1
|
Thouvenel CD, Tipton CM, Yamazaki Y, Zhang TT, Rylaarsdam S, Hom JR, Snead C, Zhu C, Li QZ, Lee YN, Kawai T, Haque N, Zimmermann MT, Ponnan SM, Jackson SW, James RG, Sanz I, Notarangelo LD, Torgerson TR, Ochs HD, Rawlings DJ, Allenspach EJ. Hypomorphic RAG2 Deficiency Promotes Selection of Self-Reactive B Cells. J Clin Immunol 2025; 45:66. [PMID: 39812873 PMCID: PMC11735530 DOI: 10.1007/s10875-024-01849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study. Whole-genome and repertoire sequencing, bacteriophage immunizations, and deep immunophenotyping were used to compare affected and unaffected family members. The clinical phenotype of three affected siblings with hypomorphic RAG deficiency ranged from combined immunodeficiency and early mortality to a late-onset CID with hyper-IgM phenotype. T cells were remarkably similar across affected siblings, yet CDR3 skewing and regulatory T cell defects were not observed. B cell analysis showed elevated unswitched CD27+ and CD21low cells as well as features of an autoreactive antibody repertoire and presence of secreted autoantibodies, yet no clinical autoimmunity was present. Most striking was an expanded polyclonal marginal zone-like B cell population (IgM+IgD+CD27+) utilizing the self-reactive unmutated VH4-34 receptor demonstrating that hypomorphic RAG deficiency can promote expansion of self-reactive B cells. This process, however, was not sufficient to trigger clinical autoimmunity. Utilizing multiple approaches, we functionally measured the specific RAG2 variant effects and assessed how selection and secondary triggers altered the BCR repertoire and immunophenotype overtime. Overall, we demonstrate a broad disease spectrum in siblings with identical hypomorphic RAG deficiency, highlighting that phenotypic divergence can result from expansion of IgM + memory B cells.
Collapse
Affiliation(s)
- Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher M Tipton
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Ting Zhang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stacey Rylaarsdam
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jennifer R Hom
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Ramat-Gan and Sackler Faculty of Medicine, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Rich G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Chen X, Jiang C, Song W, Sun T, Yan J, Xu W, You K. Case report: Identification of a Chinese patient with RAG1 mutations initially presenting as autoimmune hemolytic anemia. Front Immunol 2024; 15:1498066. [PMID: 39720732 PMCID: PMC11666426 DOI: 10.3389/fimmu.2024.1498066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Mutations in the recombination-activating gene 1, a pivotal component essential for V(D)J recombination and the formation of T- and B-cell receptors, can result in autoimmune hemolytic anemia, a rare hematological condition characterized by the autoantibody-mediated destruction of red blood cells. Herein, we report the case of a 1-year-and-4-month-old girl who presented with progressively aggravated anemia, fever, and cough. Autoimmune hemolytic anemia was confirmed by bone marrow aspiration and Coombs test. During treatment, the patient experienced two episodes of severe pneumonia and respiratory failure. Next-generation metagenomic sequencing of sputum samples confirmed the presence of cytomegalovirus and Pneumocystis jirovecii infections. Additionally, lymphocyte subset analysis revealed a T-B+ immunodeficiency. Whole exome and Sanger sequencing revealed a pathogenic recombinase-activating gene 1 mutation (c.2095C>T, p.Arg699Trp) and a likely pathogenic variant (c.2690G>A, p.Arg897Gln), resulting in a missense mutation in the amino acid sequence of the coding protein. Consequently, the patient was diagnosed with a recombination-activating gene 1 mutation and autoimmune hemolytic anemia as the initial presentation. This study reports a case of a recombination-activating gene 1 mutation in China and documents a combination of mutation sites and associated clinical phenotypes that were previously unreported. In this study, we outline the diverse clinical phenotypes observed in cases of recombination-activating gene 1 mutations presenting with autoimmune hemolytic anemia, aiming to facilitate timely diagnosis and appropriate treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xu
- *Correspondence: Wei Xu, ; Kai You,
| | - Kai You
- *Correspondence: Wei Xu, ; Kai You,
| |
Collapse
|
3
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
4
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
6
|
Csomos K, Ujhazi B, Blazso P, Herrera JL, Tipton CM, Kawai T, Gordon S, Ellison M, Wu K, Stowell M, Haynes L, Cruz R, Zakota B, Nguyen J, Altrich M, Geier CB, Sharapova S, Dasso JF, Leiding JW, Smith G, Al-Herz W, de Barros Dorna M, Fadugba O, Fronkova E, Kanderova V, Svaton M, Henrickson SE, Hernandez JD, Kuijpers T, Kandilarova SM, Naumova E, Milota T, Sediva A, Moshous D, Neven B, Saco T, Sargur R, Savic S, Sleasman J, Sunkersett G, Ward BR, Komatsu M, Pittaluga S, Kumanovics A, Butte MJ, Cancro MP, Pillai S, Meffre E, Notarangelo LD, Walter JE. Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet + B cells. Nat Immunol 2022; 23:1256-1272. [PMID: 35902638 PMCID: PMC9355881 DOI: 10.1038/s41590-022-01271-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/16/2022] [Indexed: 12/22/2022]
