1
|
Kornfield JM, Bright H, Drake MG. Touching a Nerve: Neuroimmune Interactions in Asthma. Immunol Rev 2025; 331:e70025. [PMID: 40186378 PMCID: PMC12121487 DOI: 10.1111/imr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Asthma is an inflammatory airway disease characterized by excessive bronchoconstriction and airway hyperresponsiveness. Airway nerves play a crucial role in regulating these processes. In asthma, interactions between inflammatory cells and nerves result in nerve dysfunction, which worsens airway function. This review discusses new insights regarding the role of airway nerves in healthy lungs and examines how communication between nerves and leukocytes, including eosinophils, mast cells, dendritic cells, and innate lymphoid cells, contributes to nerve dysfunction and the worsening of airway disease. Clinical implications and therapeutic opportunities presented by neuroimmune interactions are also addressed.
Collapse
Affiliation(s)
- James M Kornfield
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Hoyt Bright
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Sulimai N, Brown J, Lominadze D. Caffeic Acid Phenethyl Ester Protects Neurons Against Oxidative Stress and Neurodegeneration During Traumatic Brain Injury. Biomolecules 2025; 15:80. [PMID: 39858474 PMCID: PMC11762460 DOI: 10.3390/biom15010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is an inflammatory disease causing neurodegeneration. One of the consequences of inflammation is an elevated blood level of fibrinogen (Fg). Earlier we found that extravasated Fg induced an increased expression of neuronal nuclear factor kappa B (NF-κB) p65. In the present study, we aimed to evaluate the effect of caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB, on Fg-induced neurodegeneration in vitro and in mice with mild-to-moderate TBI. Primary mouse brain cortical neurons were treated with Fg (0.5 or 1 mg/mL) in the presence or absence of CAPE. A cortical contusion injury -induced model of TBI in C57BL/6 mice was used. Mice were treated with CAPE for two weeks. The generation of reactive oxygen species (ROS) and neuronal viability were assessed. Mice memory was assessed using novel object recognition and contextual fear conditioning tests. The generation of ROS and viability of neurons in vitro and in the brain samples were assessed. Data showed that CAPE attenuated the Fg-induced generation of ROS and neuronal death. CAPE improved the cognitive function of the mice with TBI. The results suggest that Fg-induced generation of ROS could be a mechanism involved in cognitive impairment and that CAPE can offer protection against oxidative damage and neurodegeneration.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
4
|
Liu H, Ai J, Wang T, Tan G. Adhesion Promotes Allergic Rhinitis CD4 +IL4 + T Cell Differentiation via ICAM1 and E-Selectin. Am J Rhinol Allergy 2022; 36:521-528. [PMID: 35296145 DOI: 10.1177/19458924221086061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuroimmune communication plays an important role in allergic inflammation, but the neuroimmune regulation of allergic rhinitis remains unclear. OBJECTIVE The goal of this study was to investigate the role of CD4-positive T lymphocyte (CD4+ T cells) adhesion to D-U87 neuron-like cells in mediating allergic rhinitis CD4+ T cell differentiation. METHODS D-U87 neuron-like cells were derived from the human glioblastoma U87 cell line. CD4+ T cells were isolated from human peripheral blood using a magnetic separation technique. In vitro coculture of D-U87 neuron-like cells and CD4+ T cells was established. The number of adherent CD4+ T cells was counted using a fluorescence microscope. The percentages of CD4+IFNγ+ and CD4+IL4+ T cells and the levels of IFNγ and IL4 cytokines in the supernatant were measured by flow cytometry. RESULTS The results showed that the number of adherent CD4+ T cells in patients with allergic rhinitis was significantly higher than that in healthy controls. In allergic rhinitis, the percentage of CD4+IL4+ T cells was significantly increased in the adherent group compared with that in the nonadherent group. Moreover, blocking ICAM1 and E-selectin decreased the number of adherent CD4+ T cells and the percentage of CD4+IL4+ T cells in allergic rhinitis. CONCLUSION Adhesion contributes to CD4+IL4+ T cell differentiation in the in vitro coculture system of D-U87 neuron-like cells and allergic rhinitis CD4+ T cells, which may provide new insights into therapeutic strategies for allergic rhinitis.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jingang Ai
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tiansheng Wang
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guolin Tan
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
5
|
Eosinophils in the Gastrointestinal Tract: Key Contributors to Neuro-Immune Crosstalk and Potential Implications in Disorders of Brain-Gut Interaction. Cells 2022; 11:cells11101644. [PMID: 35626681 PMCID: PMC9139532 DOI: 10.3390/cells11101644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are innate immune granulocytes actively involved in defensive responses and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils modulate barrier function and mucosal immunity and promote tissue development through their direct communication with almost every cellular component. This is possible thanks to the variety of receptors they express and the bioactive molecules they store and release, including cytotoxic proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal function, with potential implications in pathophysiological processes. Eosinophil–neuron interactions are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory or inhibitory effects on each cell type, with physiological consequences dependent on the type of innervation involved. Of special interest are the disorders of the brain–gut interaction (DBGIs), mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia and eosinophil activation have been identified. In this review, we summarize the main roles of gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil–neuron interactions to bring new insights that support the fundamental role of this neuro-immune crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.
