1
|
Ciaccio EJ, Hsia HH, Saluja DS, Garan H, Coromilas J, Yarmohammadi H, Biviano AB, Peters NS. Ventricular tachycardia substrate mapping: What's been done and what needs to be done. Heart Rhythm 2025:S1547-5271(25)00204-8. [PMID: 39988104 DOI: 10.1016/j.hrthm.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Substrate mapping is an important component of electrophysiological (EP) study for the treatment of reentrant ventricular tachycardia (VT). It is used to detect characteristics of the electrical circuit and, in particular, the location and properties of the central common pathway, aka the isthmus, where multiple circuit loops can coincide. Typically, reentrant circuits are single or double loop, but as the common pathway size increases, 4-loop patterns may emerge, consisting of 2 parallel isthmuses or a single isthmus with 4 loops. Arrhythmogenic substrate contains a mixture of scar, calcification, and fibrofatty regions blended with viable ventricular myocytes, which can slow conduction. It is identified in the EP laboratory in part by the presence of low-amplitude electrograms and a zone of uniform slow conduction resulting from a sparsity of remaining viable myocytes and molecular-level remodeling. The electrograms recorded near isthmus boundaries frequently exhibit an abnormal morphology, such as fractionation and late or split deflections, due to the separation of muscle fiber bundles by fibroadipose tissue or calcification, and due to other conduction impediments such as source-sink mismatch, wherein topographic changes to the viable myocardial structure occur. Substrate mapping facilitates the identification of arrhythmogenic regions during sinus rhythm, whereas inducible VT with periods of ongoing reentry, when recordable, can be used for further assessment. Substrate modeling augments substrate mapping by seeking to predict electrogram morphology and mapped features and properties to be encountered during EP study based on an accurate depiction of arrhythmogenic tissue. Herein, we elaborate on the details of VT substrate mapping and modeling to the present time.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - Henry H Hsia
- Cardiac Electrophysiology and Arrhythmia Service, University of California San Francisco, San Francisco, California
| | - Deepak S Saluja
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Angelo B Biviano
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Sclafani M, Falasconi G, Tini G, Musumeci B, Penela D, Saglietto A, Arcari L, Bucciarelli-Ducci C, Barbato E, Berruezo A, Francia P. Substrates of Sudden Cardiac Death in Hypertrophic Cardiomyopathy. J Clin Med 2025; 14:1331. [PMID: 40004861 PMCID: PMC11857077 DOI: 10.3390/jcm14041331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden cardiac death (SCD), the most devastating complication of hypertrophic cardiomyopathy (HCM), is primarily triggered by ventricular tachycardia or fibrillation. Despite advances in knowledge, the mechanisms driving ventricular arrhythmia in HCM remain incompletely understood, stemming from an interplay of multiple pro-arrhythmic factors. Myocyte disarray and myocardial fibrosis form a structural substrate favorable to re-entrant arrhythmias by altering myocardial electrophysiological properties, while cellular abnormalities predominate in patients without evident structural remodeling. Traditional SCD risk prediction models rely on clinical risk factors and regression-based risk estimation, often overlooking specific arrhythmic substrates. Emerging techniques now allow for the direct assessment of these substrates, providing deeper insights into the arrhythmogenic mechanisms and paving the way for more personalized SCD risk stratification. This review explores the contribution of cellular, structural, and electrophysiological substrates to arrhythmic risk in HCM, emphasizing their distinct roles. Furthermore, it highlights the potential of substrate-based approaches to refining SCD prevention strategies and improving outcomes for patients with HCM.
Collapse
Affiliation(s)
- Matteo Sclafani
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6PY, UK; (M.S.); (C.B.-D.)
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Giulio Falasconi
- Arrhythmia Department, Teknon Heart Institute, Teknon Medical Center, 08022 Barcelona, Spain; (G.F.); (D.P.); (A.B.)
| | - Giacomo Tini
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Beatrice Musumeci
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Diego Penela
- Arrhythmia Department, Teknon Heart Institute, Teknon Medical Center, 08022 Barcelona, Spain; (G.F.); (D.P.); (A.B.)
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, “Citta Della Salute e Della Scienza” Hospital, 10126 Turin, Italy
| | - Luca Arcari
- Cardiology Unit, Madre Giuseppina Vannini Hospital, 00177 Rome, Italy;
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, 00161 Rome, Italy
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6PY, UK; (M.S.); (C.B.-D.)
| | - Emanuele Barbato
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| | - Antonio Berruezo
- Arrhythmia Department, Teknon Heart Institute, Teknon Medical Center, 08022 Barcelona, Spain; (G.F.); (D.P.); (A.B.)
| | - Pietro Francia
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University, 00189 Rome, Italy; (G.T.); (B.M.); (E.B.)
| |
Collapse
|
3
|
Ardinal AP, Morgan HP, Elliott M, Bishop M, Rinaldi CA, Perera D. Electrocardiographic imaging metrics to predict the risk of arrhythmia in patients with ischemic cardiomyopathy. J Arrhythm 2025; 41:e70024. [PMID: 39963660 PMCID: PMC11831206 DOI: 10.1002/joa3.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
Background The leading cause of death in patients with ischemic cardiomyopathy is sudden cardiac death caused by ventricular arrhythmias. Accurate determination of arrhythmic risk in these patients is vital to allow clinicians to take appropriate preventive measures. Objective To review and summarize the literature on electrocardiographic imaging (ECGi) metrics that could be used to predict arrhythmic risk in patients with ischemic cardiomyopathy. Methods A comprehensive literature search was performed to retrieve research articles on non-invasive electrocardiographic mapping techniques. Inclusion criteria of the studies required the involvement of patients with ischemic cardiomyopathy or ischemic heart disease. Results A total of 17 papers were identified, five of which specifically utilized ECGi to acquire metrics associated with an increased risk of ventricular arrhythmia (VA). ECGi metrics, including activation time, repolarization time, activation-recovery interval, and voltage amplitude, were distinguishable between patients with ischemic cardiomyopathy, patients with a history of VA, and healthy controls. Conclusion ECGi allows non-invasive measurement of metrics which are associated with an increased risk of ventricular arrhythmias in patients with ischemic cardiomyopathy. ECGi may be a useful tool for risk assessment in these patients. Prospective studies are warranted for further validation and prediction of clinical endpoints.
Collapse
Affiliation(s)
- Azizah Puspitasari Ardinal
- British Heart Foundation Centre of Research Excellence at the School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| | - Holly P. Morgan
- British Heart Foundation Centre of Research Excellence at the School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| | - Mark Elliott
- School of Biomedical Engineering and Imaging SciencesKing's CollegeLondonUK
| | - Martin Bishop
- School of Biomedical Engineering and Imaging SciencesKing's CollegeLondonUK
| | - Christopher Aldo Rinaldi
- School of Biomedical Engineering and Imaging SciencesKing's CollegeLondonUK
- Department of CardiologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Divaka Perera
- British Heart Foundation Centre of Research Excellence at the School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
- Department of CardiologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
4
|
Li L, Camps J, Rodriguez B, Grau V. Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey. IEEE Rev Biomed Eng 2025; 18:316-336. [PMID: 39453795 DOI: 10.1109/rbme.2024.3486439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods for solving ECG inverse problems, their validation strategies, their clinical applications, and their future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.
