1
|
Bento R, Scheller J, Parekkadan B. Intratumoral Delivery of Genetically Engineered Anti-IL-6 Trans-signaling Therapeutics. Mol Biotechnol 2025; 67:2696-2708. [PMID: 38980514 PMCID: PMC12119671 DOI: 10.1007/s12033-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Interleukin-6 (IL-6) is a highly pro-inflammatory cytokine involved in the etiopathology of several inflammatory diseases and cancer. As so, the inhibition of IL-6 signaling pathways has emerged as an attractive therapeutic avenue for the treatment of several chronic diseases. Since IL-6 trans-signaling was described as the pathological branch of IL-6, selective inhibitors were developed. Next-generation variants with increased trans-signaling specificity and potency emerged as great candidates for the treatment of several diseases, with reduced off-target effects. The highly time-consuming and costly processes involving recombinant protein production, however, have hampered the progress of anti-cytokine pharmaceuticals in clinic so far. Herein, we developed gene therapeutic modalities of IL-6-trans-signaling inhibitors as alternatives for sustained recombinant protein secretion. By using an IL-6-dependent lymphoma cell line and xenograft tumor model, we demonstrated the superior inhibitory potential of second-generation anti-IL-6 trans-signaling therapeutic. We compared the efficiency of distinct gene delivery modalities using a bioluminescent biomarker probe and observed consistent protein production via cell-based delivery. When delivered intratumorally, genetically engineered sgp130FlyRFc-secreting cells significantly reduced tumor burden and increased animal survival, representing a promising therapeutic avenue to be explored in clinically relevant gene delivery applications.
Collapse
Affiliation(s)
- Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Holthaus M, Xiong X, Eghbalzadeh K, Großmann C, Geißen S, Piontek F, Mollenhauer M, Abdallah AT, Kamphausen T, Rothschild M, Wahlers T, Paunel-Görgülü A. Loss of peptidylarginine deiminase 4 mitigates maladaptive cardiac remodeling after myocardial infarction through inhibition of inflammatory and profibrotic pathways. Transl Res 2025; 280:1-16. [PMID: 40252995 DOI: 10.1016/j.trsl.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Inflammation and progressive fibrosis represent predictive risk factors for heart failure (HF) development following myocardial infarction (MI). Peptidylargininine deiminase 4 (PAD4) catalyzes the citrullination of arginine residues in polypeptides and has recently been identified as a contributor to HF pathogenesis. This study aimed to evaluate the role of PAD4 in monocytes / macrophages (Mo/Mφ) and cardiac fibroblasts (CFs) for cardiac repair following MI and HF progression. Cardiac Padi4 expression significantly increased in mice subjected to MI by permanent coronary artery ligation as well as in humans who died from MI. Transcriptome analysis revealed marked downregulation of inflammation-related genes in infarcted hearts and cardiac Mo/Mφ from global PAD4 knockout (PAD4-/-) mice on day 7 post-MI accompanied by increased frequency of reparative CD206+ macrophages. Mechanistically, pharmacological and genetic PAD4 inhibition abrogated nuclear NF-κB translocation and inflammatory gene expression in bone marrow-derived macrophages (BMDM). Simultaneously, reduced inflammation and diminished cardiac levels of transforming growth factor-β (TGF-β) along with impaired IL-6 / TGF-β signaling in PAD4-/- CFs were associated with decreased expression of fibrotic genes, reduced collagen deposition, improved cardiac function, and enhanced 28-day survival in PAD4-/- mice. Strikingly, whereas pharmacological PAD inhibition in the acute phase after MI exacerbated cardiac damage, treatment starting on day 7 ameliorated cardiac remodeling and improved long-term survival in mice. Collectively, we here identified PAD4 as a critical regulator of inflammatory genes in Mo/Mφ and of profibrotic pathways in CFs. Thus, therapeutic approaches directed against PAD4 are promising interventions to alleviate adverse cardiac remodeling and subsequent HF development.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clara Großmann
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabian Piontek
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne Germany
| | - Thomas Kamphausen
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Rothschild
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Yu JF, Dong Q, Du YM. Interleukin-6: Molecular Mechanisms and Therapeutic Perspectives in Atrial Fibrillation. Curr Med Sci 2025; 45:157-168. [PMID: 40035997 DOI: 10.1007/s11596-025-00021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical, structural, and autonomic remodeling of the atria. AF is closely associated with elevated interleukin-6 (IL-6) levels, which contribute to atrial remodeling and the progression of AF. This review summarizes the mechanisms by which IL-6 promotes AF through inflammatory pathways, atrial fibrosis, electrical remodeling, and calcium mishandling. Experimental models have demonstrated that IL-6 neutralization reduces the incidence of AF, highlighting its potential as a therapeutic target. Future studies should focus on IL-6 blockade strategies to manage AF, aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Jin-Fang Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Garbers C. No evidence for paradoxical effects of tocilizumab in rodents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04021-1. [PMID: 40072557 DOI: 10.1007/s00210-025-04021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with important functions in health and disease. In order to activate its target cells, IL-6 binds first to the IL-6 receptor (IL-6R), which in turn induces the recruitment and homodimerization of the signal-transducing β-receptor gp130 and the activation of intracellular signaling cascades, including the phosphoinositide 3-kinase (PI3K)-AKT cascade. IL-6 is involved in the pathogenesis of multiple inflammatory diseases, and tocilizumab, a monoclonal antibody that binds to the IL-6R and thus blocks the biological activities of IL-6, is in clinical use worldwide for the treatment of patients with inflammatory diseases, including rheumatoid arthritis. Recently, Weng and colleagues published a paper in Naunyn-Schmiedeberg's Archives of Pharmacology describing paradoxical effects of tocilizumab when used on murine cells in vitro and in a rat model of acute lung injury in vivo. In this communication, I provide evidence that the results presented by Weng and colleagues are not compatible with what is known about the biology of IL-6 and highlight why the provided evidence is insufficient to believe that tocilizumab shows the reported paradoxical effects in rodents.