Collapse
|
6
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
7
|
Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol 2021; 51:1602-1614. [PMID: 33895990 DOI: 10.1002/eji.202048812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.
Collapse
Affiliation(s)
- Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, 12203, Germany
| | | |
Collapse
|
8
|
Song MK, Kim DI, Lee K. Causal relationship between humidifier disinfectant exposure and Th17-mediated airway inflammation and hyperresponsiveness. Toxicology 2021; 454:152739. [PMID: 33640443 DOI: 10.1016/j.tox.2021.152739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In this study, we investigated whether humidifier disinfectants (HDs) induce asthmatic airway inflammation in an animal model and compared the features of HD-induced inflammatory symptoms with ovalbumin (OVA)-induced allergic asthma. Mice were intratracheally instilled three times with either the control or 0.1, 0.3, or 0.5 mg/kg of polyhexamethylene guanidine phosphate (PHMG-P). To characterize asthmatic features, the following parameters were analyzed: (i) differential cell counts and cytokine expression in the bronchoalveolar lavage fluid (BALF); (ii) presence of mucus-producing goblet cells and pulmonary eosinophilic infiltration in the lungs; (iii) serum immunoglobulin levels; and (iv) airway hyperresponsiveness (AHR). RNA-Seq and bioinformatics tools were used to investigate whether PHMG-P altered asthma-related gene expression in lung tissues. The PHMG-P exposure groups showed higher peribronchial/perivascular inflammation, elevated goblet cell hyperplasia, and inhaled methacholine-induced airway resistance. Additionally, IL-13 and IL-17 in BALF were significantly increased in the PHMG-P exposure groups. However, there were no significant differences in total serum IgE and BALF IL-4 and IL-5 levels in the PHMG-P exposure groups compared to the control group. PHMG-P exposure modulated the expression of genes related to Th17 signaling pathways including the IL-17A, IL-23, and STAT3 signaling pathways, but not the Th2 signaling pathway. Altogether, our results suggest that repeated exposure to low does PHMG-P induces asthma-like symptoms and is thus a possible risk factor for developing asthma. The PHMG-P-induced asthmatic airway inflammation showed a different pattern from that found in typical allergic asthma and may be related to irritant-induced airway inflammation and hyperresponsiveness characterized by Th2-low, Th17-related, IgE-independent, and mixed granulocytic features.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
9
|
Abstract
Eosinophils affect nerve structure and function in organs such as lungs and skin, which contributes to disease pathogenesis. We have developed methods for culturing primary sensory and parasympathetic neurons in multiple species and have refined these techniques for coculture with eosinophils. Eosinophil-nerve coculture has been an essential tool for testing interactions between these cell types. Here we describe methods for coculturing primary parasympathetic ganglia, vagal sensory nerves, and dorsal root sensory nerves with eosinophils.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Kanda A, Yasutaka Y, Van Bui D, Suzuki K, Sawada S, Kobayashi Y, Asako M, Iwai H. Multiple Biological Aspects of Eosinophils in Host Defense, Eosinophil-Associated Diseases, Immunoregulation, and Homeostasis: Is Their Role Beneficial, Detrimental, Regulator, or Bystander? Biol Pharm Bull 2020; 43:20-30. [PMID: 31902927 DOI: 10.1248/bpb.b19-00892] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eosinophils are innate immune leukocytes and play important roles as terminal effector cells owing to their mediators, such as tissue-destructive cationic proteins, cytokines, chemokines, and lipid mediators. Historically, they are not only considered an important player in host defense against parasitic, viral, fungal, and bacterial infections but also implicated in the pathogenesis of eosinophil-associated diseases, such as allergic rhinitis, asthma, eosinophilic chronic rhinosinusitis, esophagitis, atopic dermatitis, myopathies, and hypereosinophilic syndrome. Moreover, recent studies have shown that eosinophils have an immune regulatory and homeostatic function. Interestingly, there is emerging evidence that eosinophils are accumulated through adoptive T-helper 2 (Th2) and innate Th2 responses, mechanisms of the classical allergen-specific immunoglobulin E (IgE)-mediated response, and group 2 innate lymphoid cell-derived interleukin-5, respectively. Furthermore, in agreement with current concepts of eosinophil subtypes, it has been shown that resident and phenotypically distinct eosinophils, i.e., resident and recruited inflammatory eosinophils, exist in inflamed sites, and each has different functions. Thus, the classical and novel studies suggest that eosinophils have multiple functions, and their roles may be altered by the environment. In this article, we review multiple biological aspects of eosinophils (novel and classical roles), including their beneficial and detrimental effects, immunoregulation, and homeostatic function.