Abstract
The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an ‘experiment of nature’ to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent ‘domino effect’ that impacts stringency of tolerance and B cell fate in the periphery. Patients with partial recombination-activating gene (RAG) deficiency (pRD) present variable late-onset autoimmune clinical phenotypes. Walter and colleagues identified a restricted primary B cell antigen receptor repertoire enriched for autoreactivity and clonal persistence in pRD. They described dysregulated B cell maturation with expansion of T-bet+ B cells revealing how RAG impacts stringency of tolerance and B cell fate in the periphery.
Collapse
Affiliation(s)
- Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Peter Blazso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Maryssa Ellison
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kevin Wu
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Matthew Stowell
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Lauren Haynes
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Bence Zakota
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Johnny Nguyen
- Department of Pathology & Laboratory Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | | | | | | | - Joseph F Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jennifer W Leiding
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mayra de Barros Dorna
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Olajumoke Fadugba
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Eva Fronkova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michael Svaton
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Sarah E Henrickson
- Allergy Immunology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Institute for Immunology, the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Taco Kuijpers
- Deptartment of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | | | - Elizaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Despina Moshous
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Institut Imagine, Paris, France
| | - Benedicte Neven
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR1163, Institut Imagine, Paris, France
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, FL, USA
| | - Ravishankar Sargur
- Department of Immunology and Allergy, Sheffield Teaching Hospitals, Sheffield, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.,National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - John Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Gauri Sunkersett
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant R Ward
- Division of Allergy and Immunology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of technology and Harvard University, Cambridge, MA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, USA.,Section of Rheumatology, Allergy and Clinical Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA. .,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
7
|
Ruan Y, Zhao Q, Liu Q, Zhao HY, Zhang ZY, Ding Y, Zhao XD. A novel homozygous RAG1 mutation in a girl presenting with granulomas and alopecia capitis totalis. World J Pediatr 2022; 18:294-299. [PMID: 35157248 DOI: 10.1007/s12519-021-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Ruan
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qin Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qing Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Hong-Yi Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Zhi-Yong Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Xiao-Dong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
8
|
Cifaldi C, Rivalta B, Amodio D, Mattia A, Pacillo L, Di Cesare S, Chiriaco M, Ursu GM, Cotugno N, Giancotta C, Manno EC, Santilli V, Zangari P, Federica G, Palumbo G, Merli P, Palma P, Rossi P, Di Matteo G, Locatelli F, Finocchi A, Cancrini C. Clinical, Immunological, and Molecular Variability of RAG Deficiency: A Retrospective Analysis of 22 RAG Patients. J Clin Immunol 2022; 42:130-145. [PMID: 34664192 PMCID: PMC8821501 DOI: 10.1007/s10875-021-01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE We described clinical, immunological, and molecular characterization within a cohort of 22 RAG patients focused on the possible correlation between clinical and genetic data. METHODS Immunological and genetic features were investigated by multiparametric flow cytometry and by Sanger or next generation sequencing (NGS) as appropriate. RESULTS Patients represented a broad spectrum of RAG deficiencies: SCID, OS, LS/AS, and CID. Three novel mutations in RAG1 gene and one in RAG2 were reported. The primary symptom at presentation was infections (81.8%). Infections and autoimmunity occurred together in the majority of cases (63.6%). Fifteen out of 22 (68.2%) patients presented autoimmune or inflammatory manifestations. Five patients experienced severe autoimmune cytopenia refractory to different lines of therapy. Total lymphocytes count was reduced or almost lacking in SCID group and higher in OS