumor STAGES. One-factor cox and Kaplan-Meier analyses were performed to explore the prognosis of hub genes. Hub gene methylation levels in CAD and cancer were analyzed in the diseaseMeth 3.0 and ualcan databases, respectively. R package CiberSort processed the GSE60681 dataset to assess immune infiltration in CAD. TIMER2.0 evaluated hub genes with pan-cancer immune infiltration. The hub genes were analyzed for drug sensitivity and correlation with TMB, MSI, MMR, cancer-related functional status, and immune checkpoints in different tumors. Finally, GSEA was carried out on the crucial genes.ResultsWGCNA were used to pinpoint the green modules that were most closely related to CAD and intersections with immune-related genes were taken to remember the pivotal gene RBP1. RBP1 is hypermethylated in CAD and multiple cancers. Its expression levels in different cancers were associated with poor prognosis of cancer, with significant expression levels at higher stages of cancer staging. The immune infiltration results showed that RBP1 was closely associated with CAD and tumor-associated immune infiltration. The results indicated that RBP1 was strongly correlated with TMB, MSI, MMR, cancer-associated functional status, and immune checkpoints in various cancers. RBP1 was related to the sensitivity of six anticancer drugs. GSEA showed RBP1 was associated with immune cell activation, immune response, and cancer development.ConclusionRBP1 is a pivotal gene associated with immunity in CAD and pan-cancer and may mediate the development of CAD and cancer through immunity, making it a common therapeutic target for both.
Collapse
|
40
|
Wang Z, Wang Y, Cui Y, Chen Z, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, Ding F, Quan W, Zhang R, Hu J, Yan X. Association of Serum BAFF Levels with Cardiovascular Events in ST-Segment Elevation Myocardial Infarction. J Clin Med 2023; 12:jcm12041692. [PMID: 36836225 PMCID: PMC9964977 DOI: 10.3390/jcm12041692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES The B cell activating factor (BAFF) is a B cell survival factor involved in atherosclerosis and ischemia-reperfusion (IR) injury. This study sought to investigate whether BAFF is a potential predictor of poor outcomes in patients with ST-segment elevation myocardial infarction (STEMI). METHODS We prospectively enrolled 299 patients with STEMI, and serum levels of BAFF were measured. All subjects were followed for three years. The primary endpoint was major adverse cardiovascular events (MACEs), including cardiovascular death, nonfatal reinfarction, hospitalization for heart failure (HF), and stroke. Multivariable Cox proportional hazards models were constructed to analyze the predictive value of BAFF for MACEs. RESULTS In multivariate analysis, BAFF was independently associated with risk of MACEs (adjusted HR 1.525, 95% CI 1.085-2.145; p = 0.015) and cardiovascular death (adjusted hazard ratio [HR] 3.632, 95% confidence interval [CI] 1.132-11.650, p = 0.030) after adjustment for traditional risk factors. Kaplan-Meier survival curves demonstrated that patients with BAFF levels above the cut-off value (1.46 ng/mL) were more likely to have MACEs (log-rank p < 0.0001) and cardiovascular death (log-rank p < 0.0001). In subgroup analysis, the impact of high BAFF on MACEs development was stronger in patients without dyslipidemia. Furthermore, the C-statistic and Integrated Discrimination Improvement (IDI) values for MACEs were improved with BAFF as an independent risk factor or when combined with cardiac troponin I. CONCLUSIONS This study suggests that higher BAFF levels in the acute phase are an independent predictor of the incidence of MACEs in patients with STEMI.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueying Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| | - Jian Hu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| |
Collapse
|
41
|
Meng Q, Liu H, Liu J, Pang Y, Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front Pharmacol 2023; 13:1079185. [PMID: 36703734 PMCID: PMC9871313 DOI: 10.3389/fphar.2022.1079185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Atherosclerosis is the pathological basis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is now understood to be a long-term immune-mediated inflammatory condition brought on by a complicated chain of factors, including endothelial dysfunction, lipid deposits in the artery wall, and monocyte-derived macrophage infiltration, in which both innate immunity and adaptive immunity play an indispensable role. Recent studies have shown that atherosclerosis can be alleviated by inducing a protective immune response through certain auto-antigens or exogenous antigens. Some clinical trials have also demonstrated that atherosclerotic is associated with the presence of immune cells and immune factors in the body. Therefore, immunotherapy is expected to be a new preventive and curative measure for atherosclerosis. In this review, we provide a summary overview of recent progress in the research of immune mechanisms of atherosclerosis and targeted therapeutic pathways.