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Mendelson JB, Sternbach JD, Moon RA, Hartweck LM, Clark SR, Tollison W, Lahti MT, Carney JP, Markowski T, Higgins L, Kazmirczak F, Prins KW. Glycoprotein 130 Antagonism Counteracts Metabolic and Inflammatory Alterations to Enhance Right Ventricle Function in Pulmonary Artery Banded Pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633954. [PMID: 39896622 PMCID: PMC11785131 DOI: 10.1101/2025.01.20.633954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Right ventricular dysfunction (RVD) is a risk factor for death in multiple cardiovascular diseases, but RV-enhancing therapies are lacking. Inhibition of glycoprotein-130 (GP130) signaling with the small molecule SC144 improves RV function in rodent RVD via anti-inflammatory and metabolic mechanisms. However, SC144's efficacy and molecular effects in a translational large animal model of RVD are unknown. Methods 4-week-old castrated male pigs underwent pulmonary artery banding (PAB). After 3 weeks, PAB pigs were randomized into 2 groups (daily injections of SC144 [2.2 mg/kg, PAB-SC144, n=5] or vehicle [PAB-Veh, n=5] for 3 weeks). Five age-matched pigs served as controls. Cardiac MRI quantified RV size/function. Right heart catheterization evaluated hemodynamics. Single-nucleus RNA sequencing delineated cell-type specific changes between experimental groups. Electron microscopy evaluated RV mitochondrial morphology. Phosphoproteomics identified dysregulated RV kinases. Lipidomics and metabolomics quantified lipid species and metabolites in RV tissue. Quantitative proteomics examined RV mitochondrial protein regulation. Results SC144 significantly improved RV ejection fraction (Control: 60±4%, PAB-Veh: 22±10%, PAB-SC144: 37±6%) despite similar RV afterload. Single-nucleus RNA sequencing demonstrated PAB-Veh pigs had lower cardiomyocyte and higher macrophage/lymphocyte/pericyte/endothelial cell abundances as compared to control, and many of these changes were blunted by SC144. SC144 combatted the downregulation of cardiomyocyte metabolic genes induced by PAB. Kinome enrichment analysis suggested SC144 counteracted RV mTORC1 activation. Correspondingly, SC144 rebalanced RV autophagy pathway proteins and improved mitochondrial morphology. Integrated lipidomics, metabolomics, and proteomics analyses revealed SC144 restored fatty acid metabolism. Finally, CellChat analysis revealed SC144 restored pericyte-endothelial cell cross-talk. Conclusion GP130 antagonism blunts elevated immune cell abundance, reduces pro-inflammatory gene transcription in macrophages and lymphocytes, rebalances autophagy and preserves fatty acid metabolism in cardiomyocytes, and restores endothelial cell and pericyte communication to improve RV function.
Collapse
Affiliation(s)
- Jenna B Mendelson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | - Jacob D Sternbach
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Ryan A Moon
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Lynn M Hartweck
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sophia R Clark
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Walt Tollison
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Matthew T Lahti
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - John P Carney
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Todd Markowski
- Center for Metabolomics and Proteomics, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - LeeAnn Higgins
- Center for Metabolomics and Proteomics, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Felipe Kazmirczak
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Muñoz-García N, Cordero A, Padro T, Mendieta G, Vilahur G, Flores E, Badimon L. First time ACS in patients with on-target lipid levels: Inflammation at admission and re-event rate at follow-up. Eur J Clin Invest 2024; 54:e14305. [PMID: 39159006 DOI: 10.1111/eci.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Dyslipidaemia, inflammation and elevated Lp(a) levels are associated with the progression of atherosclerosis. This study investigates whether patients with a first-time presentation of chest pain and on-target LDL-C levels and intermediate FRS/ESC-Score risks, display a high inflammatory burden linked to myocardial injury and whether inflammation at admission affects the re-event rate up to 6 years follow-up. METHODS Blind assessments of novel inflammatory markers such as Glycoprotein A and B via nuclear magnetic resonance (NMR), cytokines, hsCRP, Neutrophil-to-Lymphocyte ratio (NLR) and Lipoprotein(a) levels were examined. Out of 198 chest pain patients screened, 97 met the inclusion criteria at admission. RESULTS cTnI(+) patients (>61 ng/L) with elevated Lipoprotein(a), showed significantly increased levels of Glycoprotein A and B, hsCRP, IL-6, a high NLR and a reduced left ventricular ejection fraction (%) compared to cTnI(-) individuals. Those patients, with a higher inflammatory burden at hospital admission (hsCRP, IL-6, Glycoprotein A and B, and Lipoprotein(a)) had a higher re-event rate at follow-up. CONCLUSIONS Inflammation and Lipoprotein(a) levels were particularly prominent in patients presenting with reduced left ventricular ejection fraction. Notably, Glycoproteins A/B emerge as novel markers of inflammation in these patients. Our study highlights the significantly higher impact of inflammatory burden in patients with chest pain and high level of myocardial damage than in those with lower myocardial affectation, even when they all had lipid levels well controlled. Inflammation at the time of admission influenced the re-event rate over a follow-up period of up to 6 years.