patients. B lymphocytes were variably detected in LS/AS and CID groups. Eighteen patients underwent HSCT permitting definitive control of autoimmune/hyperinflammatory manifestations in twelve of them (80%). CONCLUSION We reinforce the notion that different clinical phenotype can be found in patients with identical mutations even within the same family. Infections may influence genotype-phenotype correlation and function as trigger for immune dysregulation or autoimmune manifestations. Severe and early autoimmune refractory cytopenia is frequent and could be the first symptom of onset. Prompt recognition of RAG deficiency in patients with early onset of autoimmune/hyperinflammatory manifestations could contribute to the choice of a timely and specific treatment preventing the onset of other complications.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Algeri Mattia
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Giorgiana Madalina Ursu
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Emma C Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Galaverna Federica
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giuseppe Palumbo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
9
|
Min Q, Meng X, Zhou Q, Wang Y, Li Y, Lai N, Xiong E, Wang W, Yasuda S, Yu M, Zhang H, Sun J, Wang X, Wang JY. RAG1 splicing mutation causes enhanced B cell differentiation and autoantibody production. JCI Insight 2021; 6:e148887. [PMID: 34622798 PMCID: PMC8525647 DOI: 10.1172/jci.insight.148887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Hypomorphic RAG1 or RAG2 mutations cause primary immunodeficiencies and can lead to autoimmunity, but the underlying mechanisms are elusive. We report here a patient carrying a c.116+2T>G homozygous splice site mutation in the first intron of RAG1, which led to aberrant splicing and greatly reduced RAG1 protein expression. B cell development was blocked at both the pro-B to pre-B transition and the pre-B to immature B cell differentiation step. The patient B cells had reduced B cell receptor repertoire diversity and decreased complementarity determining region 3 lengths. Despite B cell lymphopenia, the patient had abundant plasma cells in the BM and produced large quantities of IgM and IgG Abs, including autoantibodies. The proportion of naive B cells was reduced while the frequency of IgD-CD27- double-negative (DN) B cells, which quickly differentiated into Ab-secreting plasma cells upon stimulation, was greatly increased. Immune phenotype analysis of 52 patients with primary immunodeficiency revealed a strong association of the increased proportion of DN B and memory B cells with decreased number and proportion of naive B cells. These results suggest that the lymphopenic environment triggered naive B cell differentiation into DN B and memory B cells, leading to increased Ab production.
Collapse
Affiliation(s)
- Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ying Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nannan Lai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Shoya Yasuda
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan
| | - Meiping Yu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Hai Zhang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Villa A, Capo V, Castiello MC. Innovative Cell-Based Therapies and Conditioning to Cure RAG Deficiency. Front Immunol 2020; 11:607926. [PMID: 33329604 PMCID: PMC7711106 DOI: 10.3389/fimmu.2020.607926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic defects in recombination activating genes (RAG) 1 and 2 cause a broad spectrum of severe immune defects ranging from early severe and repeated infections to inflammation and autoimmune manifestations. A correlation between in vitro recombination activity and immune phenotype has been described. Hematopoietic cell transplantation is the treatment of care; however, the availability of next generation sequencing and whole genome sequencing has allowed the identification of novel genetic RAG variants in immunodeficient patients at various ages, raising therapeutic questions. This review addresses the recent advances of novel therapeutic approaches for RAG deficiency. As conventional myeloablative conditioning regimens are associated with acute toxicities and transplanted-related mortality, innovative minimal conditioning regimens based on the use of monoclonal antibodies are now emerging and show promising results. To overcome shortage of compatible donors, gene therapy has been developed in various RAG preclinical models. Overall, the transplantation of autologous gene corrected hematopoietic precursors and the use of non-genotoxic conditioning will open a new era, offering a cure to an increasing number of RAG patients regardless of donor availability and severity of clinical conditions.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| |
Collapse
|
11
|
Geier CB, Farmer JR, Foldvari Z, Ujhazi B, Steininger J, Sleasman JW, Parikh S, Dilley MA, Pai SY, Henderson L, Hazen M, Neven B, Moshous D, Sharapova SO, Mihailova S, Yankova P, Naumova E, Özen S, Byram K, Fernandez J, Wolf HM, Eibl MM, Notarangelo LD, Calabrese LH, Walter JE. Vasculitis as a Major Morbidity Factor in Patients With Partial RAG Deficiency. Front Immunol 2020; 11:574738. [PMID: 33193364 PMCID: PMC7609967 DOI: 10.3389/fimmu.2020.574738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