Collapse
|
5
|
Kim H, Park S, Kim J, Kim JS, Kim DW, Kim N, Uhm JS, Kim D, Pak HN, Hong CS, Yoon HI. Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia. Radiat Oncol J 2024; 42:319-329. [PMID: 39748532 DOI: 10.3857/roj.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025] Open
Abstract
PURPOSE Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance. MATERIALS AND METHODS The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion. RESULTS The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location. CONCLUSION The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangjoon Park
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Daehoon Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ciaccio EJ, Coromilas J, Saluja DS, Hsia HH, Peters NS, Yarmohammadi H. Sinus rhythm activation signature indicates reentrant ventricular tachycardia inducibility and approximate isthmus location. Heart Rhythm 2024; 21:2177-2186. [PMID: 38677360 DOI: 10.1016/j.hrthm.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Sinus rhythm activation time is useful to assess infarct border zone substrate. OBJECTIVE We sought to further investigate sinus activation in ventricular tachycardia (VT). METHODS Canine postinfarction data were analyzed retrospectively. In each experiment, an infarct was created in the left ventricular wall by left anterior descending coronary artery ligation. At 3 to 5 days after ligation, 196-312 bipolar electrograms were recorded from the anterior left ventricular epicardium overlapping the infarct border zone. Sustained monomorphic VT was induced by premature electrical stimulation in 50 experiments and was noninducible in 43 experiments. Acquired sinus rhythm and VT electrograms were marked for electrical activation time, and activation maps of representative sinus rhythm and VT cycles were constructed. The sinus rhythm activation signature was defined as the cumulative number of multielectrode recording sites that had activated per time epoch, and its derivative was used to predict VT inducibility and to define the sinus rhythm slow/late activation sequence. RESULTS Plotting mean activation signature derivative, a best cutoff value was useful to separate experiments with reentrant VT inducibility (sensitivity, 42/50) vs noninducibility (specificity, 39/43), with an accuracy of 81 of 93. For the 50 experiments with inducible VT, recording sites overlying a segment of isochrone encompassing the sinus rhythm slow/late activation sequence spanned the VT isthmus location in 32 cases (64%), partially spanned it in 15 cases (30%), but did not span it in 3 cases (6%). CONCLUSION The sinus rhythm activation signature derivative is assistive to differentiate substrate supporting reentrant VT inducibility vs noninducibility and to identify slow/late activation for targeting isthmus location.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Division of Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - James Coromilas
- Division of Cardiovascular Disease and Hypertension, Department of Medicine, Rutgers University, New Brunswick, New Jersey
| | - Deepak S Saluja
- Division of Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Henry H Hsia
- Cardiac Electrophysiology and Arrhythmia Service, Department of Medicine, University of California, San Francisco, California
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hirad Yarmohammadi
- Division of Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
7
|
Sánchez-Carballo E, Melgarejo-Meseguer FM, Vijayakumar R, Sánchez-Muñoz JJ, García-Alberola A, Rudy Y, Rojo-Álvarez JL. Reference for Electrocardiographic Imaging-Based T-Wave Alternans Estimation. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:118510-118524. [PMID: 40303849 PMCID: PMC12040424 DOI: 10.1109/access.2024.3447114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Sudden cardiac death causes multiple deaths annually, and T-wave alternans are a reliable predictor of this fatal event. Detecting alternans is crucial for reducing disease incidence, and electrocardiographic imaging is a promising tool, providing spatial-temporal insights. The absence of references and segmentation methods specific to these data may complicate progress in the field. Therefore, this work aimed to develop a reference for evaluating estimation methods. Initially, a novel T-wave segmentation procedure specific to these data was introduced and compared with a commonly used method. Subsequently, a reference for assessing alternans estimation methods was created by integrating alternans into epicardial signals through a spatial-temporal Gaussian function. Finally, a bootstrap-based classifier for detecting alternans was developed. Results underscored the superiority of the novel T-wave segmentation procedure, with the lowest 95% confidence interval being [ 16.57 μ V , 18.80 μ V ], indicating significant disparities between the two segmentation methodologies. Furthermore, the generated reference demonstrated the distinguishability of T-wave alternans with an amplitude of approximately 55 μ V from noise. Additionally, the classifier exhibited consistency with previous findings, demonstrating its ability to detect alternans with amplitudes around 50 μ V . In conclusion, this study provides a spatial-temporal reference for proper evaluation of estimation methods, contributing to establishing a gold standard.
Collapse
Affiliation(s)
- Estela Sánchez-Carballo
- Department of Signal Theory and Communications, Telematics, and Computing, Universidad Rey Juan Carlos, Fuenlabrada, 28942 Madrid, Spain
| | | | - Ramya Vijayakumar
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Juan José Sánchez-Muñoz
- Arrhythmia Unit, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Arcadi García-Alberola
- Arrhythmia Unit, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - José Luis Rojo-Álvarez
- Department of Signal Theory and Communications, Telematics, and Computing, Universidad Rey Juan Carlos, Fuenlabrada, 28942 Madrid, Spain
- D!lemma Ltd. Startup, Fuenlabrada, 28942 Madrid, Spain
| |
Collapse
|
8
|
Serrano RR, Velasco‐Bosom S, Dominguez‐Alfaro A, Picchio ML, Mantione D, Mecerreyes D, Malliaras GG. High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301176. [PMID: 37203308 PMCID: PMC11251564 DOI: 10.1002/advs.202301176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Electrocardiography imaging (ECGi) is a non-invasive inverse reconstruction procedure which employs body surface potential maps (BSPM) obtained from surface electrode array measurements to improve the spatial resolution and interpretability of conventional electrocardiography (ECG) for the diagnosis of cardiac dysfunction. ECGi currently lacks precision, which has prevented its adoption in clinical setups. The introduction of high-density electrode arrays could increase ECGi reconstruction accuracy but is not attempted before due to manufacturing and processing limitations. Advances in multiple fields have now enabled the implementation of such arrays which poses questions on optimal array design parameters for ECGi. In this work, a novel conducting polymer electrode manufacturing process on flexible substrates is proposed to achieve high-density, mm-sized, conformable, long-term, and easily attachable electrode arrays for BSPM with parameters optimally selected for ECGi applications. Temporal, spectral, and correlation analysis are performed on a prototype array demonstrating the validity of the chosen parameters and the feasibility of high-density BSPM, paving the way for ECGi devices fit for clinical application.
Collapse
Affiliation(s)
| | | | - Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Matias L. Picchio
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Daniele Mantione
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | | |
Collapse
|
9
|
Liu S, Deshmukh V, Wang F, Liang J, Cusick J, Li X, Martin JF. Myocardial Infarction Suppresses Protein Synthesis and Causes Decoupling of Transcription and Translation. JACC Basic Transl Sci 2024; 9:792-807. [PMID: 39070274 PMCID: PMC11282883 DOI: 10.1016/j.jacbts.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 07/30/2024]
Abstract
Gene expression involves transcription, translation, and mRNA and protein degradation. Advanced RNA sequencing measures mRNA levels for cell state assessment, but mRNA level does not fully reflect protein level. Identifying heart cell proteomes and their stress response is crucial. Using a cardiomyocyte-specific mouse model, we tracked protein synthesis after myocardial infarction. Our results showed that myocardial infarction suppresses protein synthesis and unveils a decoupling of translation and transcription regulation in cardiomyocytes.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- (currently) Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Fangfei Wang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jie Liang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenna Cusick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Joy G, Lopes LR, Webber M, Ardissino AM, Wilson J, Chan F, Pierce I, Hughes RK, Moschonas K, Shiwani H, Jamieson R, Velazquez PP, Vijayakumar R, Dall'Armellina E, Macfarlane PW, Manisty C, Kellman P, Davies RH, Tome M, Koncar V, Tao X, Guger C, Rudy Y, Hughes AD, Lambiase PD, Moon JC, Orini M, Captur G. Electrophysiological Characterization of Subclinical and Overt Hypertrophic Cardiomyopathy by Magnetic Resonance Imaging-Guided Electrocardiography. J Am Coll Cardiol 2024; 83:1042-1055. [PMID: 38385929 PMCID: PMC10945386 DOI: 10.1016/j.jacc.2024.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties. OBJECTIVES The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype. METHODS This was a prospective 211-participant CMR-ECGI multicenter study of 70 G+LVH-, 104 LVH+ (51 G+/53 G-), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to discriminate G+LVH- from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ventricular tachycardia. RESULTS Compared with HV, subclinical HCM showed mean AT prolongation (P = 0.008) even with normal 12-lead electrocardiograms (ECGs) (P = 0.009), and repolarization was more spatially heterogenous (GRTc: P = 0.005) (23% had normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated with scar (all P < 0.05), and G+LVH+ had more fractionation than G-LVH+ (P = 0.002). The support vector machine discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]). CONCLUSIONS In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural change and positive genetic status.
Collapse
Affiliation(s)
- George Joy
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| | - Luis R Lopes
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Matthew Webber
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | | | - James Wilson
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Fiona Chan
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Iain Pierce
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Rebecca K Hughes
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Konstantinos Moschonas
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Hunain Shiwani
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Robert Jamieson
- Electrocardiology Section, School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Paula P Velazquez
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Cardiology Clinical and Academic Group, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ramya Vijayakumar
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, Missouri, USA
| | - Erica Dall'Armellina
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter W Macfarlane
- Electrocardiology Section, School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte Manisty
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Rhodri H Davies
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Maite Tome
- Cardiology Clinical and Academic Group, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Vladan Koncar
- École Nationale Supérieure des Arts et Industries Textiles, University of Lille, Lille, France
| | - Xuyuan Tao
- École Nationale Supérieure des Arts et Industries Textiles, University of Lille, Lille, France
| | | | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, Missouri, USA
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - James C Moon
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
van der Waal J, Meijborg V, Coronel R, Dubois R, Oostendorp T. Basis and applicability of noninvasive inverse electrocardiography: a comparison between cardiac source models. Front Physiol 2023; 14:1295103. [PMID: 38152249 PMCID: PMC10752226 DOI: 10.3389/fphys.2023.1295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
The body surface electrocardiogram (ECG) is a direct result of electrical activity generated by the myocardium. Using the body surface ECGs to reconstruct cardiac electrical activity is called the inverse problem of electrocardiography. The method to solve the inverse problem depends on the chosen cardiac source model to describe cardiac electrical activity. In this paper, we describe the theoretical basis of two inverse methods based on the most commonly used cardiac source models: the epicardial potential model and the equivalent dipole layer model. We discuss similarities and differences in applicability, strengths and weaknesses and sketch a road towards improved inverse solutions by targeted use, sequential application or a combination of the two methods.