Collapse
Affiliation(s)
- Akira Kanda
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University.,Allergy Center, Kansai Medical University
| | - Yun Yasutaka
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University
| | - Dan Van Bui
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University
| | - Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University
| | - Shunsuke Sawada
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University
| | - Yoshiki Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University.,Allergy Center, Kansai Medical University
| | - Mikiya Asako
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University.,Allergy Center, Kansai Medical University
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University
| |
Collapse
|
11
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Nie Z, Maung JN, Jacoby DB, Fryer AD. Lung eosinophils increase vagus nerve-mediated airway reflex bronchoconstriction in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L242-L251. [PMID: 31746625 PMCID: PMC7052679 DOI: 10.1152/ajplung.00040.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Eosinophils mediate airway hyperresponsiveness by increasing vagally mediated reflex bronchoconstriction. Here, we tested whether circulating or airway eosinophils change nerve function. Airway resistance in response to aerosolized 5-hydroxytryptamine (5-HT, 10-300 mM) was measured in wild-type mice or transgenic mice that overexpress IL5 in T cells (+IL5T), overexpress IL5 in airway epithelium (+IL5AE), or overexpress IL5 but are devoid of eosinophils (+IL5AE/-Eos). Inflammatory cells in bronchoalveolar lavage (BAL), blood, and bone marrow were quantified. Blood eosinophils were increased in +IL5T and +IL5AE mice compared with wild-type mice. +IL5T mice had increased eosinophils in bone marrow while +IL5AE mice had increased eosinophils in BAL. Eosinophils surrounding large airways were significantly increased only in +IL5AE mice. With intact vagal innervation, aerosolized 5-HT significantly increased airway resistance in +IL5AE mice. 5-HT-induced bronchoconstriction was blocked by vagotomy or atropine, demonstrating that it was mediated via a vagal reflex. Airway resistance was not increased in +IL5AE/-Eos mice, demonstrating that it required lung eosinophils, but was not affected by increased bone marrow or blood eosinophils or by increased IL5 in the absence of eosinophils. Eosinophils did not change M3 function on airway smooth muscle, since airway responses to methacholine in vagotomized mice were not different among strains. Eosinophils surrounding large airways were sufficient, even in the absence of increased IL5 or external insult, to increase vagally mediated reflex bronchoconstriction. Specifically blocking or reducing eosinophils surrounding large airways may effectively inhibit reflex hyperresponsiveness mediated by vagus nerves in eosinophilic asthma.
Collapse
Affiliation(s)
- Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jessica N Maung
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
|
14
|
New aspects of neuroinflammation and neuroimmune crosstalk in the airways. J Allergy Clin Immunol 2019; 142:1415-1422. [PMID: 30409249 DOI: 10.1016/j.jaci.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/23/2022]
Abstract
Neuroimmune interaction has long been discussed in the pathogenesis of allergic airway diseases, such as allergic asthma. Mediators released during inflammation can alter the function of both sensory and parasympathetic neurons innervating the airways. Evidence has been provided that the inflammatory response can be altered by various mediators that are released by sensory and parasympathetic neurons and vice versa. Our aim is to demonstrate recent developments in the reciprocal neuroimmune interaction and to include, if available, data from in vivo and clinical studies.