Vasculitis can be a life-threatening complication associated with high mortality and morbidity among patients with primary immunodeficiencies (PIDs), including variants of severe and combined immunodeficiencies ((S)CID). Our understanding of vasculitis in partial defects in recombination activating gene (RAG) deficiency, a prototype of (S)CIDs, is limited with no published systematic evaluation of diagnostic and therapeutic modalities. In this report, we sought to establish the clinical, laboratory features, and treatment outcome of patients with vasculitis due to partial RAG deficiency. Vasculitis was a major complication in eight (13%) of 62 patients in our cohort with partial RAG deficiency with features of infections and immune dysregulation. Vasculitis occurred early in life, often as first sign of disease (50%) and was complicated by significant end organ damage. Viral infections often preceded the onset of predominately non-granulomatous-small vessel vasculitis. Autoantibodies against cytokines (IFN-α, -ω, and IL-12) were detected in a large fraction of the cases tested (80%), whereas the majority of patients were anti-neutrophil cytoplasmic antibodies (ANCA) negative (>80%). Genetic diagnosis of RAG deficiency was delayed up to 2 years from the onset of vasculitis. Clinical cases with sole skin manifestation responded well to first-line steroid treatment, whereas systemic vasculitis with severe end-organ complications required second-line immunosuppression and/or hematopoietic stem cell transplantation (HSCT) for definitive management. In conclusion, our data suggest that vasculitis in partial RAG deficiency is prevalent among patients with partial RAG deficiency and is associated with high morbidity. Therefore, partial RAG deficiency should be included in the differential diagnosis of patients with early-onset systemic vasculitis. Diagnostic serology may be misleading with ANCA negative findings, and search for conventional autoantibodies should be extended to include those targeting cytokines.
Collapse
Affiliation(s)
| | - Jocelyn R Farmer
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Boglarka Ujhazi
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
| | | | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Suhag Parikh
- Emory University School of Medicine, Atlanta, GA, United States
| | - Meredith A Dilley
- Department of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Lauren Henderson
- Division of Immunology, Department of Rheumatology, Boston Children's Hospital, Boston, MA, United States
| | - Melissa Hazen
- Division of Immunology, Department of Rheumatology, Boston Children's Hospital, Boston, MA, United States
| | - Benedicte Neven
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory "Immunogenetics of Pediatric autoimmune diseases", INSERM UMR1163, Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Despina Moshous
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in The Immune System, Paris, France
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Snezhina Mihailova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Petya Yankova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Elisaveta Naumova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Seza Özen
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kevin Byram
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - James Fernandez
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria.,Sigmund Freud Private University- Medical School, Vienna, Austria
| | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria.,Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Leonard H Calabrese
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - Jolan E Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States.,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
12
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
13
|
Rheumatological manifestations in inborn errors of immunity. Pediatr Res 2020; 87:293-299. [PMID: 31581173 DOI: 10.1038/s41390-019-0600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Rare monogenetic diseases serve as natural models to dissect the molecular pathophysiology of the complex disease traits. Rheumatologic disorders by their nature are considered complex diseases with partially genetic origin, as illustrated by their heterogeneous genetic background and variable phenotypic presentation. Recent advances in genetic technologies have helped uncover multiple variants associated with disease susceptibility; however, a precise understanding of genotype-phenotype relationships is still missing. Inborn errors of immunity (IEIs), in addition to recurrent infections, may also present with autoimmune and autoinflammatory rheumatologic manifestations and have provided insights for understanding the underlying the principles of immune system homeostasis and mechanisms of immune dysregulation. This review discusses the rheumatologic manifestations in IEIs with overlapping and differentiating features in immunodeficiencies and rheumatologic disorders.