Collapse
Affiliation(s)
- Jeanne van der Waal
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Veronique Meijborg
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Rémi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
| | - Thom Oostendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
12
|
Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals. INT J MACH LEARN CYB 2022; 14:1651-1668. [PMID: 36467277 PMCID: PMC9702788 DOI: 10.1007/s13042-022-01718-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is detected using electrocardiography (ECG) signals. Machine learning (ML) models have been used for automated MI detection on ECG signals. Deep learning models generally yield high classification performance but are computationally intensive. We have developed a novel multilevel hybrid feature extraction-based classification model with low time complexity for MI classification. The study dataset comprising 12-lead ECGs belonging to one healthy and 10 MI classes were downloaded from a public ECG signal databank. The model architecture comprised multilevel hybrid feature extraction, iterative feature selection, classification, and iterative majority voting (IMV). In the hybrid handcrafted feature (HHF) generation phase, both textural and statistical feature extraction functions were used to extract features from ECG beats but only at a low level. A new pooling-based multilevel decomposition model was presented to enable them to create features at a high level. This model used average and maximum pooling to create decomposed signals. Using these pooling functions, an unbalanced tree was obtained. Therefore, this model was named multilevel unbalanced pooling tree transformation (MUPTT). On the feature extraction side, two extractors (functions) were used to generate both statistical and textural features. To generate statistical features, 20 commonly used moments were used. A new, improved symmetric binary pattern function was proposed to generate textural features. Both feature extractors were applied to the original MI signal and the decomposed signals generated by the MUPTT. The most valuable features from among the extracted feature vectors were selected using iterative neighborhood component analysis (INCA). In the classification phase, a one-dimensional nearest neighbor classifier with ten-fold cross-validation was used to obtain lead-wise results. The computed lead-wise results derived from all 12 leads of the same beat were input to the IMV algorithm to generate ten voted results. The most representative was chosen using a greedy technique to calculate the overall classification performance of the model. The HHF-MUPTT-based ECG beat classification model attained excellent performance, with the best lead-wise accuracy of 99.85% observed in Lead III and 99.94% classification accuracy using the IMV algorithm. The results confirmed the high MI classification ability of the presented computationally lightweight HHF-MUPTT-based model.
Collapse
|
13
|
Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F. Treatment Planning for Cardiac Radioablation: Multicenter Multiplatform Benchmarking for the XXX Trial. Int J Radiat Oncol Biol Phys 2022; 114:360-372. [PMID: 35716847 DOI: 10.1016/j.ijrobp.2022.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for patients with refractory ventricular tachycardia (VT) unsuitable for catheter ablation. The quality of treatment planning depends on dose specifications, platform capabilities, and experience of the treating staff. To harmonize the treatment planning, benchmarking of this process is necessary for multicenter clinical studies such as the XXX trial. METHODS AND MATERIALS Planning computed tomography data and consensus structures from three patients were sent to five academic centers for independent plan development using a variety of platforms and techniques with the XXX study protocol serving as guideline. Three-dimensional dose distributions and treatment plan details were collected and analyzed. In addition, an objective relative plan quality ranking system for VT treatments was established. RESULTS For each case, three coplanar volumetric modulated arc (VMAT) plans for C-arm linear accelerators (LINAC) and three non-coplanar treatment plans for robotic arm LINAC were generated. All plans were suitable for clinical applications with minor deviations from study guidelines in most centers. Eleven of 18 treatment plans showed maximal one minor deviation each for target and cardiac substructures. However, dose-volume histograms showed substantial differences: in one case, the PTV≥30Gy ranged from 0.0% to 79.9% and the RIVA V14Gy ranged from 4.0% to 45.4%. Overall, the VMAT plans had steeper dose gradients in the high dose region, while the plans for the robotic arm LINAC had smaller low dose regions. Thereby, VMAT plans required only about half as many monitor units, resulting in shorter delivery times, possibly an important factor in treatment outcome. CONCLUSIONS Cardiac radioablation is feasible with robotic arm and C-arm LINAC systems with comparable plan quality. Although cross-center training and best practice guidelines have been provided, further recommendations, especially for cardiac substructures, and ranking of dose guidelines will be helpful to optimize cardiac radioablation outcomes.
Collapse
Affiliation(s)
- Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Nicolaus Andratschke
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Michael C Mayinger
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Boldizsar Kovacs
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Boris Rudic
- Medizinische Klinik, Universitätsmedizin Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Paula Bergengruen
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annina Stauber
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Graham AJ, Orini M, Zacur E, Dhillon G, Jones D, Prabhu S, Pugliese F, Lowe M, Ahsan S, Earley MJ, Chow A, Sporton S, Dhinoja M, Hunter RJ, Schilling RJ, Lambiase PD. Assessing Noninvasive Delineation of Low-Voltage Zones Using ECG Imaging in Patients With Structural Heart Disease. JACC Clin Electrophysiol 2022; 8:426-436. [PMID: 35450597 DOI: 10.1016/j.jacep.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study sought to assess the association between electrocardiographic imaging (ECGI) parameters and voltage from simultaneous electroanatomic mapping (EAM). BACKGROUND ECGI offers noninvasive assessment of electrophysiologic features relevant for mapping ventricular arrhythmia and its substrate, but the accuracy of ECGI in the delineation of scar is unclear. METHODS Sixteen patients with structural heart disease underwent simultaneous ECGI (CardioInsight, Medtronic) and contact EAM (CARTO, Biosense-Webster) during ventricular tachycardia catheter ablation, with 7 mapped epicardially. ECGI and EAM geometries were coregistered using anatomic landmarks. ECGI points were paired to the closest site on the EAM within 10 mm. The association between EAM voltage and ECGI features from reconstructed epicardial unipolar electrograms was assessed by mixed-effects regression models. The classification of low-voltage regions was performed using receiver-operating characteristic analysis. RESULTS A total of 9,541 ECGI points (median: 596; interquartile range: 377-737 across patients) were paired to an EAM site. Epicardial EAM voltage was associated with ECGI features of signal fractionation and local repolarization dispersion (N = 7; P < 0.05), but they poorly classified sites with bipolar voltage of <1.5 mV or <0.5 mV thresholds (median area under the curve across patients: 0.50-0.62). No association was found between bipolar EAM voltage and low-amplitude reconstructed epicardial unipolar electrograms or ECGI-derived bipolar electrograms. Similar results were found in the combined cohort (n = 16), including endocardial EAM voltage compared to epicardial ECGI features (n = 9). CONCLUSIONS Despite a statistically significant association between ECGI features and EAM voltage, the accuracy of the delineation of low-voltage zones was modest. This may limit ECGI use for pr-procedural substrate analysis in ventricular tachycardia ablation, but it could provide value in risk assessment for ventricular arrhythmias.
Collapse
Affiliation(s)
- Adam J Graham
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Michele Orini
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ernesto Zacur
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Gurpreet Dhillon
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Daniel Jones
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Sandeep Prabhu
- Department of Cardiology, The Alfred Hospital, Melbourne, Australia
| | - Francesca Pugliese
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Martin Lowe
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Syed Ahsan
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mark J Earley
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Anthony Chow
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Simon Sporton
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mehul Dhinoja
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Ross J Hunter
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Richard J Schilling
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
15
|
|
16
|
Taymasova IA, Yashkov MV, Dedukh EV, Artyukhina EA, Revishvili AS. [History of development of ventricular arrhythmias diagnostics]. KARDIOLOGIIA 2021; 61:108-116. [PMID: 35057727 DOI: 10.18087/cardio.2021.12.n1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 02/26/2021] [Indexed: 06/14/2023]
Abstract
This review shows historical steps in the development of topical diagnostics for ventricular arrhythmias, the current status of this issue, and the relevance of developing topical, noninvasive electrophysiological cardiac mapping.
Collapse
Affiliation(s)
- I A Taymasova
- A.V. Vishnevskiy National Medical Research Center of Surgery, Moscow
| | - M V Yashkov
- A.V. Vishnevskiy National Medical Research Center of Surgery, Moscow
| | - E V Dedukh
- A.V. Vishnevskiy National Medical Research Center of Surgery, Moscow
| | - E A Artyukhina
- A.V. Vishnevskiy National Medical Research Center of Surgery, Moscow
| | - A Sh Revishvili
- A.V. Vishnevskiy National Medical Research Center of Surgery, Moscow
| |
Collapse
|
17
|
Bergquist J, Rupp L, Zenger B, Brundage J, Busatto A, MacLeod RS. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. HEARTS 2021; 2:514-542. [PMID: 35665072 PMCID: PMC9164986 DOI: 10.3390/hearts2040040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Body surface potential mapping (BSPM) is a noninvasive modality to assess cardiac bioelectric activity with a rich history of practical applications for both research and clinical investigation. BSPM provides comprehensive acquisition of bioelectric signals across the entire thorax, allowing for more complex and extensive analysis than the standard electrocardiogram (ECG). Despite its advantages, BSPM is not a common clinical tool. BSPM does, however, serve as a valuable research tool and as an input for other modes of analysis such as electrocardiographic imaging and, more recently, machine learning and artificial intelligence. In this report, we examine contemporary uses of BSPM, and provide an assessment of its future prospects in both clinical and research environments. We assess the state of the art of BSPM implementations and explore modern applications of advanced modeling and statistical analysis of BSPM data. We predict that BSPM will continue to be a valuable research tool, and will find clinical utility at the intersection of computational modeling approaches and artificial intelligence.