Collapse
|
15
|
Liu H, Xia J, Wang T, Li W, Song Y, Tan G. Differentiation of human glioblastoma U87 cells into cholinergic neuron. Neurosci Lett 2019; 704:1-7. [PMID: 30928478 DOI: 10.1016/j.neulet.2019.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
To facilitate research methodologies for investigating the role of cholinergic nerves in many diseases, establishing an in vitro cholinergic neuron model is necessary. In this study, we investigated whether human glioblastoma U87 cells could be differentiated into cholinergic neurons in vitro. Sodium butyrate was used as the differentiation agent. The differentiated cells established by inducing U87 cells with sodium butyrate were named D-U87 cells. Immunofluorescence was used to label the neuronal markers MAP2, NF-M, and ChAT and the glial marker GFAP in D-U87 cells. Flow cytometry was used to measure cell cycle distribution in D-U87 cells. PCR, protein chip, and western blot assays were used to measure the expression levels of muscarinic cholinergic receptor 1 (M1), M4, ChAT, SYP and Akt. ELISA was used to measure neurotransmitter levels. As a result, we found that sodium butyrate induced U87 cell differentiation into cells with neuronal characteristics and increased not only the expression levels of the cholinergic neuron-related proteins M1, M4, ChAT and SYP in D-U87 cells but also the acetylcholine neurotransmitters in D-U87 cells. Moreover, the Akt protein expression in D-U87 cells was increased compared with that in U87 cells. Finally, we found that M1, M4, ChAT and SYP protein expression and acetylcholine secretion levels were significantly decreased in D-U87 cells after treatment with the Akt inhibitor MK-2206. These results demonstrate that D-U87 cells exhibit cholinergic neuron characteristics and that sodium butyrate induced U87 cell differentiation into cholinergic neuron partially through Akt signaling.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Jinye Xia
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Tiansheng Wang
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Wei Li
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Yexun Song
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Guolin Tan
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
16
|
Chesné J, Cardoso V, Veiga-Fernandes H. Neuro-immune regulation of mucosal physiology. Mucosal Immunol 2019; 12:10-20. [PMID: 30089849 DOI: 10.1038/s41385-018-0063-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Mucosal barriers constitute major body surfaces that are in constant contact with the external environment. Mucosal sites are densely populated by a myriad of distinct neurons and immune cell types that sense, integrate and respond to multiple environmental cues. In the recent past, neuro-immune interactions have been reported to play central roles in mucosal health and disease, including chronic inflammatory conditions, allergy and infectious diseases. Discrete neuro-immune cell units act as building blocks of this bidirectional multi-tissue cross-talk, ensuring mucosal tissue health and integrity. Herein, we will focus on reciprocal neuro-immune interactions in the airways and intestine. Such neuro-immune cross-talk maximizes sensing and integration of environmental aggressions, which can be considered an important paradigm shift in our current views of mucosal physiology and immune regulation.
Collapse
Affiliation(s)
- Julie Chesné
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | - Vânia Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisboa, Portugal
| | | |
Collapse
|
17
|
Drake MG, Lebold KM, Roth-Carter QR, Pincus AB, Blum ED, Proskocil BJ, Jacoby DB, Fryer AD, Nie Z. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol 2018; 104:61-67. [PMID: 29633324 DOI: 10.1002/jlb.3mr1117-426r] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Airway eosinophils are increased in asthma and are especially abundant around airway nerves. Nerves control bronchoconstiction and in asthma, airway hyperreactivity (where airways contract excessively to inhaled stimuli) develops when eosinophils alter both parasympathetic and sensory nerve function. Eosinophils release major basic protein, which is an antagonist of inhibitory M2 muscarinic receptors on parasympathetic nerves. Loss of M2 receptor inhibition potentiates parasympathetic nerve-mediated bronchoconstriction. Eosinophils also increase sensory nerve responsiveness by lowering neurons' activation threshold, stimulating nerve growth, and altering neuropeptide expression. Since sensory nerves activate parasympathetic nerves via a central neuronal reflex, eosinophils' effects on both sensory and parasympathetic nerves potentiate bronchoconstriction. This review explores recent insights into mechanisms and effects of eosinophil and airway nerve interactions in asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Quinn R Roth-Carter
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Alexandra B Pincus
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Wicher SA, Lawson KL, Jacoby DB, Fryer AD, Drake MG. Ozone-induced eosinophil recruitment to airways is altered by antigen sensitization and tumor necrosis factor- α blockade. Physiol Rep 2017; 5:e13538. [PMID: 29242307 PMCID: PMC5742702 DOI: 10.14814/phy2.13538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023] Open
Abstract
Ozone is an atmospheric pollutant that causes lung inflammation and airway hyperresponsiveness. Ozone's effects occur in two distinct phases that are mediated by different populations of eosinophils. In the acute phase 1 day after exposure, mature airway-resident eosinophils alter parasympathetic nerve function that results in airway hyperresponsiveness. At this time point, the severity of hyperresponsiveness correlates with the number of eosinophils in close proximity to airway nerves, but not with eosinophils in bronchoalveolar lavage. Three days later, newly divided eosinophils are recruited to airways by a tumor necrosis factor-α-dependent mechanism. These new eosinophils paradoxically attenuate ozone-induced airway hyperresponsiveness. Ozone's effects on airway tissue eosinophils and nerve-associated eosinophils 3 days after exposure are unknown. Thus, we tested ozone's effects on eosinophils in airway subepithelium and around airway nerves 1 and 3 days after ozone in nonsensitized and ovalbumin-sensitized guinea pigs with or without the tumor necrosis factor-α antagonist, etanercept, and compared changes in eosinophils with ozone-induced airway hyperresponsiveness. More eosinophils were present in small, noncartilaginous airways and along small airway nerves compared to large cartilaginous airways in all treatment groups. The number of airway and nerve-associated eosinophils were unaffected 1 day after ozone exposure, whereas significantly fewer airway eosinophils were present 3 days later. Airway and nerve-associated eosinophils were also decreased in small airways 3 days after ozone in sensitized animals. These changes were blocked by etanercept. Airway eosinophils, but not nerve-associated or bronchoalveolar lavage eosinophils correlated with airway hyperresponsiveness 3 days after ozone. Our findings indicate ozone causes persistent alterations in airway eosinophils and reinforce the importance of characterizing eosinophils' effects within distinct airway compartments.