Collapse
|
14
|
Bulkhi AA, Dasso JF, Schuetz C, Walter JE. Approaches to patients with variants in RAG genes: from diagnosis to timely treatment. Expert Rev Clin Immunol 2019; 15:1033-1046. [PMID: 31535575 DOI: 10.1080/1744666x.2020.1670060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Patients with primary immunodeficiency secondary to abnormal recombinase activating genes (RAG) can present with broad clinical phenotypes ranging from early severe infections to autoimmune complications and inflammation. Immunological phenotype may also vary from T-B- severe combined immunodeficiency to combined immunodeficiency or antibody deficiencies with near-normal T and B cell counts and even preserved specific antibody response to pathogens. It is not uncommon that RAG variants of uncertain significance are identified by serendipity during a broad genetic screening process and pathogenic RAG variants are increasingly recognized among all age groups, including adults. Establishing the pathogenicity and clinical relevance of novel RAG variants can be challenging since RAG genes are highly polymorphic. This review paper aims to summarize clinical phenotypes of RAG deficiencies and provide practical guidance for confirming the direct link between specific RAG variants and clinical disease. Lastly, we will review the current understanding of treatment option for patients with varying severity of RAG deficiencies. Area covered: This review discusses the different phenotypes and immunological aspects of RAG deficiencies, the diagnosis dilemma facing clinicians, and an overview of current and advancement in treatments. Expert opinion: A careful analysis of immunological and clinical data and their correlation with genetic findings helps to determine the significance of the genetic polymorphism. Advances in functional assays, as well as anti-cytokine antibodies, make it easier to resolve the diagnostic dilemma.
Collapse
Affiliation(s)
- Adeeb A Bulkhi
- Department of Internal Medicine, College of Medicine, Umm Al-Qura University , Makkah , Saudi Arabia.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Joseph F Dasso
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,Division of Allergy and Immunology, Massachusetts General Hospital for Children , Boston , MA , USA
| |
Collapse
|
15
|
Abstract
While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.
Collapse
|
16
|
Farmer JR, Foldvari Z, Ujhazi B, De Ravin SS, Chen K, Bleesing JJH, Schuetz C, Al-Herz W, Abraham RS, Joshi AY, Costa-Carvalho BT, Buchbinder D, Booth C, Reiff A, Ferguson PJ, Aghamohammadi A, Abolhassani H, Puck JM, Adeli M, Cancrini C, Palma P, Bertaina A, Locatelli F, Di Matteo G, Geha RS, Kanariou MG, Lycopoulou L, Tzanoudaki M, Sleasman JW, Parikh S, Pinero G, Fischer BM, Dbaibo G, Unal E, Patiroglu T, Karakukcu M, Al-Saad KK, Dilley MA, Pai SY, Dutmer CM, Gelfand EW, Geier CB, Eibl MM, Wolf HM, Henderson LA, Hazen MM, Bonfim C, Wolska-Kuśnierz B, Butte MJ, Hernandez JD, Nicholas SK, Stepensky P, Chandrakasan S, Miano M, Westermann-Clark E, Goda V, Kriván G, Holland SM, Fadugba O, Henrickson SE, Ozen A, Karakoc-Aydiner E, Baris S, Kiykim A, Bredius R, Hoeger B, Boztug K, Pashchenko O, Neven B, Moshous D, Villartay JPD, Bousfiha AA, Hill HR, Notarangelo LD, Walter JE. Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2019; 7:1970-1985.e4. [PMID: 30877075 PMCID: PMC6612449 DOI: 10.1016/j.jaip.2019.02.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although autoimmunity and hyperinflammation secondary to recombination activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. OBJECTIVE Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. METHODS In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. RESULTS Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. Most patients (55.6%) presented with more than 1 autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median, 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia, immune thrombocytopenia, and autoimmune neutropenia, respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in most cases (64.7%, 73.7%, and 71.4% for autoimmune hemolytic anemia, immune thrombocytopenia, and autoimmune neutropenia, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment-refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. CONCLUSIONS Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multilineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Boglarka Ujhazi
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, Fla
| | - Suk See De Ravin
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jack J H Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waleed Al-Herz
- Faculty of Medicine, Pediatrics Department, Kuwait University, Kuwait City, Kuwait; Allergy and Clinical Immunology Unit, Pediatrics Department, Alsabah Hospital, Kuwait City, Kuwait
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Avni Y Joshi
- Division of Pediatric Allergy/Immunology, Mayo Clinic Children's Center Rochester, Rochester, Minn