Collapse
Affiliation(s)
- Jake Bergquist
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lindsay Rupp
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian Zenger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - James Brundage
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Busatto
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rob S. MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Koopmans T, van Beijnum H, Roovers EF, Tomasso A, Malhotra D, Boeter J, Psathaki OE, Versteeg D, van Rooij E, Bartscherer K. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). NPJ Regen Med 2021; 6:78. [PMID: 34789755 PMCID: PMC8599451 DOI: 10.1038/s41536-021-00188-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.), a murid rodent that exhibits bona fide regeneration of the back skin and ear pinna, as a model to study heart repair. By comparing them to ordinary mice (Mus musculus), we show that the acute injury response in spiny mice is similar, but with an associated tolerance to infarction through superior survivability, improved ventricular conduction, and near-absence of pathological remodeling. Critically, spiny mice display increased vascularization, altered scar organization, and a more immature phenotype of cardiomyocytes, with a corresponding improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
| | - Henriette van Beijnum
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Elke F Roovers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Antonio Tomasso
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Divyanshu Malhotra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Jochem Boeter
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Olympia E Psathaki
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Danielle Versteeg
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kerstin Bartscherer
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
19
|
Schrutka L, Anner P, Agibetov A, Seirer B, Dusik F, Rettl R, Duca F, Dalos D, Dachs TM, Binder C, Badr-Eslam R, Kastner J, Beitzke D, Loewe C, Hengstenberg C, Laufer G, Stix G, Dorffner G, Bonderman D. Machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis. Heart 2021; 108:1137-1147. [PMID: 34716183 PMCID: PMC9240336 DOI: 10.1136/heartjnl-2021-319846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/07/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diagnosis of cardiac amyloidosis (CA) requires advanced imaging techniques. Typical surface ECG patterns have been described, but their diagnostic abilities are limited. OBJECTIVE The aim was to perform a thorough electrophysiological characterisation of patients with CA and derive an easy-to-use tool for diagnosis. METHODS We applied electrocardiographic imaging (ECGI) to acquire electroanatomical maps in patients with CA and controls. A machine learning approach was then used to decipher the complex data sets obtained and generate a surface ECG-based diagnostic tool. FINDINGS Areas of low voltage were localised in the basal inferior regions of both ventricles and the remaining right ventricular segments in CA. The earliest epicardial breakthrough of myocardial activation was visualised on the right ventricle. Potential maps revealed an accelerated and diffuse propagation pattern. We correlated the results from ECGI with 12-lead ECG recordings. Ventricular activation correlated best with R-peak timing in leads V1-V3. Epicardial voltage showed a strong positive correlation with R-peak amplitude in the inferior leads II, III and aVF. Respective surface ECG leads showed two characteristic patterns. Ten blinded cardiologists were asked to identify patients with CA by analysing 12-lead ECGs before and after training on the defined ECG patterns. Training led to significant improvements in the detection rate of CA, with an area under the curve of 0.69 before and 0.97 after training. INTERPRETATION Using a machine learning approach, an ECG-based tool was developed from detailed electroanatomical mapping of patients with CA. The ECG algorithm is simple and has proven helpful to suspect CA without the aid of advanced imaging modalities.
Collapse
Affiliation(s)
- Lore Schrutka
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philip Anner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.,Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Asan Agibetov
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Benjamin Seirer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Fabian Dusik
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - René Rettl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Franz Duca
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Daniel Dalos
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Theresa-Marie Dachs
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christina Binder
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Roza Badr-Eslam
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Kastner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Christian Loewe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenter Stix
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Georg Dorffner
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Diana Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria .,Department of Internal Medicine V, Division of Cardiology, Clinic Favoriten, Vienna, Austria
| |
Collapse
|
20
|
Wei C, Qian PC, Boeck M, Bredfeldt JS, Blankstein R, Tedrow UB, Mak R, Zei PC. Cardiac stereotactic body radiation therapy for ventricular tachycardia: Current experience and technical gaps. J Cardiovasc Electrophysiol 2021; 32:2901-2914. [PMID: 34587335 DOI: 10.1111/jce.15259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Despite advances in drug and catheter ablation therapy, long-term recurrence rates for ventricular tachycardia remain suboptimal. Cardiac stereotactic body radiotherapy (SBRT) is a novel treatment that has demonstrated reduction of arrhythmia episodes and favorable short-term safety profile in treatment-refractory patients. Nevertheless, the current clinical experience is early and limited. Recent studies have highlighted variable duration of treatment effect and substantial recurrence rates several months postradiation. Contributing to these differential outcomes are disparate approaches groups have taken in planning and delivering radiation, owing to both technical and knowledge gaps limiting optimization and standardization of cardiac SBRT. METHODS AND FINDINGS In this report, we review the historical basis for cardiac SBRT and existing clinical data. We then elucidate the current technical gaps in cardiac radioablation, incorporating the current clinical experience, and summarize the ongoing and needed efforts to resolve them. CONCLUSION Cardiac SBRT is an emerging therapy that holds promise for the treatment of ventricular tachycardia. Technical gaps remain, to be addressed by ongoing research and growing clincial experience.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre C Qian
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michelle Boeck
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Bredfeldt
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul C Zei
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Kim B, Soepriatna AH, Park W, Moon H, Cox A, Zhao J, Gupta NS, Park CH, Kim K, Jeon Y, Jang H, Kim DR, Lee H, Lee KS, Goergen CJ, Lee CH. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat Commun 2021; 12:3710. [PMID: 34140475 PMCID: PMC8211747 DOI: 10.1038/s41467-021-23959-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains. Herein, we report sponge-like poroelastic silicone composites adaptable for high-precision direct writing of custom-designed stretchable biosensors, which are soft and insensitive to strains. Their unique structural properties yield a robust coupling to living tissues, enabling high-fidelity recording of spatiotemporal electrophysiological activity and real-time ultrasound imaging for visual feedback. In vivo evaluations of custom-fit biosensors in a murine acute myocardial infarction model demonstrate a potential clinical utility in the simultaneous intraoperative recording and imaging on the epicardium, which may guide definitive surgical treatments.
Collapse
Affiliation(s)
- Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue College of Veterinary Medicine, West Lafayette, IN, USA
| | - Jianchao Zhao
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nevin S Gupta
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chi Hoon Park
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju-Si, Republic of Korea
| | - Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yale Jeon
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hanmin Jang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kwan-Soo Lee
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Materials Engineering, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Martins-Marques T, Hausenloy DJ, Sluijter JPG, Leybaert L, Girao H. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends Mol Med 2021; 27:248-262. [PMID: 33139169 DOI: 10.1016/j.molmed.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The maintenance of tissue, organ, and organism homeostasis relies on an intricate network of players and mechanisms that assist in the different forms of cell-cell communication. Myocardial infarction, following heart ischemia and reperfusion, is associated with profound changes in key processes of intercellular communication, involving gap junctions, extracellular vesicles, and tunneling nanotubes, some of which have been implicated in communication defects associated with cardiac injury, namely arrhythmogenesis and progression into heart failure. Therefore, intercellular communication players have emerged as attractive powerful therapeutic targets aimed at preserving a fine-tuned crosstalk between the different cardiac cells in order to prevent or repair some of harmful consequences of heart ischemia and reperfusion, re-establishing myocardial function.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
23
|
Munshi A. Ablative radiosurgery for cardiac arrhythmias - A systematic review. Cancer Radiother 2021; 25:373-379. [PMID: 33589330 DOI: 10.1016/j.canrad.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is a high precision technique that is commonly used for malignant lesions in lung, liver, pancreas and spine. Recent reports suggest promise in use of SBRT as a tool in atrial and ventricular cardiac arrhythmias. The present systematic review deals with the use of SBRT technology for this novel indication. A PubMed search was done for articles published between 1990 and 2020. All original articles, case reports, case series of treated patients were included in the analyses. Out of the 55 articles in PubMed search, our search found 1 phase I/II clinical case series, 3 clinical case reports, 3 animal studies and 4 dosimetric studies related to cardiac SBRT for arrythmias. All studies used a uniform cardiac dose of 25Gy. The available preclinical, dosimetric and clinical studies have suggested that SBRT for cardiac arrhythmias could become a potential alternative in suitable patients. Cardiac and radiation oncology community await further data and experience in this modality, including safety and outcomes.