Collapse
Affiliation(s)
- Sarah A Wicher
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, Oregon
| | - Katy L Lawson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Allison D Fryer
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, Oregon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Roth-Carter QR, Jacoby DB, Nie Z. Interactions of eosinophils with nerves. Methods Mol Biol 2015; 1178:215-29. [PMID: 24986620 DOI: 10.1007/978-1-4939-1016-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Coculture of eosinophils and nerves is a powerful tool in determining the interactions between the two cell types. We have developed methods for culture of parasympathetic ganglia and dorsal root ganglia from humans, and we have further refined the technique to coculture with eosinophils. Here we describe methods for coculturing primary parasympathetic ganglia or dorsal root ganglia with eosinophils.
Collapse
Affiliation(s)
- Quinn R Roth-Carter
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, 97239-3098, Portland, OR, USA,
| | | | | |
Collapse
|
20
|
McGovern AE, Mazzone SB. Neural regulation of inflammation in the airways and lungs. Auton Neurosci 2014; 182:95-101. [DOI: 10.1016/j.autneu.2013.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
|
21
|
Katoh S, Shimizu H, Obase Y, Oomizu S, Niki T, Ikeda M, Mouri K, Kobashi Y, Hirashima M, Oka M. Preventive effect of galectin-9 on double-stranded RNA-induced airway hyperresponsiveness in an exacerbation model of mite antigen-induced asthma in mice. Exp Lung Res 2013; 39:453-62. [PMID: 24246013 DOI: 10.3109/01902148.2013.850558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Viral respiratory infection is the most common cause of acute asthma exacerbation in patients with stable asthma. The replication of most respiratory viruses requires the generation of double-stranded RNA (dsRNA), resulting in the activation of host immune responses. Synthetic dsRNA, polyinosinic-polycytidylic acid (PolyIC), mimics the effects of viruses in various cell types. To evaluate new therapies for mite antigen-induced chronic asthma, we developed an acute exacerbation model of mouse chronic asthma using mite antigen and PolyIC. We also examined the preventive effects of recombinant galectin-9 (Gal-9) on acute asthma exacerbation in this model. METHODS Airway hyperresponsiveness (AHR) was examined to evaluate the exacerbation of chronic asthma. To analyze airway inflammation, the numbers of inflammatory cells and concentrations of cytokines in the bronchoalveolar lavage fluid (BALF) were estimated by flow cytometry and enzyme-linked immunosorbent assay, respectively. RESULTS AHR was accelerated by intranasal administration of PolyIC in addition to mite antigen. Levels of cytokines that contribute to AHR, including interferon-γ, tumor necrosis factor-α, and RANTES (CCR5), and of Gal-9 in the BALF were elevated in this acute asthma exacerbation mouse model. Intranasal administration of recombinant Gal-9 reduced the PolyIC-induced AHR and levels of these cytokines in the BALF. Further, Gal-9 suppressed the production of cytokines induced by PolyIC in the alveolar macrophages. CONCLUSIONS. Our findings demonstrated that exogenous Gal-9 suppressed dsRNA-induced AHR in an acute exacerbation model of chronic asthma in mice, and suggest that recombinant Gal-9 could be therapeutically effective for preventing acute asthma exacerbation.