| | | | - David Buchbinder
- Pediatrics/Hematology, CHOC Children's Hospital - UC Irvine, Irvine, Calif
| | - Claire Booth
- Department of Paediatric Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Andreas Reiff
- Division of Rheumatology, Children's Hospital Los Angeles, Keck School of Medicine, USC, Los Angeles, Calif
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Mehdi Adeli
- Sidra Medicine, Weill Cornell Medicine, and Hamad Medical Corporation, Doha, Qatar
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit in Congenital and Perinatal Infection, Children's Hospital Bambino Gesù, Rome, Italy
| | - Alice Bertaina
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Bambino Gesù, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Bambino Gesù, Rome, Italy; Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Raif S Geha
- Immunology Division, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Maria G Kanariou
- Department of Immunology - Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies - Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Lilia Lycopoulou
- 1st Department of Pediatrics, University of Athens, Aghia Sofia Children's Hospital, Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology - Histocompatibility, Specialized Center & Referral Center for Primary Immunodeficiencies - Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC
| | - Suhag Parikh
- Division of Pediatric Blood and Marrow Transplantation, Duke University School of Medicine, Durham, NC
| | - Gloria Pinero
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC
| | - Bernard M Fischer
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology & HCST Unit, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Pediatric Hematology and Oncology & HCST Unit, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Division of Pediatric Immunology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology & HCST Unit, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khulood Khalifa Al-Saad
- Salmanyia Medical Complex, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Manama, Bahrain
| | - Meredith A Dilley
- Department of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, Mass; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Cullen M Dutmer
- Division of Allergy & Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria; Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria; Sigmund Freud Private University-Medical School, Vienna, Austria
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Melissa M Hazen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Carmem Bonfim
- Hospital Infantil Pequeno Principe, Curitiba, Brazil
| | | | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif
| | - Sarah K Nicholas
- Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Maurizio Miano
- Haematology Unit, Department of Pediatric Haematology-Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Emma Westermann-Clark
- Department of Internal Medicine, Division of Allergy/Immunology, University of South Florida Morsani College of Medicine, Tampa, Fla
| | - Vera Goda
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest- National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest- National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Olajumoke Fadugba
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Sarah E Henrickson
- Allergy Immunology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology, the University of Pennsylvania, Philadelphia, Pa
| | - Ahmet Ozen
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayca Kiykim
- Ministry of Health, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Robbert Bredius
- Department of Pediatrics, Section Pediatric Immunology, Infections and Stem Cell Transplantation, Leiden University Medical Center, Leiden, the Netherlands
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Olga Pashchenko
- Department of Immunology, Pirogov Russian National Research Medical University, Russian Clinical Children's Hospital, Moscow, Russia
| | - Benedicte Neven
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Laboratory "Immunogenetics of Pediatric Autoimmune Diseases", INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Despina Moshous
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Laboratory "Genome Dynamics in The Immune System", INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in The Immune System", INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Ahmed Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, Hassan II University, Casablanca, Morocco
| | - Harry R Hill
- Division of Clinical Immunology, Departments of Pathology, Pediatrics and Medicine, University of Utah, Salt Lake City, Utah
| | - Luigi D Notarangelo
- Haematology Unit, Department of Pediatric Haematology-Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Jolan E Walter
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
17
|
Abstract