Collapse
Affiliation(s)
- A Munshi
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, India.
| |
Collapse
|
24
|
Campbell T, Bennett RG, Kotake Y, Kumar S. Updates in Ventricular Tachycardia Ablation. Korean Circ J 2021; 51:15-42. [PMID: 33377327 PMCID: PMC7779814 DOI: 10.4070/kcj.2020.0436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) due to recurrent ventricular tachycardia is an important clinical sequela in patients with structural heart disease. As a result, ventricular tachycardia (VT) has emerged as a major clinical and public health problem. The mechanism of VT is predominantly mediated by re-entry in the presence of arrhythmogenic substrate (scar), though focal mechanisms are also important. Catheter ablation for VT, when compared to standard medical therapy, has been shown to improve VT-free survival and burden of device therapies. Approaches to VT ablation are dependent on the underlying disease process, broadly classified into idiopathic (no structural heart disease) or structural heart disease (ischemic or non-ischemic heart disease). This update aims to review recent advances made for the treatment of VT ablation, with respect to current clinical trials, peri-procedure risk assessments, pre-procedural cardiac imaging, electro-anatomic mapping and advances in catheter and non-catheter based ablation techniques.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Sáenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2020; 21:1143-1144. [PMID: 31075787 DOI: 10.1093/europace/euz132] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gisbert V, Jiménez-Serrano S, Roses-Albert E, Rodrigo M. Atrial location optimization by electrical measures for Electrocardiographic Imaging. Comput Biol Med 2020; 127:104031. [PMID: 33096296 DOI: 10.1016/j.compbiomed.2020.104031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here we evaluate a new automatic methodology able to locate the atrial anatomy within the torso based on an intrinsic electrical parameter of the ECGI solution. METHODS In 28 realistic simulations of the atrial electrical activity, we randomly displaced the atrial anatomy for ±2.5 cm and ±30° on each axis. An automatic optimization method based on the L-curve curvature was used to estimate the original position using exclusively non-invasive data. RESULTS The automatic optimization algorithm located the atrial anatomy with a deviation of 0.5 ± 0.5 cm in position and 16.0 ± 10.7° in orientation. With these approximate locations, the obtained electrophysiological maps reduced the average error in atrial rate measures from 1.1 ± 1.1 Hz to 0.5 ± 1.0 Hz and in the phase singularity position from 7.2 ± 4.0 cm to 1.6 ± 1.7 cm (p < 0.01). CONCLUSIONS This proposed automatic optimization may help to solve spatial inaccuracies provoked by cardiac motion or respiration, as well as to use ECGI on torso and atrial anatomies from different medical image systems.
Collapse
Affiliation(s)
- Víctor Gisbert
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Santiago Jiménez-Serrano
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain; Proteu Tecnologia Aplicada Coop V, Spain
| | - Eduardo Roses-Albert
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain; Proteu Tecnologia Aplicada Coop V, Spain
| | - Miguel Rodrigo
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
27
|
Noninvasive Radioablation of Ventricular Tachycardia. Cardiol Rev 2020; 28:283-290. [PMID: 33017363 DOI: 10.1097/crd.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ventricular tachycardia (VT) occurs most commonly in the presence of structural heart disease or myocardial scarring from prior infarction. It is associated with increased mortality, especially when it results in cardiac arrest outside of a hospital. When not due to reversible causes (such as acute ischemia/infarction), placement of an implantable cardioverter-defibrillator for prevention of future sudden death is indicated. The current standard of care for recurrent VT is medical management with antiarrhythmic agents followed by invasive catheter ablation for VT that persists despite appropriate medical therapy. Stereotactic arrhythmia radioablation (STAR) is a novel, noninvasive method of treating VT that has been shown to reduce VT burden for patients who are refractory to medical therapy and/or catheter ablation, or who are unable to tolerate catheter ablation. STAR is the term applied to the use of stereotactic body radiation therapy for the treatment of arrhythmogenic cardiac tissue and requires collaboration between an electrophysiologist and a radiation oncologist. The process involves identification of VT substrate through a combination of electroanatomic mapping and diagnostic imaging (computed tomography, magnetic resonance imaging, positron emission tomography) followed by carefully guided radiation therapy. In this article, we review currently available literature describing the utilization, efficacy, safety profile, and potential future applications of STAR for the management of VT.
Collapse
|
28
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Bella PD, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol 2020; 59:145-298. [PMID: 31984466 PMCID: PMC7223859 DOI: 10.1007/s10840-019-00663-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, IN, USA
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Pereira H, Niederer S, Rinaldi CA. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 2020; 22:euaa165. [PMID: 32754737 PMCID: PMC7544539 DOI: 10.1093/europace/euaa165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Use of the 12-lead electrocardiogram (ECG) is fundamental for the assessment of heart disease, including arrhythmias, but cannot always reveal the underlying mechanism or the location of the arrhythmia origin. Electrocardiographic imaging (ECGi) is a non-invasive multi-lead ECG-type imaging tool that enhances conventional 12-lead ECG. Although it is an established technology, its continuous development has been shown to assist in arrhythmic activation mapping and provide insights into the mechanism of cardiac resynchronization therapy (CRT). This review addresses the validity, reliability, and overall feasibility of ECGi for use in a diverse range of arrhythmias. A systematic search limited to full-text human studies published in peer-reviewed journals was performed through Medline via PubMed, using various combinations of three key concepts: ECGi, arrhythmia, and CRT. A total of 456 studies were screened through titles and abstracts. Ultimately, 42 studies were included for literature review. Evidence to date suggests that ECGi can be used to provide diagnostic insights regarding the mechanistic basis of arrhythmias and the location of arrhythmia origin. Furthermore, ECGi can yield valuable information to guide therapeutic decision-making, including during CRT. Several studies have used ECGi as a diagnostic tool for atrial and ventricular arrhythmias. More recently, studies have tested the value of this technique in predicting outcomes of CRT. As a non-invasive method for assessing cardiovascular disease, particularly arrhythmias, ECGi represents a significant advancement over standard procedures in contemporary cardiology. Its full potential has yet to be fully explored.
Collapse
Affiliation(s)
- Helder Pereira
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiac Physiology Services—Clinical Investigation Centre, Bupa Cromwell Hospital, London, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher A Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiovascular Department, Guys and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Dewland TA, Wong AC, Gerstenfeld EP. Noninvasive ventricular tachycardia ablation: Should we apply the accelerator or the brake? Heart Rhythm 2020; 17:1249-1250. [DOI: 10.1016/j.hrthm.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
|
31
|
Blom LJ, Groeneveld SA, Wulterkens BM, van Rees B, Nguyen UC, Roudijk RW, Cluitmans M, Volders PGA, Hassink RJ. Novel use of repolarization parameters in electrocardiographic imaging to uncover arrhythmogenic substrate. J Electrocardiol 2020; 59:116-121. [PMID: 32062380 DOI: 10.1016/j.jelectrocard.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Measuring repolarization characteristics is challenging and has been reserved for experienced physicians. In electrocardiographic imaging (ECGI), activation-recovery interval (ARI) is used as a measure of local cardiac repolarization duration. We hypothesized that repolarization characteristics, such as local electrogram morphology and local and global dispersion of repolarization timing and duration could be of significance in ECGI. OBJECTIVE To further explore their potential in arrhythmic risk stratification we investigated the use of novel repolarization parameters in ECGI. MATERIALS AND METHODS We developed and compared methods for T-peak and T-end detection in reconstructed potentials. All methods were validated on annotated reconstructed electrograms (EGMs). Characteristics of the reconstructed EGMs and epicardial substrate maps in IVF patients were analyzed by using data recorded during sinus rhythm. The ECGI data were analyzed for EGM morphology, conduction, and repolarization. RESULTS We acquired ECGI data from 8 subjects for this study. In all patients we evaluated four repolarization parameters: Repolarization time, T-wave area, Tpeak-Tend interval, and T-wave alternans. Most prominent findings were steep repolarization time gradients in regions with flat EGMs. These regions were also characterized by low T-wave area and large differences in Tpeak-Tend interval. CONCLUSIONS Measuring novel repolarization parameters in reconstructed electrograms acquired with ECGI is feasible, can be done in a fully automated manner and may provide additional information on underlying arrhythmogenic substrate for risk stratification. Further studies are needed to investigate their potential use and clinical application.
Collapse
Affiliation(s)
- L J Blom
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - S A Groeneveld
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - B M Wulterkens
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - B van Rees
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - U C Nguyen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - R W Roudijk
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Cluitmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - P G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - R J Hassink
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
32
|
Robinson CG, Samson PP, Moore KMS, Hugo GD, Knutson N, Mutic S, Goddu SM, Lang A, Cooper DH, Faddis M, Noheria A, Smith TW, Woodard PK, Gropler RJ, Hallahan DE, Rudy Y, Cuculich PS. Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Circulation 2019; 139:313-321. [PMID: 30586734 DOI: 10.1161/circulationaha.118.038261] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.