Collapse
Affiliation(s)
- Qingwen Meng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, China
| | - Huajiang Liu
- Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinteng Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yangyang Pang
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China,*Correspondence: Qibing Liu,
| |
Collapse
|
42
|
Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol 2022; 13:977490. [PMID: 36267275 PMCID: PMC9576927 DOI: 10.3389/fphar.2022.977490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the pathological basis of various vascular diseases, including those with high mortality, such as myocardial infarction and stroke. However, its pathogenesis is complex and has not been fully elucidated yet. Over the past few years, single-cell RNA sequencing (scRNA-seq) has been developed and widely used in many biological fields to reveal biological mechanisms at the cellular level and solve the problems of cellular heterogeneity that cannot be solved using bulk RNA sequencing. In this review, we briefly summarize the existing scRNA-seq technologies and focus on their application in atherosclerosis research to provide insights into the occurrence, development and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
43
|
Ballester-Servera C, Cañes L, Alonso J, Puertas L, Taurón M, Rodríguez C, Martínez-González J. Nuclear receptor NOR-1 (Neuron-derived Orphan Receptor-1) in pathological vascular remodelling and vascular remodelling. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2022; 34:229-243. [PMID: 35581107 DOI: 10.1016/j.arteri.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
Vascular cells and their interaction with inflammatory cells and the immune system play a key role in pathological vascular remodeling. A large number of genes and proteins regulated in a coordinated manner by a small number of transcription factors are involved in this process. In recent years, research on a small subfamily of transcription factors, the NR4A subfamily, has had a major impact on our understanding of vascular biology. The NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (NOR-1) receptors are products of early response genes whose expression is induced by multiple pathophysiological and physical stimuli. Their wide distribution in different tissues and cells places them in the control of numerous processes such as cell differentiation, proliferation, survival and apoptosis, as well as inflammation and the metabolism of lipids and carbohydrates. This review analyzes the role of these receptors, particularly NOR-1, in pathological vascular remodeling associated with atherosclerosis, abdominal aortic aneurysm and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España
| | - Lidia Puertas
- Instituto de Investigación Biomédica Sant Pau, Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España
| | - Manel Taurón
- Servicio de Cirugía Cardiovascular, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España.
| |
Collapse
|
44
|
Mallat Z, Binder CJ. The why and how of adaptive immune responses in ischemic cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:431-444. [PMID: 36382200 PMCID: PMC7613798 DOI: 10.1038/s44161-022-00049-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of disability and death worldwide. Most therapeutic approaches target traditional risk factors but ignore the fundamental role of the immune system. This is a huge unmet need. Recent evidence indicates that reducing inflammation may limit cardiovascular events. However, the concomitant increase in the risk of lifethreatening infections is a major drawback. In this context, targeting adaptive immunity could constitute a highly effective and safer approach. In this Review, we address the why and how of the immuno-cardiovascular unit, in health and in atherosclerotic disease. We review and discuss fundamental mechanisms that ensure immune tolerance to cardiovascular tissue, and examine how their disruption promotes disease progression. We identify promising strategies to manipulate the adaptive immune system for patient benefit, including novel biologics and RNA-based vaccination strategies. Finally, we advocate for establishing a molecular classification of atherosclerosis as an important milestone in our quest to radically change the understanding and treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
- Unversité de Paris, and INSERM U970, Paris Cardiovascular Research Centre, Paris, France
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Pattarabanjird T, Marshall M, Upadhye A, Srikakulapu P, Garmey J, Haider A, Taylor AM, Lutgens E, McNamara CA. B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection. Circ Res 2022; 130:981-993. [PMID: 35209718 PMCID: PMC9075598 DOI: 10.1161/circresaha.121.320436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers, leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet, the mechanism underlying this regulation remains unexplored. METHODS Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS Through RNA sequencing, P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 and activating NF-κB (nuclear factor kappa B), leading to subsequent C-MYC upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings, P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing SNP (rs11574) in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover, analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects, suggesting P62 as a new immunomodulatory target for treating atherosclerosis.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Melissa Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Aditi Upadhye
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - James Garmey
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Antony Haider
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Angela M. Taylor
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany; and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Correspondence: Corresponding Author, , Phone: 434-243-5854, Address: 345 Crispell Dr. Charlottesville, VA 22908
| |
Collapse
|
46
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
47
|
Inflammatory Cells in Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11020233. [PMID: 35204116 PMCID: PMC8868126 DOI: 10.3390/antiox11020233] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a chronic progressive disease that involves damage to the intima, inflammatory cell recruitment and the accumulation of lipids followed by calcification and plaque rupture. Inflammation is considered a key mediator of many events during the development and progression of the disease. Various types of inflammatory cells are reported to be involved in atherosclerosis. In the present paper, we discuss the involved inflammatory cells, their characteristic and functional significance in the development and progression of atherosclerosis. The detailed understanding of the role of all these cells in disease progression at different stages sheds more light on the subject and provides valuable insights as to where and when therapy should be targeted.