Collapse
Affiliation(s)
- Natàlia Muñoz-García
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, Spain
- Medical School, Universtitat de Barcelona, Barcelona, Spain
| | - Alberto Cordero
- Cardiology Department, Hospital IMED Elche, Elche, Spain
- Unidad de Investigación en Cardiología. Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Teresa Padro
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guiomar Mendieta
- Cardiology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Gemma Vilahur
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Flores
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departamento de Análisis Clínicos, Hospital Universitario de San Juan, Alicante, Spain
| | - Lina Badimon
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Research Chair, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
9
|
Liu H, Magaye R, Kaye DM, Wang BH. Heart failure with preserved ejection fraction: The role of inflammation. Eur J Pharmacol 2024; 980:176858. [PMID: 39074526 DOI: 10.1016/j.ejphar.2024.176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Heart failure (HF) is a debilitating clinical syndrome affecting 64.3 million patients worldwide. More than 50% of HF cases are attributed to HF with preserved ejection fraction (HFpEF), an entity growing in prevalence and mortality. Although recent breakthroughs reveal the prognostic benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in HFpEF, there is still a lack of effective pharmacological therapy available. This highlights a major gap in medical knowledge that must be addressed. Current evidence attributes HFpEF pathogenesis to an interplay between cardiometabolic comorbidities, inflammation, and renin-angiotensin-aldosterone-system (RAAS) activation, leading to cardiac remodelling and diastolic dysfunction. However, conventional RAAS blockade has demonstrated limited benefits in HFpEF, which emphasises that alternative therapeutic targets should be explored. Presently, there is limited literature examining the use of anti-inflammatory HFpEF therapies despite growing evidence supporting its importance in disease progression. Hence, this review aims to explore current perspectives on HFpEF pathogenesis, including the importance of inflammation-driven cardiac remodelling and the therapeutic potential of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Hongyi Liu
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia; Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Ruth Magaye
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - David M Kaye
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Bing H Wang
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia; Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
10
|
Aromolaran KA, Corbin A, Aromolaran AS. Obesity Arrhythmias: Role of IL-6 Trans-Signaling. Int J Mol Sci 2024; 25:8407. [PMID: 39125976 PMCID: PMC11313575 DOI: 10.3390/ijms25158407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease that is rapidly increasing in prevalence and affects more than 600 million adults worldwide, and this figure is estimated to increase by at least double by 2030. In the United States, more than one-third of the adult population is either overweight or obese. The global obesity epidemic is a major risk factor for the development of life-threatening arrhythmias occurring in patients with long QT, particularly in conditions where multiple heart-rate-corrected QT-interval-prolonging mechanisms are simultaneously present. In obesity, excess dietary fat in adipose tissue stimulates the release of immunomodulatory cytokines such as interleukin (IL)-6, leading to a state of chronic inflammation in patients. Over the last decade, increasing evidence has been found to support IL-6 signaling as a powerful predictor of the severity of heart diseases and increased risk for ventricular arrhythmias. IL-6's pro-inflammatory effects are mediated via trans-signaling and may represent a novel arrhythmogenic risk factor in obese hearts. The first selective inhibitor of IL-6 trans-signaling, olamkicept, has shown encouraging results in phase II clinical studies for inflammatory bowel disease. Nevertheless, the connection between IL-6 trans-signaling and obesity-linked ventricular arrhythmias remains unexplored. Therefore, understanding how IL-6 trans-signaling elicits a cellular pro-arrhythmic phenotype and its use as an anti-arrhythmic target in a model of obesity remain unmet clinical needs.
Collapse
Affiliation(s)
- Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (K.A.A.); (A.C.)
| | - Andrea Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (K.A.A.); (A.C.)
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (K.A.A.); (A.C.)
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
11
|
Wang MJ, Zhang HL, Chen F, Guo XJ, Liu QG, Hou J. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Exp Hematol Oncol 2024; 13:62. [PMID: 38890694 PMCID: PMC11184755 DOI: 10.1186/s40164-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine and exerts its complex biological functions mainly through three different signal modes, called cis-, trans-, and cluster signaling. When IL-6 binds to its membrane or soluble receptors, the co-receptor gp130 is activated to initiate downstream signaling and induce the expression of target genes. In the liver, IL-6 can perform its anti-inflammatory activities to promote hepatocyte reprogramming and liver regeneration. On the contrary, IL-6 also exerts the pro-inflammatory functions to induce liver aging, fibrosis, steatosis, and carcinogenesis. However, understanding the roles and underlying mechanisms of IL-6 in liver physiological and pathological processes is still an ongoing process. So far, therapeutic agents against IL‑6, IL‑6 receptor (IL‑6R), IL-6-sIL-6R complex, or IL-6 downstream signal transducers have been developed, and determined to be effective in the intervention of inflammatory diseases and cancers. In this review, we summarized and highlighted the understanding of the double-edged effects of IL-6 in liver homeostasis, aging, inflammation, and chronic diseases, for better shifting the "negative" functions of IL-6 to the "beneficial" actions, and further discussed the potential therapeutic effects of targeting IL-6 signaling in the clinics.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Hai-Ling Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Neurology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiao-Jing Guo
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Qing-Gui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China.
| |
Collapse
|
12
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
13
|
Sun M, Mao S, Wu C, Zhao X, Guo C, Hu J, Xu S, Zheng F, Zhu G, Tao H, He S, Hu J, Zhang Y. Piezo1-Mediated Neurogenic Inflammatory Cascade Exacerbates Ventricular Remodeling After Myocardial Infarction. Circulation 2024; 149:1516-1533. [PMID: 38235590 DOI: 10.1161/circulationaha.123.065390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.