Collapse
Affiliation(s)
- Clifford G Robinson
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - Pamela P Samson
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - Kaitlin M S Moore
- Department of Internal Medicine, Cardiovascular Division (K.M.S.M., D.H.C., M.F., A.N., T.W.S., P.S.C.), Washington University, St Louis, MO
| | - Geoffrey D Hugo
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - Nels Knutson
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - Sasa Mutic
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - S Murty Goddu
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - Adam Lang
- Department of Pathology (A.L.), Washington University, St Louis, MO
| | - Daniel H Cooper
- Department of Internal Medicine, Cardiovascular Division (K.M.S.M., D.H.C., M.F., A.N., T.W.S., P.S.C.), Washington University, St Louis, MO
| | - Mitchell Faddis
- Department of Internal Medicine, Cardiovascular Division (K.M.S.M., D.H.C., M.F., A.N., T.W.S., P.S.C.), Washington University, St Louis, MO
| | - Amit Noheria
- Department of Internal Medicine, Cardiovascular Division (K.M.S.M., D.H.C., M.F., A.N., T.W.S., P.S.C.), Washington University, St Louis, MO
| | - Timothy W Smith
- Department of Internal Medicine, Cardiovascular Division (K.M.S.M., D.H.C., M.F., A.N., T.W.S., P.S.C.), Washington University, St Louis, MO
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology (P.K.W., R.J.G.), Washington University, St Louis, MO
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology (P.K.W., R.J.G.), Washington University, St Louis, MO
| | - Dennis E Hallahan
- Department of Radiation Oncology (C.G.R., P.P.S., G.D.H., N.K., S.M., S.M.G., D.E.H.), Washington University, St Louis, MO
| | - Yoram Rudy
- Departments of Biomedical Engineering, Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), Washington University, St Louis, MO
| | - Phillip S Cuculich
- Department of Internal Medicine, Cardiovascular Division (K.M.S.M., D.H.C., M.F., A.N., T.W.S., P.S.C.), Washington University, St Louis, MO
| |
Collapse
|
33
|
Abstract
The management of ventricular arrhythmias (VA) has evolved over time to an advanced discipline, incorporating many technologies in the diagnosis and treatment of the myriad types of VA. The first application of imaging is in the assessment for structural heart disease, as this has the greatest impact on prognosis. Advanced imaging has its greatest utility in the planning and execution of ablation for VA. The following review outlines the application of different imaging modalities, such as ultrasonography, magnetic resonance imaging, computed tomography, and positron emission tomography, for the treatment of VA.
Collapse
|
34
|
Orini M, Graham AJ, Martinez-Naharro A, Andrews CM, de Marvao A, Statton B, Cook SA, O'Regan DP, Hawkins PN, Rudy Y, Fontana M, Lambiase PD. Noninvasive Mapping of the Electrophysiological Substrate in Cardiac Amyloidosis and Its Relationship to Structural Abnormalities. J Am Heart Assoc 2019; 8:e012097. [PMID: 31496332 PMCID: PMC6818012 DOI: 10.1161/jaha.119.012097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The relationship between structural pathology and electrophysiological substrate in cardiac amyloidosis is unclear. Differences between light‐chain (AL) and transthyretin (ATTR) cardiac amyloidosis may have prognostic implications. Methods and Results ECG imaging and cardiac magnetic resonance studies were conducted in 21 cardiac amyloidosis patients (11 AL and 10 ATTR). Healthy volunteers were included as controls. With respect to ATTR, AL patients had lower amyloid volume (51.0/37.7 versus 73.7/16.4 mL, P=0.04), lower myocardial cell volume (42.6/19.1 versus 58.5/17.2 mL, P=0.021), and higher T1 (1172/64 versus 1109/80 ms, P=0.022) and T2 (53.4/2.9 versus 50.0/3.1 ms, P=0.003). ECG imaging revealed differences between cardiac amyloidosis and control patients in virtually all conduction‐repolarization parameters. With respect to ATTR, AL patients had lower epicardial signal amplitude (1.07/0.46 versus 1.83/1.26 mV, P=0.026), greater epicardial signal fractionation (P=0.019), and slightly higher dispersion of repolarization (187.6/65 versus 158.3/40 ms, P=0.062). No significant difference between AL and ATTR patients was found using the standard 12‐lead ECG. T1 correlated with epicardial signal amplitude (cc=−0.78), and extracellular volume with epicardial signal fractionation (cc=0.48) and repolarization time (cc=0.43). Univariate models based on single features from both cardiac magnetic resonance and ECG imaging classified AL and ATTR patients with an accuracy of 70% to 80%. Conclusions In this exploratory study cardiac amyloidosis was associated with ventricular conduction and repolarization abnormalities, which were more pronounced in AL than in ATTR. Combined ECG imaging–cardiac magnetic resonance analysis supports the hypothesis that additional mechanisms beyond infiltration may contribute to myocardial damage in AL amyloidosis. Further studies are needed to assess the clinical impact of this approach.
Collapse
Affiliation(s)
- Michele Orini
- Barts Heart Centre Barts Health NHS Trust London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| | - Adam J Graham
- Barts Heart Centre Barts Health NHS Trust London United Kingdom
| | | | - Christopher M Andrews
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St Louis St. Louis MO
| | - Antonio de Marvao
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Ben Statton
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Stuart A Cook
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences Imperial College London London United Kingdom
| | - Philip N Hawkins
- The Royal Free Hospital UCL Hospitals Trust London United Kingdom
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center Washington University in St Louis St. Louis MO
| | - Marianna Fontana
- The Royal Free Hospital UCL Hospitals Trust London United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre Barts Health NHS Trust London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| |
Collapse
|
35
|
The Electrophysiological Substrate of Early Repolarization Syndrome: Noninvasive Mapping in Patients. JACC Clin Electrophysiol 2019; 3:894-904. [PMID: 29130071 DOI: 10.1016/j.jacep.2016.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background The early repolarization (ER) pattern is a common ECG finding. Recent studies established a definitive clinical association between ER and fatal ventricular arrhythmias. However, the arrhythmogenic substrate of ER in the intact human heart has not been characterized. Objectives To map the epicardial electrophysiological (EP) substrate in ER syndrome patients using noninvasive Electrocardiographic Imaging (ECGI), and to characterize substrate properties that support arrhythmogenicity. Methods Twenty-nine ER syndrome patients were enrolled, 17 of which had a malignant syndrome. Characteristics of the abnormal EP substrate were analyzed using data recorded during sinus rhythm. The EP mapping data were analyzed for electrogram morphology, conduction and repolarization. Seven normal subjects provided control data. Results The abnormal EP substrate in ER syndrome patients has the following properties: (1) Abnormal epicardial electrograms characterized by presence of J-waves in localized regions; (2) Absence of conduction abnormalities, including delayed activation, conduction block, or fractionated electrograms; (3) Marked abbreviation of ventricular repolarization in areas with J-waves. The action potential duration (APD) was significantly shorter than normal (196±19 vs. 235±21 ms, p<0.05). Shortening of APD occurred heterogeneously, leading to steep repolarization gradients compared to normal control (45±17 vs.7±5 ms/cm, p<0.05). Premature ventricular contractions (PVCs) were recorded in 2 patients. The PVC sites of origin were closely related to the abnormal EP substrate with J-waves and steep repolarization gradients. Conclusions Early Repolarization is associated with steep repolarization gradients caused by localized shortening of APD. Results suggest association of PVC initiation sites with areas of repolarization abnormalities. Conduction abnormalities were not observed.
Collapse
|
36
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2019; 17:e2-e154. [PMID: 31085023 PMCID: PMC8453449 DOI: 10.1016/j.hrthm.2019.03.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
MORIDANI MOHAMMADKARIMI, POULADIAN MAJID. A NOVEL METHOD TO ISCHEMIC HEART DISEASE DETECTION BASED ON NON-INVASIVE ECG IMAGING. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrocardiogram (ECG) signals containing very important information about the cardiac are one of the most common tools for physicians in the diagnosis of various types of cardiac diseases. Low accuracy in positioning, limitation of time accuracy, the similarity of signals between some diseases and normal signals and probability of missing some aspect of data are the defect aspects of this method. Importance of cardiac signals and defects of current methods in diagnosis show the need of substituting a new method to show the activity of cardiac. One of the most dangerous defections is ischemia, which corrects and on time diagnose could avoid the latter effect of it. Each of common methods for diagnosis of this illness has their own advantages and disadvantages. In this paper, we consider describing a non-invasive method for ischemic episode detection based on mapping of ECG signals. With this method, we can present the signals with virtual colors and facilitate the diagnosis of ischemic disease. So, a new method of 12-lead cardiac presentation is described that in fact present the 12-lead signals in two images. The result of this paper will present the indicators of sensitivity, specificity and accuracy in the context of disease diagnosis. This paper proposed a novel ECG imaging algorithm for classifying the normal and ischemic signals and 95.35% specificity, 96.79% sensitivity and 95.76% accuracy were achieved which are very much promising compared to the other methods and doctor’s accuracy.
Collapse
Affiliation(s)
- MOHAMMAD KARIMI MORIDANI
- Department of Biomedical Engineering, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - MAJID POULADIAN
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
38
|
Cen W, Hoppe R, Sun A, Ding H, Gu N. Machine-readable Yin-Yang imbalance: traditional Chinese medicine syndrome computer modeling based on three-dimensional noninvasive cardiac electrophysiology imaging. J Int Med Res 2019; 47:1580-1591. [PMID: 30832524 PMCID: PMC6460602 DOI: 10.1177/0300060518824247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The principal diagnostic methods of traditional Chinese medicine (TCM) are inspection, auscultation and olfaction, inquiry, and pulse-taking. Treatment by syndrome differentiation is likely to be subjective. This study was designed to provide a basic theory for TCM diagnosis and establish an objective means of evaluating the correctness of syndrome differentiation. METHODS We herein provide the basic theory of TCM syndrome computer modeling based on a noninvasive cardiac electrophysiology imaging technique. Noninvasive cardiac electrophysiology imaging records the heart's electrical activity from hundreds of electrodes on the patient's torso surface and therefore provides much more information than 12-lead electrocardiography. Through mathematical reconstruction algorithm calculations, the reconstructed heart model is a machine-readable description of the underlying mathematical physics model that reveals the detailed three-dimensional (3D) electrophysiological activity of the heart. RESULTS From part of the simulation results, the imaged 3D cardiac electrical source provides dynamic information regarding the heart's electrical activity at any given location within the 3D myocardium. CONCLUSIONS This noninvasive cardiac electrophysiology imaging method is suitable for translating TCM syndromes into a computable format of the underlying mathematical physics model to offer TCM diagnosis evidence-based standards for ensuring correct evaluation and rigorous, scientific data for demonstrating its efficacy.