Collapse
Affiliation(s)
- Shigeki Katoh
- 1Department of Respiratory Medicine, Kawasaki Medical School, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
β2-Agonists inhibit TNF-α-induced ICAM-1 expression in human airway parasympathetic neurons. PLoS One 2012; 7:e44780. [PMID: 23049757 PMCID: PMC3458032 DOI: 10.1371/journal.pone.0044780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/14/2012] [Indexed: 12/03/2022] Open
Abstract
Background Major basic protein released from eosinophils to airway parasympathetic nerves blocks inhibitory M2 muscarinic receptors on the parasympathetic nerves, increasing acetylcholine release and potentiating reflex bronchoconstriction. Recruitment of eosinophils to airway parasympathetic neurons requires neural expression of both intercellular adhesion molecular-1 (ICAM-1) and eotaxin. We have shown that inflammatory cytokines induce eotaxin and ICAM-1 expression in parasympathetic neurons. Objective To test whether the β2 agonist albuterol, which is used to treat asthma, changes TNF-alpha-induced eotaxin and ICAM-1 expression in human parasympathetic neurons. Methods Parasympathetic neurons were isolated from human tracheas and grown in serum-free medium for one week. Cells were incubated with either (R)-albuterol (the active isomer), (S)-albuterol (the inactive isomer) or (R,S)-albuterol for 90 minutes before adding 2 ng/ml TNF-alpha for another 4 hours (for mRNA) or 24 hours (for protein). Results and Conclusions Baseline expression of eotaxin and ICAM-1 were not changed by any isomer of albuterol as measured by real time RT-PCR. TNF-alpha induced ICAM-1 expression was significantly inhibited by (R)-albuterol in a dose dependent manner, but not by (S) or (R,S)-albuterol. Eotaxin expression was not changed by TNF-alpha or by any isomer of albuterol. The β-receptor antagonist propranolol blocked the inhibitory effect of (R)-albuterol on TNF-alpha-induced ICAM-1 expression. Clinical Implication The suppressive effect of (R)-albuterol on neural ICAM-1 expression may be an additional mechanism for decreasing bronchoconstriction, since it would decrease eosinophil recruitment to the airway nerves.
Collapse
|
23
|
Nie Z, Scott GD, Weis PD, Itakura A, Fryer AD, Jacoby DB. Role of TNF-α in virus-induced airway hyperresponsiveness and neuronal M₂ muscarinic receptor dysfunction. Br J Pharmacol 2012; 164:444-52. [PMID: 21457223 DOI: 10.1111/j.1476-5381.2011.01393.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Infections with respiratory viruses induce exacerbations of asthma, increase acetylcholine release and potentiate vagally mediated bronchoconstriction by blocking inhibitory M₂ muscarinic receptors on parasympathetic neurons. Here we test whether virus-induced M₂ receptor dysfunction and airway hyperresponsiveness are tumour necrosis factor-alpha (TNF-α) dependent. EXPERIMENTAL APPROACH Guinea pigs were pretreated with etanercept or phosphate-buffered saline 24 h before intranasal infection with parainfluenza. Four days later, pulmonary inflation pressure, heart rate and blood pressure were measured. M₂ receptor function was assessed by the potentiation by gallamine (an M₂ receptor antagonist) of bronchoconstriction caused by electrical stimulation of the vagus nerves and measured as increased pulmonary inflation pressure. Human airway epithelial cells were infected with influenza and TNF-α concentration in supernatant was measured before supernatant was applied to human neuroblastoma cells. M₂ receptor expression in these neuroblastoma cells was measured by qRT-PCR. KEY RESULTS Influenza-infected animals were hyperresponsive to vagal stimulation but not to intravenous ACh. Gallamine did not potentiate vagally induced bronchoconstriction in virus-infected animals, indicating M₂ receptor dysfunction. Etanercept prevented virus-induced airway hyperresponsiveness and M₂ receptor dysfunction, without changing lung viral titres. Etanercept caused a non-significant decrease in total cells, macrophages and neutrophils in bronchoalveolar lavage. Influenza infection significantly increased TNF-α release from isolated epithelial cells, sufficient to decrease M₂ receptors in neuroblastoma cells. This ability of supernatants from infected epithelial cells to inhibit M₂ receptor expression was blocked by etanercept. CONCLUSIONS AND IMPLICATIONS TNF-α is a key mediator of virus-induced M₂ muscarinic receptor dysfunction and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Zhenying Nie
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
24
|
Airway IFN-γ production during RSV bronchiolitis is associated with eosinophilic inflammation. Lung 2011; 190:183-8. [PMID: 22160185 DOI: 10.1007/s00408-011-9349-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 11/16/2011] [Indexed: 01/03/2023]
Abstract
STUDY OBJECTIVE This study was designed to investigate the possible role of IFN-γ in eosinophil degranulation that occurs during respiratory syncytial virus (RSV) bronchiolitis. METHODS Sixty-seven infants, 2-24 months old and hospitalized with their first episode of acute RSV bronchiolitis, were selected for this study. Eosinophil-active cytokine and chemokine profiles in nasal lavage supernatants taken within the first 48 h of admission were determined by a multiplex bead array system (Luminex). Comparisons were made with control (Control group) subjects (n = 20). RESULTS Nasal IFN-γ levels were significantly higher (P < 0.0001) in RSV bronchiolitis (median = 4.4 pg/ml) infants compared to controls (0.0 pg/ml). IFN-γ levels correlated significantly with the levels of nasal eotaxin (r = 0.566, P < 0.0001), RANTES (r = 0.627, P < 0.0001), GM-CSF (r = 0.849, P < 0.0001), and EDN (r = 0.693, P < 0.001). Nasal interleukin (IL)-4, IL-5, and IL-13 were below sensitivity levels in most RSV bronchiolitis and control subjects. CONCLUSION These results suggest that IFN-γ may play an important role in eosinophilic inflammation in RSV bronchiolitis.