Recombination-activating genes (
RAG)
1 and
RAG2 initiate the molecular processes that lead to lymphocyte receptor formation through VDJ recombination. Nonsense mutations in
RAG1/
RAG2 cause the most profound immunodeficiency syndrome, severe combined immunodeficiency (SCID). Other severe and less-severe clinical phenotypes due to mutations in
RAG genes are now recognized. The degree of residual protein function may permit some lymphocyte receptor formation, which confers a less-severe clinical phenotype. Many of the non-SCID phenotypes are associated with autoimmunity. New findings into the effect of mutations in
RAG1/2 on the developing T- and B-lymphocyte receptor give insight into the development of autoimmunity. This article summarizes recent findings and places the genetic and molecular findings in a clinical context.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Meshaal SS, El Hawary RE, Abd Elaziz DS, Eldash A, Alkady R, Lotfy S, Mauracher AA, Opitz L, Pachlopnik Schmid J, van der Burg M, Chou J, Galal NM, Boutros JA, Geha R, Elmarsafy AM. Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population. Clin Exp Immunol 2019; 195:202-212. [PMID: 30307608 PMCID: PMC6330646 DOI: 10.1111/cei.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations affecting recombination activation genes RAG1 and RAG2 are associated with variable phenotypes, depending on the residual recombinase activity. The aim of this study is to describe a variety of clinical phenotypes in RAG-deficient patients from the highly consanguineous Egyptian population. Thirty-one patients with RAG mutations (from 28 families) were included from 2013 to 2017. On the basis of clinical, immunological and genetic data, patients were subdivided into three groups; classical T- B- severe combined immunodeficiency (SCID), Omenn syndrome (OS) and atypical SCID. Nineteen patients presented with typical T- B- SCID; among these, five patients carried a homozygous RAG2 mutation G35V and five others carried two homozygous RAG2 mutations (T215I and R229Q) that were detected together. Four novel mutations were reported in the T- B- SCID group; three in RAG1 (A565P, N591Pfs*14 and K621E) and one in RAG2 (F29S). Seven patients presented with OS and a novel RAG2 mutation (C419W) was documented in one patient. The atypical SCID group comprised five patients. Two had normal B cell counts; one had a previously undescribed RAG2 mutation (V327D). The other three patients presented with autoimmune cytopaenias and features of combined immunodeficiency and were diagnosed at a relatively late age and with a substantial diagnostic delay; one patient had a novel RAG1 mutation (C335R). PID disorders are frequent among Egyptian children because of the high consanguinity. RAG mutations stand behind several variable phenotypes, including classical SCID, OS, atypical SCID with autoimmunity and T- B+ CID.
Collapse
Affiliation(s)
- S. S. Meshaal
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. E. El Hawary
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - D. S. Abd Elaziz
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. Eldash
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Alkady
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - S. Lotfy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. A. Mauracher
- Division of ImmunologyUniversity Children’s Hospital ZurichZurichSwitzerland
| | - L. Opitz
- Functional Genomics Center ZürichUniversity of Zurich, ETH ZurichZurichSwitzerland
| | | | - M. van der Burg
- Department of ImmunologyErasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | - J. Chou
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - N. M. Galal
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - J. A. Boutros
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Geha
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - A. M. Elmarsafy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Natural killer cells are innate lymphoid cells (ILCs) that play critical roles in human host defense and are especially useful in combating viral pathogens and malignancy. RECENT FINDINGS The NK cell deficiency (NKD) is particularly underscored in patients with a congenital immunodeficiency in which NK cell development or function is affected. The classical NK cell deficiency (cNKD) is a result of absent or a profound decrease in the number of circulating NK cells. In contrast, functional NKD (fNKD) is characterized by abnormal NK cell function but with normal number of NK cells. The combined immune deficiencies with significant impact on NK cells are not considered classical or functional NK cell deficiencies. In these disorders, the impairment of NK cells represents an important aspect of the overall immunodeficiency. In turn, this leads to improved insights on the NK cell development and function. Here, we detail the NK cell biology based upon recent natural killer cell defects described in combined immune deficiencies.