Collapse
Affiliation(s)
- Wei Cen
- Huaiyin Institute of Technology, Huaian, China
- Technische Universität Ilmenau, Ilmenau, Germany
| | | | - Aiwu Sun
- Huaiyin Institute of Technology, Huaian, China
| | | | - Ning Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, China
| |
Collapse
|
39
|
Sharp AJ, Mak R, Zei PC. Noninvasive Cardiac Radioablation for Ventricular Arrhythmias. CURRENT CARDIOVASCULAR RISK REPORTS 2019. [DOI: 10.1007/s12170-019-0596-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ghouri IA, Kelly A, Salerno S, Garten K, Stølen T, Kemi1 OJ, Smith GL. Characterization of Electrical Activity in Post-myocardial Infarction Scar Tissue in Rat Hearts Using Multiphoton Microscopy. Front Physiol 2018; 9:1454. [PMID: 30386255 PMCID: PMC6199960 DOI: 10.3389/fphys.2018.01454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The origin of electrical behavior in post-myocardial infarction scar tissue is still under debate. This study aims to examine the extent and nature of the residual electrical activity within a stabilized ventricular infarct scar. Methods and Results: An apical infarct was induced in the left ventricle of Wistar rats by coronary artery occlusion. Five weeks post-procedure, hearts were Langendorff-perfused, and optically mapped using di-4-ANEPPS. Widefield imaging of optical action potentials (APs) on the left ventricular epicardial surface revealed uniform areas of electrical activity in both normal zone (NZ) and infarct border zone (BZ), but only limited areas of low-amplitude signals in the infarct zone (IZ). 2-photon (2P) excitation of di-4-ANEPPS and Fura-2/AM at discrete layers in the NZ revealed APs and Ca2+ transients (CaTs) to 500-600 μm below the epicardial surface. 2P imaging in the BZ revealed superficial connective tissue structures lacking APs or CaTs. At depths greater than approximately 300 μm, myocardial structures were evident that supported normal APs and CaTs. In the IZ, although 2P imaging did not reveal clear myocardial structures, low-amplitude AP signals were recorded at discrete layers. No discernible Ca2+ signals could be detected in the IZ. AP rise times in BZ were slower than NZ (3.50 ± 0.50 ms vs. 2.23 ± 0.28 ms) and further slowed in IZ (9.13 ± 0.56 ms). Widefield measurements of activation delay between NZ and BZ showed negligible difference (3.37 ± 1.55 ms), while delay values in IZ showed large variation (11.88 ± 9.43 ms). Conclusion: These AP measurements indicate that BZ consists of an electrically inert scar above relatively normal myocardium. Discrete areas/layers of IZ displayed entrained APs with altered electrophysiology, but the structure of this tissue remains to be elucidated.
Collapse
Affiliation(s)
- Iffath A. Ghouri
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen Kelly
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simona Salerno
- Department of Circulation and Medical Imaging, St. Olav’s Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karin Garten
- Department of Circulation and Medical Imaging, St. Olav’s Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tomas Stølen
- Department of Circulation and Medical Imaging, St. Olav’s Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole-Johan Kemi1
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L. Smith
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom,*Correspondence: Godfrey L. Smith,
| |
Collapse
|
41
|
Cluitmans M, Brooks DH, MacLeod R, Dössel O, Guillem MS, van Dam PM, Svehlikova J, He B, Sapp J, Wang L, Bear L. Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Front Physiol 2018; 9:1305. [PMID: 30294281 PMCID: PMC6158556 DOI: 10.3389/fphys.2018.01305] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 11/23/2022] Open
Abstract
Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.
Collapse
Affiliation(s)
- Matthijs Cluitmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht Maastricht University, Maastricht, Netherlands
| | - Dana H. Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Rob MacLeod
- Biomedical Engineering Department, Scientific Computing and Imaging Institute (SCI), and Cardiovascular Research and Training Institute (CVRTI), The University of Utah, Salt Lake City, UT, United States
| | - Olaf Dössel
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Peter M. van Dam
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Jana Svehlikova
- Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bin He
- Department of Biomedical Engineering Carnegie Mellon University, Pittsburgh, PA, United States
| | - John Sapp
- QEII Health Sciences Centre and Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, United States
| | - Laura Bear
- IHU LIRYC, Fondation Bordeaux Université, Inserm U1045 and Université de Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Weipert K, Kuniss M, Neumann T. [Noninvasive mapping for catheter ablation of arrhythmias using the CardioInsight™ ECG vest]. Herzschrittmacherther Elektrophysiol 2018; 29:293-299. [PMID: 30105608 DOI: 10.1007/s00399-018-0582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND CardioInsight™ is a noninvasive three-dimensional mapping system technology which offers a unique method for arrhythmia characterization and localization. With a 252-lead ECG vest on the patient's torso and a noncontrast CT scan, epicardial potentials are detected and by means of reconstruction algorithms activation and phase maps are created, offering a deeper understanding of localization and mechanisms of arrhythmias including atrial fibrillation without the need for an endocardial catheter. MATERIALS AND METHODS The system has proven to be accurate and applicable in the clinical setting of accessory pathways, premature ventricular contractions (PVC), atrial tachycardias and atrial fibrillation. Beat-to-beat analysis offers detection and thus a therapeutic approach for arrhythmias which occur only paroxysmally such as supraventricular extrasystoles, atrial bursts or PVCs. Another advantage is the simultaneous display of various heart chambers such as the left and right atrium. However, major multicenter prospective randomized data are still lacking. CONCLUSION If in the future noninvasive mapping could be achieved with MRI and if the technology was compatible with invasive mapping systems so that catheter positioning and noninvasive maps can be merged, the authors believe that this would represent a new dimension of mapping technology and ablation strategy of arrhythmias.
Collapse
Affiliation(s)
- Kay Weipert
- Abteilung für Kardiologie/Elektrophysiologie, Kerckhoff-Klinik, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| | - Malte Kuniss
- Abteilung für Kardiologie/Elektrophysiologie, Kerckhoff-Klinik, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| | - Thomas Neumann
- Abteilung für Kardiologie/Elektrophysiologie, Kerckhoff-Klinik, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland.
| |
Collapse
|
43
|
Sieniewicz BJ, Gould J, Porter B, Sidhu BS, Behar JM, Claridge S, Niederer S, Rinaldi CA. Optimal site selection and image fusion guidance technology to facilitate cardiac resynchronization therapy. Expert Rev Med Devices 2018; 15:555-570. [PMID: 30019954 PMCID: PMC6178093 DOI: 10.1080/17434440.2018.1502084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cardiac resynchronization therapy (CRT) has emerged as one of the few effective treatments for heart failure. However, up to 50% of patients derive no benefit. Suboptimal left ventricle (LV) lead position is a potential cause of poor outcomes while targeted lead deployment has been associated with enhanced response rates. Image-fusion guidance systems represent a novel approach to CRT delivery, allowing physicians to both accurately track and target a specific location during LV lead deployment. AREAS COVERED This review will provide a comprehensive evaluation of how to define the optimal pacing site. We will evaluate the evidence for delivering targeted LV stimulation at sites displaying favorable viability or advantageous mechanical or electrical properties. Finally, we will evaluate several emerging image-fusion guidance systems which aim to facilitate optimal site selection during CRT. EXPERT COMMENTARY Targeted LV lead deployment is associated with reductions in morbidity and mortality. Assessment of tissue characterization and electrical latency are critical and can be achieved in a number of ways. Ultimately, the constraints of coronary sinus anatomy have forced the exploration of novel means of delivering CRT including endocardial pacing which hold promise for the future of CRT delivery.