Collapse
|
48
|
Pattarabanjird T, Wilson JM, Erickson LD, Workman LJ, Qiao H, Ghosheh Y, Gulati R, Durant C, Vallejo J, Saigusa R, Platts-Mills TAE, Taylor AM, Ley K, McNamara CA. Chemokine Receptor Activation Enhances Memory B Cell Class Switching Linked to IgE Sensitization to Alpha Gal and Cardiovascular Disease. Front Cardiovasc Med 2022; 8:791028. [PMID: 35097011 PMCID: PMC8793803 DOI: 10.3389/fcvm.2021.791028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Recent studies have suggested that IgE sensitization to α-gal is associated with coronary artery disease (CAD). However, the B cell subtype(s) responsible for production of IgE to α-gal and mechanisms mediating this production remain elusive. Methods: Single cell multi-omics sequencing, was utilized to phenotype B cells obtained from 60 subjects that had undergone coronary angiography in whom serum IgE was evaluated by ImmunoCAP. Bioinformatics approaches were used to identify B cell subtype(s) and transcriptomic signatures associated with α-gal sensitization. In vitro characterization of chemokine/chemokine receptor pairs on switched memory B cells associated with IgE to α-gal was performed. Results: Of the 60 patients, 17 (28%) were positive for IgE to α-gal. CITESeq identified CCR6+ class-switched memory (SWM) B cells and CXCR4 expresssion on these CCR6+ SWM B cells as significantly associated with IgE sensitization to α-gal but not to other common allergens (peanut or inhalants). In vitro studies of enriched human B cells revealed significantly greater IgE on SWM B cells with high CCR6 and CXCR4 expression 10 days after cells were treated with IL-4 and CD40 to stimulate class switch recombination. Both CCL20 (CCR6 ligand) and CXCL12 (ligand for CXCR4) increased the expression of IgE on SWM B cells expressing their receptors. However, they appeared to have unique pathways mediating this effect as only CCL20 increased activation-induced cytidine deaminase (AID), while CXCL12 drove proliferation of CXCR4+ SWM B cells. Lastly, correlation analysis indicated an association between CAD severity and the frequency of both CCR6+ SWM and CXCR4+ SWM B cells. Conclusions: CCR6+ SWM B cells were identified as potential producers of IgE to α-gal in CAD patients. Additionally, our findings highlighted non-chemotaxis roles of CCL20/CCR6 and CXCL12/CXCR4 signaling in mediating IgE class switching and cell proliferation of SWM B cells respectively. Results may have important implications for a better understanding and better therapeutic approaches for subjects with IgE sensitization to α-gal.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Loren D. Erickson
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Lisa J. Workman
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hui Qiao
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Yanal Ghosheh
- La Jolla Institute of Immunology, La Jolla, CA, United States
| | - Rishab Gulati
- La Jolla Institute of Immunology, La Jolla, CA, United States
| | | | - Jenifer Vallejo
- La Jolla Institute of Immunology, La Jolla, CA, United States
| | - Ryosuke Saigusa
- La Jolla Institute of Immunology, La Jolla, CA, United States
| | - Thomas A. E. Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Angela M. Taylor
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Klaus Ley
- La Jolla Institute of Immunology, La Jolla, CA, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Coleen A. McNamara
| |
Collapse
|
49
|
Yoshimatsu H, Kataoka K, Fujihashi K, Miyake T, Ono Y. A nasal double DNA adjuvant system induces atheroprotective IgM antibodies via dendritic cell-B-1a B cell interactions. Vaccine 2022; 40:1116-1127. [DOI: 10.1016/j.vaccine.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
|
50
|
Martínez-González J, Cañes L, Alonso J, Ballester-Servera C, Rodríguez-Sinovas A, Corrales I, Rodríguez C. NR4A3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling, and Beyond. Int J Mol Sci 2021; 22:ijms222111371. [PMID: 34768801 PMCID: PMC8583700 DOI: 10.3390/ijms222111371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.
Collapse
Affiliation(s)
- José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Irene Corrales
- Laboratorio de Coagulopatías Congénitas, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain;
- Medicina Transfusional, Vall d’Hebron Institut de Recerca-Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| |
Collapse
|