Collapse
Affiliation(s)
- Meiyan Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, China (M.S.)
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Chao Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Xiaoyong Zhao
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (X.Z.)
| | - Chengxiao Guo
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Jun Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Shijin Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, China (F.Z., G.Z.)
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, China (F.Z., G.Z.)
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| | - Ji Hu
- Laboratory of Stress Neurobiology, School of Life Science and Technology, ShanghaiTech University, China (J.H.)
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.)
| |
Collapse
|
14
|
Li T, Li Y, Zeng Y, Zhou X, Zhang S, Ren Y. Construction of preclinical evidence for propofol in the treatment of reperfusion injury after acute myocardial infarction: A systematic review and meta-analysis. Biomed Pharmacother 2024; 174:116629. [PMID: 38640712 DOI: 10.1016/j.biopha.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Propofol, a commonly used intravenous anesthetic, has demonstrated potential in protecting against myocardial ischemia/reperfusion injury (MIRI) based on preclinical animal studies. However, the clinical benefits of propofol in this context are subject to debate. We conducted a systematic search across eight databases to identify all relevant animal studies investigating the preventive effects of propofol on MIRI until October 30, 2023. We assessed the methodological quality of the included studies using SYRCLE's bias risk tool. Statistical analysis was performed using STATA 15.1. The primary outcome measures analyzed in this study were myocardial infarct size (IS) and myocardial injury biomarkers. This study presents a comprehensive analysis of 48 relevant animal studies investigating propofol's preventive effects on MIRI. Propofol administration demonstrated a reduction in myocardial IS and decreased levels of myocardial injury biomarkers (CK-MB, LDH, cTnI). Moreover, propofol improved myocardial function parameters (+dp/dtmax, -dP/dtmax, LVEF, LVFS), exhibited favorable effects on inflammatory markers (IL-6, TNF-α) and oxidative stress markers (SOD, MDA), and reduced myocardial cell apoptotic index (AI). These findings suggest propofol exerts cardioprotective effects by reducing myocardial injury, decreasing infarct size, and improving heart function. However, the absence of animal models that accurately represent comorbidities such as aging and hypertension, as well as inconsistent administration methods that align with clinical practice, may hinder its clinical translation. Further robust investigations are required to validate these findings, elucidate the underlying mechanisms of propofol, and facilitate its potential translation into clinical practice.
Collapse
Affiliation(s)
- Tao Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Li
- Cardiology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Samoilova EV, Korotaeva AА, Zhirov IV, Aksenova YO, Nasonova SN, Tereschenko SN. Interleukin 6 Signalling in Heart Failure With Preserved and Reduced Ejection Fraction. KARDIOLOGIIA 2024; 64:34-39. [PMID: 38597760 DOI: 10.18087/cardio.2024.3.n2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/29/2023] [Indexed: 04/11/2024]
Abstract
AIM Identification of interleukin-6 (IL-6) signaling pathways in patients with chronic heart failure (CHF). MATERIAL AND METHODS The diversity of IL-6 effects is due to the presence of classical signaling and trans-signaling pathways. The study included 164 patients with CHF hospitalized for acute decompensated heart failure (ADHF), of which 129 had reduced left ventricular ejection fraction (HFrEF), and 35 had preserved ejection fraction (HFpEF). Blood concentrations of IL-6, soluble IL-6 receptor (sIL-6R), soluble transducer protein gp130 (sgp130), and high-sensitivity C-reactive protein (hsCRP) were measured. RESULTS Patients with HFpEF had lower concentrations of IL-6 (6.15 [2.78, 10.65] pg/ml) and hsCRP (11.27 [5.84, 24.40] mg/ml) than patients with HFrEF (9.20 [4.70; 15.62] pg/ml and 17.23 [8.70; 34.51 mg/ml], respectively). In contrast, concentrations of rIL-6R were higher in HFpEF (59.06 [40.00; 75.85] ng/ml) than in HFrEF (49.15 [38.20; 64.89] ng/ml). Concentrations of sgp130 were not significantly different. In patients with HFrEF, positive correlations were found between the concentrations of IL-6 and hsCRP, IL-6 and rIL-6R, and IL-6 and sgp130, while in patients with HFpEF, there was a correlation only between IL-6 and hsCRP, which appeared stronger than in patients with HFrEF (r=0.698; p<0.001 and r=0.297; p<0.05, respectively). CONCLUSION Classical IL-6 signaling and trans-signaling are expressed to different degrees in patients with HFrEF and HFpEF in ADHF. The results of the study supplement the existing knowledge about the pathogenesis of inflammation in CHF and may contribute to the development of new methods and approaches to the treatment of the disease.