Collapse
Affiliation(s)
- Benjamin J. Sieniewicz
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Justin Gould
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Bradley Porter
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Baldeep S Sidhu
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jonathan M Behar
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Simon Claridge
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Steve Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Christopher A. Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
44
|
Rodrigo M, Narayan SM. Statistical guidance of VT ablation. J Cardiovasc Electrophysiol 2018; 29:987-989. [PMID: 29771455 PMCID: PMC6467226 DOI: 10.1111/jce.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Miguel Rodrigo
- Stanford University, Stanford, CA, USA
- Universitat Politècnicade València, València, Spain
| | | |
Collapse
|
45
|
Wissner E, Revishvili A, Metzner A, Tsyganov A, Kalinin V, Lemes C, Saguner AM, Maurer T, Deiss S, Sopov O, Labarkava E, Chmelevsky M, Kuck KH. Noninvasive epicardial and endocardial mapping of premature ventricular contractions. Europace 2018; 19:843-849. [PMID: 27207812 PMCID: PMC5437699 DOI: 10.1093/europace/euw103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/15/2016] [Indexed: 12/04/2022] Open
Abstract
Aims The aim of the present study was to estimate the accuracy of a novel non-invasive epicardial and endocardial electrophysiology system (NEEES) for mapping ectopic ventricular depolarizations. Methods and results The study enrolled 20 patients with monomorphic premature ventricular contractions (PVCs) or ventricular tachycardia (VT). All patients underwent pre-procedural computed tomography or magnetic resonance imaging of the heart and torso. Radiographic data were semi-automatically processed by the NEEES to reconstruct a realistic 3D model of the heart and torso. In the electrophysiology laboratory, body-surface electrodes were connected to the NEEES followed by unipolar EKG recordings during episodes of PVC/VT. The body-surface EKG data were processed by the NEEES using its inverse-problem solution software in combination with anatomical data from the heart and torso. The earliest site of activation as denoted on the NEEES 3D heart model was compared with the PVC/VT origin using a 3D electroanatomical mapping system. The site of successful catheter ablation served as final confirmation. A total of 21 PVC/VT morphologies were analysed and ablated. The chamber of interest was correctly diagnosed non-invasively in 20 of 21 (95%) PVC/VT cases. In 18 of the 21 (86%) cases, the correct ventricular segment was diagnosed. Catheter ablation resulted in acute success in 19 of the 20 (95%) patients, whereas 1 patient underwent successful surgical ablation. During 6 months of follow-up, 19 of the 20 (95%) patients were free from recurrence off antiarrhythmic drugs. Conclusion The NEEES accurately identified the site of PVC/VT origin. Knowledge of the potential site of the PVC/VT origin may aid the physician in planning a successful ablation strategy.
Collapse
Affiliation(s)
| | - Amiran Revishvili
- Bakoulev Scientific Centre for Cardiovascular Surgery, Moscow, Russia
| | | | | | | | | | | | | | | | - Oleg Sopov
- Bakoulev Scientific Centre for Cardiovascular Surgery, Moscow, Russia
| | - Eugene Labarkava
- Bakoulev Scientific Centre for Cardiovascular Surgery, Moscow, Russia
| | | | | |
Collapse
|
46
|
Lipovsky CE, Brumback BD, Khandekar A, Rentschler SL. Multi-Scale Assessments of Cardiac Electrophysiology Reveal Regional Heterogeneity in Health and Disease. J Cardiovasc Dev Dis 2018; 5:E16. [PMID: 29517992 PMCID: PMC5872364 DOI: 10.3390/jcdd5010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
The left and right ventricles of the four-chambered heart have distinct developmental origins and functions. Chamber-specific developmental programming underlies the differential gene expression of ion channel subunits regulating cardiac electrophysiology that persists into adulthood. Here, we discuss regional specific electrical responses to genetic mutations and cardiac stressors, their clinical correlations, and describe many of the multi-scale techniques commonly used to analyze electrophysiological regional heterogeneity.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Aditi Khandekar
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
47
|
Rodrigo M, Climent AM, Liberos A, Hernandez-Romero I, Arenal A, Bermejo J, Fernandez-Aviles F, Atienza F, Guillem MS. Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:733-740. [PMID: 28541896 DOI: 10.1109/tmi.2017.2707413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrocardiographic Imaging has become an increasingly used technique for non-invasive diagnosis of cardiac arrhythmias, although the need for medical imaging technology to determine the anatomy hinders its introduction in the clinical practice. This paper explores the ability of a new metric based on the inverse reconstruction quality for the location and orientation of the atrial surface inside the torso. Body surface electrical signals from 31 realistic mathematical models and four AF patients were used to estimate the optimal position of the atria inside the torso. The curvature of the L-curve from the Tikhonov method, which was found to be related to the inverse reconstruction quality, was measured after application of deviations in atrial position and orientation. Independent deviations in the atrial position were solved by finding the maximal L-curve curvature with an error of 1.7 ± 2.4 mm in mathematical models and 9.1 ± 11.5 mm in patients. For the case of independent angular deviations, the error in location by using the L-curve was 5.8±7.1° in mathematical models and 12.4° ± 13.2° in patients. The ability of the L-curve curvature was tested also under superimposed uncertainties in the three axis of translation and in the three axis of rotation, and the error in location was of 2.3 ± 3.2 mm and 6.4° ± 7.1° in mathematical models, and 7.9±10.7 mm and 12.1°±15.5° in patients. The curvature of L-curve is a useful marker for the atrial position and would allow emending the inaccuracies in its location.
Collapse
|
48
|
Kim EJ, Davogustto G, Stevenson WG, John RM. Non-invasive Cardiac Radiation for Ablation of Ventricular Tachycardia: a New Therapeutic Paradigm in Electrophysiology. Arrhythm Electrophysiol Rev 2018; 7:8-10. [PMID: 29636967 DOI: 10.15420/aer.7.1.eo1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Non-invasive ablation of cardiac tissue to control ventricular tachycardia (VT) is a novel therapeutic consideration in the management of ventricular arrhythmias associated with structural heart disease. The technique involves the use of stereotactic radiotherapy delivered to VT substrates. Although invasive mapping can be used to identify the target, the use of non-invasive ECG and imaging techniques combined with multi-electrode body-surface ECG recordings offers the potential of a completely non-invasive approach. Early case series have demonstrated a consistent decrease in VT burden and sufficient early safety to allow more detailed multicenter studies. Such studies are currently in progress to further evaluate this promising technology.
Collapse
Affiliation(s)
| | | | - William G Stevenson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical CenterNashville, TN, USA.,Both authors contributed equally to this work
| | - Roy M John
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical CenterNashville, TN, USA.,Both authors contributed equally to this work
| |
Collapse
|
49
|
Cuculich PS, Schill MR, Kashani R, Mutic S, Lang A, Cooper D, Faddis M, Gleva M, Noheria A, Smith TW, Hallahan D, Rudy Y, Robinson CG. Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia. N Engl J Med 2017; 377:2325-2336. [PMID: 29236642 PMCID: PMC5764179 DOI: 10.1056/nejmoa1613773] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent advances have enabled noninvasive mapping of cardiac arrhythmias with electrocardiographic imaging and noninvasive delivery of precise ablative radiation with stereotactic body radiation therapy (SBRT). We combined these techniques to perform catheter-free, electrophysiology-guided, noninvasive cardiac radioablation for ventricular tachycardia. METHODS We targeted arrhythmogenic scar regions by combining anatomical imaging with noninvasive electrocardiographic imaging during ventricular tachycardia that was induced by means of an implantable cardioverter-defibrillator (ICD). SBRT simulation, planning, and treatments were performed with the use of standard techniques. Patients were treated with a single fraction of 25 Gy while awake. Efficacy was assessed by counting episodes of ventricular tachycardia, as recorded by ICDs. Safety was assessed by means of serial cardiac and thoracic imaging. RESULTS From April through November 2015, five patients with high-risk, refractory ventricular tachycardia underwent treatment. The mean noninvasive ablation time was 14 minutes (range, 11 to 18). During the 3 months before treatment, the patients had a combined history of 6577 episodes of ventricular tachycardia. During a 6-week postablation "blanking period" (when arrhythmias may occur owing to postablation inflammation), there were 680 episodes of ventricular tachycardia. After the 6-week blanking period, there were 4 episodes of ventricular tachycardia over the next 46 patient-months, for a reduction from baseline of 99.9%. A reduction in episodes of ventricular tachycardia occurred in all five patients. The mean left ventricular ejection fraction did not decrease with treatment. At 3 months, adjacent lung showed opacities consistent with mild inflammatory changes, which had resolved by 1 year. CONCLUSIONS In five patients with refractory ventricular tachycardia, noninvasive treatment with electrophysiology-guided cardiac radioablation markedly reduced the burden of ventricular tachycardia. (Funded by Barnes-Jewish Hospital Foundation and others.).
Collapse
Affiliation(s)
- Phillip S Cuculich
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Matthew R Schill
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Rojano Kashani
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Sasa Mutic
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Adam Lang
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Daniel Cooper
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Mitchell Faddis
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Marye Gleva
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Amit Noheria
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Timothy W Smith
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Dennis Hallahan
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Yoram Rudy
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| | - Clifford G Robinson
- From the Department of Internal Medicine, Cardiovascular Division (P.S.C., D.C., M.F., M.G., A.N., T.W.S.), and the Departments of Surgery (M.R.S.), Radiation Oncology (R.K., S.M., D.H., C.G.R.), Pathology (A.L.), and Cell Biology and Physiology, Medicine, Radiology, and Pediatrics (Y.R.), School of Medicine, and the Department of Biomedical Engineering, School of Engineering and Applied Science (Y.R.), Washington University in St. Louis, St. Louis
| |
Collapse
|
50
|
Chrispin J, Assis F, Tandri H. Mapping the Electrical Substrate in Arrhythmogenic Right Ventricular Cardiomyopathy. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005524. [DOI: 10.1161/circep.117.005524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jonathan Chrispin
- From the Center of Excellence for ARVC and Complex Ventricular Arrhythmias, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fabrizio Assis
- From the Center of Excellence for ARVC and Complex Ventricular Arrhythmias, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Harikrishna Tandri
- From the Center of Excellence for ARVC and Complex Ventricular Arrhythmias, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|