Collapse
|
25
|
Kim CK, Choi J, Callaway Z, Iijima K, Volcheck G, Kita H. Increases in airway eosinophilia and a th1 cytokine during the chronic asymptomatic phase of asthma. Respir Med 2010; 104:1436-43. [PMID: 20709516 DOI: 10.1016/j.rmed.2010.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND Studies using allergen challenge models have suggested Th2 cytokines promote airway inflammation in asthma. We assessed mediators of airway inflammation during the chronic asymptomatic phase of asthma. METHODS Nine non-atopic asthma (NAA) patients, 19 atopic asthma (AA) patients, 20 atopic controls (AC), and 38 normal controls (NC) underwent sputum induction while asymptomatic. Sputum total cell counts and differentials were determined; levels of cytokines IL-4, IL-5, IL-13, GM-CSF, and IFN-gamma, and chemokines eotaxin (CCL11) and RANTES (CCL5) were measured by ELISA; and levels of eosinophil-derived neurotoxin (EDN) were measured by radioimmunoassay. RESULTS NAA patients showed higher % eosinophils and total eosinophils compared to AA. NAA and AA patients showed higher IFN-gamma and EDN levels compared to AC and NC, with no differences in IL-4, IL-5, or IL-13 levels among the four groups. GM-CSF levels were higher in AA patients compared to AC or NC. In NAA, AA, and AC patients, % eosinophils and EDN levels correlated positively with IFN-gamma, GM-CSF, eotaxin, and RANTES, but not with IL-5 levels. CONCLUSIONS Baseline airway inflammation of intrinsic and extrinsic asthma is characterized by eosinophilic inflammation and the Th1 cytokine, IFN-gamma. GM-CSF, instead of IL-5, and chemokines may coordinate airway eosinophilia during the chronic asymptomatic phase of asthma.
Collapse
Affiliation(s)
- Chang Keun Kim
- Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Sherwin RP, Richters V. Topographical distribution of bronchial eosinophilia: significance for biopsy diagnosis. Virchows Arch 2009; 455:77-85. [PMID: 19495790 DOI: 10.1007/s00428-009-0790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/08/2009] [Accepted: 05/08/2009] [Indexed: 11/27/2022]
Abstract
Field-by-field (0.324 x 0.09 microM) counts of eosinophils were applied to the lamina propria of cartilaginous bronchi from 47 Los Angeles and 22 Miami residents 11 to 30 years of age who died suddenly from violence. A highly variable topographical distribution was found that appeared to be due mainly to variations in confluent eosinophil-positive fields and "hot spots" (>or=3 eosinophils per field). Since biopsy is the gold standard for the diagnosis of bronchial eosinophilia, there is a need to resolve the problem of non-uniformity. New measurements applicable to biopsy diagnosis are presented having potential usefulness for providing insight into the severity and topographical distribution of eosinophilia within bronchi that are the sites of biopsy. The additional finding of a 30.4% incidence of moderate to marked eosinophilia (>1.5 eosinophils/mm reticular basement membrane) suggests a high level of asthma or asthmatic-like disease in the young subjects of this study.