Collapse
Affiliation(s)
- E V Samoilova
- Chazov National Medical Research Center of Cardiology, Moscow
| | - A А Korotaeva
- Chazov National Medical Research Center of Cardiology, Moscow
| | - I V Zhirov
- Chazov National Medical Research Center of Cardiology, Moscow
| | - Yu O Aksenova
- Chazov National Medical Research Center of Cardiology, Moscow
| | - S N Nasonova
- Chazov National Medical Research Center of Cardiology, Moscow
| | - S N Tereschenko
- Chazov National Medical Research Center of Cardiology, Moscow
| |
Collapse
|
16
|
Widjaja AA, Cook SA. Nonspecific Inhibition of IL6 Family Cytokine Signalling by Soluble gp130. Int J Mol Sci 2024; 25:1363. [PMID: 38338642 PMCID: PMC10855816 DOI: 10.3390/ijms25031363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
IL6 is a proinflammatory cytokine that binds to membrane-bound IL6 receptor (IL6R) or soluble IL6R to signal via gp130 in cis or trans, respectively. We tested the hypothesis that sgp130Fc, which is believed to be a selective IL6 trans-signalling inhibitor, is in fact a non-specific inhibitor of gp130 signalling. In human cancer and primary cells, sgp130Fc inhibited IL6, IL11, OSM and CT1 cis-signalling. The IC50 values of sgp130Fc for IL6 and OSM cis-signalling were markedly (20- to 200-fold) lower than the concentrations of sgp130Fc used in mouse studies and clinical trials. sgp130 inhibited IL6 and OSM signalling in the presence of an ADAM10/17 inhibitor and the absence of soluble IL6R or OSMR, with effects that were indistinguishable from those of a gp130 neutralising antibody. These data show that sgp130Fc does not exclusively block IL6 trans-signalling and reveal instead that broad inhibition of gp130 signalling likely underlies its therapeutic effects. This proposes global or modular inhibition of gp130 as a therapeutic approach for treating human disease.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore 169609, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W6 8RF, UK
| |
Collapse
|
17
|
Li X, Wu X, Chen X, Peng S, Chen S, Zhou G, Wei Y, Lu X, Zhou C, Ye Y, Li J, Liu S, Xu J. Selective blockade of interleukin 6 trans-signaling depresses atrial fibrillation. Heart Rhythm 2023; 20:1759-1770. [PMID: 37633428 DOI: 10.1016/j.hrthm.2023.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) has been accepted as an inflammatory atrial myopathy. Interleukin 6 (IL-6)-dependent inflammatory signaling pathways take context-dependent effects on cardiovascular diseases. IL-6 trans-signaling is predominantly pro-inflammatory. However, its effect on AF is unclear. OBJECTIVE The purpose of this study was to investigate the role of IL-6 trans-signaling in AF. METHODS Circulating levels of IL-6, soluble IL-6 receptor, and soluble glycoprotein 130 (sgp130) in patients with AF and controls were measured to estimate the activation of IL-6 trans-signaling. A mouse model of AF was established by transverse aortic constriction surgery. Sgp130Fc administration was used for the selective blockade of IL-6 trans-signaling. Studies were conducted to evaluate the effects and underlying mechanisms of sgp130Fc on AF inducibility and atrial conduction abnormalities and structural remodeling. RESULTS In patients, the elevation of IL-6 trans-signaling level was positively associated with AF occurrence. IL-6 trans-signaling activation was recapitulated in the mouse model of AF. In transverse aortic constriction-challenged mice, the selective blockade of IL-6 trans-signaling with sgp130Fc attenuated AF inducibility, which was attributable to the amelioration of slow conduction and conduction heterogeneity induced by atrial dilation, fibrosis, and reduction in connexin 40 and redistribution of connexin 43. Sgp130Fc administration also reduced immune cell infiltration and oxidative stress in the mouse atrium and abrogated IL-6 trans-signaling activation-mediated connexin dysregulation and reactive oxygen species production in atrial myocytes. CONCLUSION IL-6 trans-signaling activation contributes to AF development, and its selective blockade may promise a novel therapeutic strategy.
Collapse
Affiliation(s)
- Xintao Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Chen
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi Peng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Gesiorowski A, Ettich J, Werner J, Wittich C, Pieper S, Padrini G, Behnke K, Floss DM, Lang PA, Moll JM, Scheller J. Bispecific soluble cytokine receptor-nanobody fusions inhibit Interleukin (IL-)6 trans-signaling and IL-12/23 or tumor necrosis factor (TNF) signaling. J Biol Chem 2023; 299:105343. [PMID: 37838173 PMCID: PMC10652096 DOI: 10.1016/j.jbc.2023.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
At least 0.5% of people in the Western world develop inflammatory bowel disease (IBD). While antibodies that block tumor necrosis factor (TNF) α and Interleukin (IL-)23 have been approved for the treatment of IBD, IL-6 antibodies failed in the phase II clinical trial due to non-tolerable side effects. However, two clinical phase II studies suggest that inhibiting IL-6/soluble IL-6R (sIL-6R)-induced trans-signaling via the cytokine receptor gp130 benefit IBD patients with fewer adverse events. Here we develop inhibitors targeting a combination of IL-6/sIL-6R and TNF or IL-12/IL-23 signaling, named cs130-TNFVHHFc and cs130-IL-12/23VHHFc. Surface plasmon resonance experiments showed that recombinant cs130-TNFVHHFc and cs130-IL-12/23VHHFc bind with high affinity to IL-6/sIL-6R complexes and human TNFα (hTNFα) or IL-12/IL-23, respectively. Immunoprecipitation experiments have verified the higher ordered complex formation of the inhibitors with IL-6/sIL-6R and IL-12. We demonstrated that cs130-TNFVHHFc and cs130-IL-12/23VHHFc block IL-6/sIL-6R trans-signaling-induced proliferation and STAT3 phosphorylation of Ba/F3-gp130 cells, as well as hTNFα- or IL-23-induced signaling, respectively. In conclusion, cs130-TNFVHHFc and cs130-IL-12/23VHHFc represent a class of dimeric and bispecific chimeric cytokine inhibitors that consist of a soluble cytokine receptor fused to anti-cytokine nanobodies.
Collapse
Affiliation(s)
- Annika Gesiorowski
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Werner
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephan Pieper
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giacomo Padrini
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; PROvendis GmbH, Muelheim an der Ruhr, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
19
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
20
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
21
|
Kochanek PM, Simon DW, Wagner AK. Targeting interleukin-6 after cardiac arrest-Let us not forget the brain. Resuscitation 2023; 184:109715. [PMID: 36736948 DOI: 10.1016/j.resuscitation.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Patrick M Kochanek
- Critical Care Medicine, Anesthesiology, Pediatrics, and Clinical and Translational Science, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| | - Dennis W Simon
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| | - Amy K Wagner
- Neuroscience, Departments of Physical Medicine & Rehabilitation and Neuroscience, Center for Neuroscience, Safar Center for Resuscitation Research, Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 202, Pittsburgh, PA 15261, United States.
| |
Collapse
|
22
|
Hamilton FW, Thomas M, Arnold D, Palmer T, Moran E, Mentzer AJ, Maskell N, Baillie K, Summers C, Hingorani A, MacGowan A, Khandaker GM, Mitchell R, Davey Smith G, Ghazal P, Timpson NJ. Therapeutic potential of IL6R blockade for the treatment of sepsis and sepsis-related death: A Mendelian randomisation study. PLoS Med 2023; 20:e1004174. [PMID: 36716318 PMCID: PMC9925069 DOI: 10.1371/journal.pmed.1004174] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/13/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.
Collapse
Affiliation(s)
- Fergus W. Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Infection Science, North Bristol NHS Trust, Bristol, United Kingdom
| | - Matt Thomas
- Intensive Care Unit, North Bristol NHS Trust, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, University of Bristol, Bristol, United Kingdom
| | - Tom Palmer
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ed Moran
- Infection Science, North Bristol NHS Trust, Bristol, United Kingdom
| | - Alexander J. Mentzer
- Wellcome Centre For Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, United Kingdom
| | - Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aroon Hingorani
- UCL Institute for Cardiovascular Science, University College London, London, United Kingdom
- UCL BHF Research Accelerator, University College London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | | | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Ruth Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Peter Ghazal
- Project Sepsis, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Papastamos C, Antonopoulos AS, Simantiris S, Koumallos N, Sagris M, Theofilis P, Oikonomou E, Siasos G, Tsioufis K, Tousoulis D. Interleukin-6 Signaling in Atherosclerosis: From Molecular Mechanisms To Clinical Outcomes. Curr Top Med Chem 2023; 23:2172-2183. [PMID: 37464827 DOI: 10.2174/1568026623666230718141235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine centrally involved in several immune responses and it has been recognized as a driver of enhanced atherothrombotic risk. Immunity and inflammation are intrinsically involved in atherosclerosis progression. This generated 'inflammation hypothesis', which is now validated in large-scale clinical trials. Abundant evidence supports the distinctive role of IL-6 in coronary artery disease. The focus on this cytokine stems from epidemiological studies linking high plasma concentrations of IL-6 with greater risk for adverse cardiovascular events, genetic studies which implicate a causative role of IL-6 in atherosclerosis and murine data which support the involvement of IL-6 in various pathophysiological cascades of atherothrombosis. The fact that high IL-6 levels are equivalent to increased cardiovascular risk created an unmet need to address those who are at 'residual inflammatory risk'. Moreover, the opposing effects of IL-6 underlined the importance of deciphering specific signaling cascades, which may be responsible for different effects. Finally, murine data and some small clinical trials highlighted the possibility of reversing the pro-atherogenic effects of IL-6 by directly targeting it. While IL-1 blockage was proved effective, it is reasonable to examine if moving more downstream in the inflammation cascade could be more selective and effective than other anti-inflammatory therapies. In the present review, we examine the role of IL-6 as a biomarker of 'residual inflammatory risk', its vital role in the pathophysiology of atherosclerosis progression and the possibility of targeting it to stall coronary artery disease progression.
Collapse
Affiliation(s)
- Charalampos Papastamos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Spyridon Simantiris
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Nikolaos Koumallos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
24
|
Garbers C, Rose-John S. Dissecting Interleukin-6 Classic and Trans-signaling in Inflammation and Cancer. Methods Mol Biol 2023; 2691:207-224. [PMID: 37355548 DOI: 10.1007/978-1-0716-3331-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.
Collapse
Affiliation(s)
- Christoph Garbers
- Medical Faculty, Department of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany.
| | | |
Collapse
|
25
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
26
|
McLean BA, Wong CK, Kabir MG, Drucker DJ. Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol Metab 2022; 66:101641. [PMID: 36396031 PMCID: PMC9706177 DOI: 10.1016/j.molmet.2022.101641] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce the rates of major cardiovascular events, including myocardial infarction in people with type 2 diabetes, and decrease infarct size while preserving ventricular function in preclinical studies. Nevertheless, the precise cellular sites of GLP-1R expression that mediate the cardioprotective actions of GLP-1 in the setting of ischemic cardiac injury are uncertain. METHODS Publicly available single cell RNA sequencing (scRNA-seq) datasets on mouse and human heart cells were analyzed for Glp1r/GLP1R expression. Fluorescent activated cell sorting was used to localize Glp1r expression in cell populations from the mouse heart. The importance of endothelial and hematopoietic cells for the cardioprotective response to liraglutide in the setting of acute myocardial infarction (MI) was determined by inactivating the Glp1r in Tie2+ cell populations. Cardiac gene expression profiles regulated by liraglutide were examined using RNA-seq to interrogate mouse atria and both infarcted and non-infarcted ventricular tissue after acute coronary artery ligation. RESULTS In mice, cardiac Glp1r mRNA transcripts were exclusively detected in endocardial cells by scRNA-seq. In contrast, analysis of human heart by scRNA-seq localized GLP1R mRNA transcripts to populations of atrial and ventricular cardiomyocytes. Moreover, very low levels of GIPR, GCGR and GLP2R mRNA transcripts were detected in the human heart. Cell sorting and RNA analyses detected cardiac Glp1r expression in endothelial cells (ECs) within the atria and ventricle in the ischemic and non-ischemic mouse heart. Transcriptional responses to liraglutide administration were not evident in wild type mouse ventricles following acute MI, however liraglutide differentially regulated genes important for inflammation, cardiac repair, cell proliferation, and angiogenesis in the left atrium, while reducing circulating levels of IL-6 and KC/GRO within hours of acute MI. Inactivation of the Glp1r within the Tie2+ cell expression domain encompassing ECs revealed normal cardiac structure and function, glucose homeostasis and body weight in Glp1rTie2-/- mice. Nevertheless, the cardioprotective actions of liraglutide to reduce infarct size, augment ejection fraction, and improve survival after experimental myocardial infarction (MI), were attenuated in Glp1rTie2-/- mice. CONCLUSIONS These findings identify the importance of the murine Tie2+ endothelial cell GLP-1R as a target for the cardioprotective actions of GLP-1R agonists and support the importance of the atrial and ventricular endocardial GLP-1R as key sites of GLP-1 action in the ischemic mouse heart. Hitherto unexplored species-specific differences in cardiac GLP-1R expression challenge the exclusive use of mouse models for understanding the mechanisms of GLP-1 action in the normal and ischemic human heart.