Collapse
Affiliation(s)
- Russell P Sherwin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
27
|
Nie Z, Jacoby DB, Fryer AD. Etanercept prevents airway hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. Br J Pharmacol 2009; 156:201-10. [PMID: 19134001 DOI: 10.1111/j.1476-5381.2008.00045.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased tumour necrosis factor-alpha (TNF-alpha) is associated with airway hyperreactivity in antigen-challenged animals. In human asthmatics, TNF-alpha is increased and blocking it prevents airway hyperreactivity in some asthmatic patients. However, the mechanisms by which TNF-alpha mediates hyperreactivity are unknown. Airway hyperreactivity can be caused by dysfunction of neuronal M(2) muscarinic receptors that normally limit acetylcholine release from parasympathetic nerves. Here we test whether blocking TNF-alpha receptors with etanercept prevents M(2) receptor dysfunction and airway hyperreactivity in antigen-challenged guinea pigs. EXPERIMENTAL APPROACH Ovalbumin-sensitized guinea pigs were challenged by inhalation of antigen. Some animals received etanercept (3 mg kg(-1) i.p.) 3 h before challenge. 24 h after challenge, airway hyperreactivity and M(2) receptor function were tested. Inflammatory cells in bronchoalveolar lavage, blood and lung were counted. TNF-alpha and its receptors were detected by real-time RT-PCR and immunocytochemistry in parasympathetic nerves from humans and guinea pigs and in human neuroblastoma cells. KEY RESULTS Antigen-challenged animals were hyperreactive to vagal stimulation and neuronal M(2) receptors were dysfunctional. Both M(2) receptor dysfunction and airway hyperreactivity were prevented by etanercept. Etanercept reduced eosinophils around airway nerves, and in blood, bronchoalveolar lavage and airway smooth muscle. Also, TNF-alpha decreased M(2) receptor mRNA in human and guinea pig parasympathetic neurons. CONCLUSIONS AND IMPLICATIONS Tumour necrosis factor-alpha may contribute to M(2) receptor dysfunction and airway hyperreactivity directly by decreasing receptor expression and indirectly by promoting recruitment of eosinophils, containing major basic protein, an M(2) antagonist. This suggests that etanercept may be beneficial in treatment of allergic asthma.
Collapse
Affiliation(s)
- Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
28
|
Akdis CA. New insights into mechanisms of immunoregulation in 2007. J Allergy Clin Immunol 2008; 122:700-709. [PMID: 19014761 DOI: 10.1016/j.jaci.2008.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
Abstract
Substantial progress in understanding the mechanisms of immune regulation in allergic diseases and asthma has been made during the last year. In asthma, rhinitis, and atopic dermatitis the immune system is activated by allergens, autoantigens, and components of superimposed infectious agents. Immune regulation in the lymphatic organs and in the tissue has an important role in the control and suppression of allergic disease in all stages of the inflammatory process, such as cell migration to tissues, cells gaining an inflammatory and tissue-destructive phenotype in the tissues, and their interaction with resident tissue cells to augment the inflammation. After the discovery of regulatory T cells, the importance of their unique suppressive capacity was strongly emphasized for the suppression of effector T-cell responses. However, it seems that all 3 subsets of effector T(H)1, T(H)2, and T(H)17 cells, as well as regulatory T cells, regulate each other at the level of transcription, major cytokines, and surface molecules. This review highlights key advances in immune regulation that were published in the Journal of Allergy and Clinical Immunology.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland.
| |
Collapse
|
29
|
Raap U, Wardlaw AJ. A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 2008; 17:731-8. [PMID: 18505411 DOI: 10.1111/j.1600-0625.2008.00741.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophil granulocytes have long been regarded as potent effector cells with the potential to release an array of inflammatory mediators involved in cytotoxicity to helminths and tissue destruction in chronic inflammatory diseases such as asthma. However, it has become evident that eosinophils are also involved in regulatory mechanisms modulating local tissue immune responses. Eosinophils take part in remodelling and repair mechanisms and contribute to the localized innate and acquired immune response as well as systemic adaptive immunity. In addition, eosinophils are involved in neuroimmune interactions modulating the functional activity of peripheral nerves. Neuromediators can also modulate the functional activity of eosinophils, revealing bidirectional interactions between the two cell types. Eosinophils are tissue-resident cells and have been found in close vicinity of peripheral nerves. This review describes neuroimmune interactions between eosinophil granulocytes and peripheral nerves and highlights why eosinophils are important in allergic diseases such as asthma.
Collapse
Affiliation(s)
- Ulrike Raap
- Department of Dermatology and Allergology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
30
|
Abstract
Gastrointestinal eosinophilia, a broad term for abnormal eosinophil accumulation in the gastrointestinal tract, involves many different disease identities. These diseases include primary eosinophil associated gastrointestinal diseases, gastrointestinal eosinophilia in hypereosinophilic syndrome, and all gastrointestinal eosinophilic states associated with known causes. Each of these diseases has its unique features but there is no absolute boundary between them. All three groups of gastrointestinal eosinophila are described in this article, although the focus is on primary gastrointestinal eosinophilia.
Collapse
Affiliation(s)
- Li Zuo
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|