Collapse
|
27
|
Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol 2022; 323:C1304-C1324. [PMID: 36094436 PMCID: PMC9576166 DOI: 10.1152/ajpcell.00230.2022] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
The heart contains a population of resident macrophages that markedly expands following injury through recruitment of monocytes and through proliferation of macrophages. In myocardial infarction, macrophages have been implicated in both injurious and reparative responses. In coronary atherosclerotic lesions, macrophages have been implicated in disease progression and in the pathogenesis of plaque rupture. Following myocardial infarction, resident macrophages contribute to initiation and regulation of the inflammatory response. Phagocytosis and efferocytosis are major functions of macrophages during the inflammatory phase of infarct healing, and mediate phenotypic changes, leading to acquisition of an anti-inflammatory macrophage phenotype. Infarct macrophages respond to changes in the cytokine content and extracellular matrix composition of their environment and secrete fibrogenic and angiogenic mediators, playing a central role in repair of the infarcted heart. Macrophages may also play a role in scar maturation and may contribute to chronic adverse remodeling of noninfarcted segments. Single cell studies have revealed a remarkable heterogeneity of macrophage populations in infarcted hearts; however, the relations between transcriptomic profiles and functional properties remain poorly defined. This review manuscript discusses the fate, mechanisms of expansion and activation, and role of macrophages in the infarcted heart. Considering their critical role in injury, repair, and remodeling, macrophages are important, but challenging, targets for therapeutic interventions in myocardial infarction.
Collapse
Affiliation(s)
- Akihiko Kubota
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| |
Collapse
|
28
|
Prisco SZ, Prins KW. Response by Prisco and Prins to Letter Regarding Article, "Inflammatory Glycoprotein 130 Signaling Links Changes in Microtubules and Junctophilin-2 to Altered Mitochondrial Metabolism and Right Ventricular Contractility". Circ Heart Fail 2022; 15:e009570. [PMID: 35758028 PMCID: PMC9388568 DOI: 10.1161/circheartfailure.122.009570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sasha Z Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis
| | - Kurt W Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis
| |
Collapse
|
29
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2022; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
30
|
Duddu S, Agrawal M, Chakrabarti R, Ghosh A, Chakravorty N, Tiwari A, Chandra Shukla P. Meta-analysis reveals inhibition of the inflammatory cytokine IL-6 affords limited protection post-myocardial ischemia/infarction. Heliyon 2022; 8:e10435. [PMID: 36090222 PMCID: PMC9449900 DOI: 10.1016/j.heliyon.2022.e10435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
Background Proinflammatory cytokine cascades play crucial roles in the onset and progression of myocardial ischemia and infarction. Clinically, elevated serum levels of pro-inflammatory cytokine interleukin-6 is a poor prognostic indicator for future cardiac events and cardiac morbidity. Despite several reports, there is no clear evidence of cardiac benefits of inhibiting IL-6 in pre-clinical and clinical settings. Objective To analyze the available data systematically and perform a meta-analysis to show the evidence of effects of IL-6 inhibition on cardiac remodeling and mortality in ischemic animal models. Methods We used PICO framework and the quality of the studies was assessed using SYRCLE's risk of bias tool. Studies with interventions i.e., genetic deletion or pharmacological inhibition of IL-6/IL-6R were included for the meta-analysis. Systematic review was synthesized by including pre-clinical as well as randomized clinical trials involving myocardial infarction patients treated with IL-6 inhibitors. The effect size of the pooled data was determined using standard mean difference and 95% confidence intervals. Results A total of 12 pre-clinical studies were included in the review for analysis. Most of the studies showed an unclear risk of bias as the selection and reporting criteria were poorly described. We observed high heterogeneity in the included studies due to the varying duration of myocardial infarction and the dosage of IL-6 antibodies used in the studies. Overall inhibition of IL-6 significantly increased area at risk [p = 0.001, SMD = 0.49 (95% CI: -0.36, 1.35)] and significantly reduced ejection fraction [p = 0.001, SMD = -0.19 (95% CI: -1.39, 1.01)] and end-diastolic diameter [p = 0.02, SMD = -0.25 (95% CI: -0.87, 0.36)] of left ventricle post-MI, but no effects on infarct size [p < 0.01, SMD = 0.00; 95% CI: -1.34, 0.58). In randomized clinical trials, the overall effect on C-reactive protein remains significantly unchanged on CRP levels (SMD = -0.38; 95% CI: -1.94, 0.55) post-treatment with IL-6R inhibitor tocilizumab. The meta-regression demonstrates a significant positive correlation (p = 0.058) between the increase in ischemic area and duration of ischemia post-surgery in the absence of IL-6. This meta-analysis indicates mixed effect of IL-6 inhibition on cardiac remodeling post-MI, particularly in protecting the myocardium viability from damaging acute inflammation but not significant on cardiac function of ischemic animal models. Conclusion Despite the well-established pro-inflammatory nature of IL-6 in myocardial ischemia, our meta-analysis reports a limited contribution of IL-6 in the cardiac remodeling of hearts in animal models of myocardial ischemia. Moreover, genetically deleted IL-6 murine models produced contrasting results. Additional pre-clinical studies exploring the pharmacological inhibition of IL-6R are required to determine the beneficial effects of IL-6 inhibitors in regulating cardiac remodeling. The findings from IL-6R inhibition have better clinical relevance compared to genetically inhibited IL-6.
Collapse
|
31
|
Schulte DM, Waetzig GH, Schuett H, Marx M, Schulte B, Garbers C, Lokau J, Vlacil AK, Schulz J, Seoudy AK, Schieffer B, Rosenstiel P, Seeger M, Laudes M, Rose-John S, Lützen U, Grote K, Schreiber S. Case Report: Arterial Wall Inflammation in Atherosclerotic Cardiovascular Disease is Reduced by Olamkicept (sgp130Fc). Front Pharmacol 2022; 13:758233. [PMID: 35754497 PMCID: PMC9218605 DOI: 10.3389/fphar.2022.758233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammation is a strong driver of atherosclerotic cardiovascular disease (ASCVD). There is a large unmet need for therapies that prevent or reduce excessive inflammation while avoiding systemic immunosuppression. We showed previously that selective inhibition of pro-inflammatory interleukin-6 (IL-6) trans-signalling by the fusion protein olamkicept (sgp130Fc) prevented and reduced experimental murine atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr−/−) mice on a high-fat, high-cholesterol diet independently of low-density lipoprotein (LDL) cholesterol metabolism. Therefore, we allowed compassionate use of olamkicept (600 mg intravenously biweekly for 10 weeks) in a patient with very-high-risk ASCVD. Despite optimal LDL cholesterol under maximum tolerated lipid-lowering treatment, the patient had a remaining very high risk for future cardiovascular events related to significant arterial wall inflammation with lipoprotein (a) [Lp(a)]-cholesterol as the main contributor. 18Fluorodeoxyglucose positron emission tomography/computed tomography (18FDG PET/CT) measurements were performed before and after the treatment period. Olamkicept reduced arterial wall inflammation in this patient without interfering with lipoprotein metabolism. No clinical or laboratory side effects were observed during or after treatment with olamkicept. Our findings in this patient matched the results from our mechanistic study in Ldlr−/− mice, which were extended by additional analyses on vascular inflammation. Olamkicept may be a promising option for treating ASCVD independently of LDL cholesterol metabolism. A Phase II trial of olamkicept in ASCVD is currently being prepared.
Collapse
Affiliation(s)
- Dominik M Schulte
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,Institute of Diabetes and Clinical Metabolic Research, Kiel University and UKSH, Kiel, Germany
| | - Georg H Waetzig
- Institute of Clinical Molecular Biology, Kiel University and UKSH, Kiel, Germany.,CONARIS Research Institute AG, Kiel, Germany
| | - Harald Schuett
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Imaging Diagnostics and Therapy, UKSH, Kiel, Germany
| | - Berenice Schulte
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ann-Kathrin Vlacil
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Juliane Schulz
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Anna K Seoudy
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Bernhard Schieffer
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and UKSH, Kiel, Germany
| | - Marcus Seeger
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Matthias Laudes
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,Institute of Diabetes and Clinical Metabolic Research, Kiel University and UKSH, Kiel, Germany
| | | | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging Diagnostics and Therapy, UKSH, Kiel, Germany
| | - Karsten Grote
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,Institute of Clinical Molecular Biology, Kiel University and UKSH, Kiel, Germany
| |
Collapse
|
32
|
Schumertl T, Lokau J, Rose-John S, Garbers C. Function and proteolytic generation of the soluble interleukin-6 receptor in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119143. [PMID: 34626681 DOI: 10.1016/j.bbamcr.2021.119143] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is involved in numerous physiological and pathophysiological functions that include development, immune cell differentiation, inflammation and cancer. IL-6 can signal via the membrane-bound IL-6 receptor (IL-6R, classic signaling) or via soluble forms of the IL-6R (sIL-6R, trans-signaling). Both modes of signaling induce the formation of a homodimer of the signal transducing β-receptor glycoprotein 130 (gp130) and the activation of several intracellular signaling cascades, e.g. the Jak/STAT pathway. Intriguingly, only IL-6 trans-signaling is required for the pro-inflammatory properties of IL-6, while regenerative and anti-inflammatory functions are mediated via classic signaling. The sIL-6R is generated by different molecular mechanisms, including alternative mRNA splicing, proteolysis of the membrane-bound IL-6R and the release of extracellular vesicles. In this review, we give an in-depth overview on these molecular mechanisms with a special emphasize on IL-6R cleavage by the metalloprotease ADAM17 and other proteases. We discuss the biological functions of the sIL-6R and highlight attempts to selectively block IL-6 trans-signaling in pre-clinical animal models as well as in clinical studies in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
33
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|