Collapse
|
20
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Henrickson SE, Walter JE, Quinn C, Kanakry JA, Bardakjian T, Dimitrova D, Ujhazi B, Csomos K, Bosticardo M, Dobbs K, Nasrallah M, Notarangelo LD, Holland SM, Fadugba O. Adult-Onset Myopathy in a Patient with Hypomorphic RAG2 Mutations and Combined Immune Deficiency. J Clin Immunol 2018; 38:642-645. [PMID: 30159811 DOI: 10.1007/s10875-018-0538-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Sarah E Henrickson
- The Children's Hospital of Philadelphia, Division of Allergy and Immunology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jolan E Walter
- Morsani College of Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, 33620, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Colin Quinn
- Perelman School of Medicine, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer A Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Bardakjian
- Perelman School of Medicine, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dimana Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boglarka Ujhazi
- Morsani College of Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, 33620, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Krisztian Csomos
- Morsani College of Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, 33620, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - MacLean Nasrallah
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Olajumoke Fadugba
- Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Delmonte OM, Schuetz C, Notarangelo LD. RAG Deficiency: Two Genes, Many Diseases. J Clin Immunol 2018; 38:646-655. [PMID: 30046960 PMCID: PMC6643099 DOI: 10.1007/s10875-018-0537-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the clinical and laboratory spectrum of RAG gene defects in humans, and discuss the mechanisms underlying phenotypic heterogeneity, the basis of immune dysregulation, and the current and perspective treatment modalities. METHODS Literature review and analysis of medical records RESULTS: RAG gene defects in humans are associated with a surprisingly broad spectrum of clinical and immunological phenotypes. Correlation between in vitro recombination activity of the mutant RAG proteins and the clinical phenotype has been observed. Altered T and B cell development in this disease is associated with defects of immune tolerance. Hematopoietic cell transplantation is the treatment of choice for the most severe forms of the disease, but a high rate of graft failure has been observed. CONCLUSIONS Phenotypic heterogeneity of RAG gene defects in humans may represent a diagnostic challenge. There is a need to improve treatment for severe, early-onset forms of the disease. Optimal treatment modalities for patients with delayed-onset disease presenting with autoimmunity and/or inflammation remain to be defined.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Gennery AR. Advances in genetic and molecular understanding of Omenn syndrome - implications for the future. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1478287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Andrew R Gennery
- Clinical Resource Building, Floor 4, Block 2, Great North Children’s Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
24
|
Hypomorphic Rag1 mutations alter the preimmune repertoire at early stages of lymphoid development. Blood 2018; 132:281-292. [PMID: 29743177 DOI: 10.1182/blood-2017-12-820985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Hypomorphic RAG1 mutations allowing residual T- and B-cell development have been found in patients presenting with delayed-onset combined immune deficiency with granulomas and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T- and B-cell repertoire. To examine how hypomorphic Rag1 mutations affect the earliest stages of lymphocyte development, we used CRISPR/Cas9 to generate mouse models with mutations equivalent to those found in patients with CID-G/AI. Immunological characterization showed partial development of T and B lymphocytes, with persistence of naïve cells and preserved serum immunoglobulin but impaired antibody responses and presence of autoantibodies, thereby recapitulating the phenotype seen in patients with CID-G/AI. By using high-throughput sequencing, we identified marked skewing of Igh V and Trb V gene usage in early progenitors, with a bias for productive Igh and Trb rearrangements after selection occurred and increased apoptosis of B-cell progenitors. Rearrangement at the Igk locus was impaired, and polyreactive immunoglobulin M antibodies were detected. This study provides novel insights into how hypomorphic Rag1 mutations alter the primary repertoire of T and B cells, setting the stage for immune dysregulation frequently seen in patients.
Collapse
|
25
|
Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol 2018; 141:2303-2306. [PMID: 29477728 DOI: 10.1016/j.jaci.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022]
|
26
|
Goda V, Malik A, Kalmar T, Maroti Z, Patel B, Ujhazi B, Csomos K, Hale JE, Chen K, Bleesing J, Palma P, Cancrini C, Comeau AM, Krivan G, Walter JE. Partial RAG deficiency in a patient with varicella infection, autoimmune cytopenia, and anticytokine antibodies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1769-1771.e2. [PMID: 29410113 DOI: 10.1016/j.jaip.2018.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Vera Goda
- Department of Pediatric Hematology and Stem Cell Transplantation, United Saint Istvan and Saint Laszlo Hospital, Budapest, Hungary
| | - Aniko Malik
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Kalmar
- Genetic Diagnostic Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Maroti
- Genetic Diagnostic Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bhumika Patel
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Boglarka Ujhazi
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Krisztian Csomos
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Jaime E Hale
- New England Newborn Screening Program, Department of Pediatrics, University of Massachusetts Medical School, Jamaica Plain, Mass
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jacob Bleesing
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paolo Palma
- University Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Anne M Comeau
- New England Newborn Screening Program, Department of Pediatrics, University of Massachusetts Medical School, Jamaica Plain, Mass
| | - Gergely Krivan
- Department of Pediatric Hematology and Stem Cell Transplantation, United Saint Istvan and Saint Laszlo Hospital, Budapest, Hungary
| | - Jolan E Walter
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
27
|
Slatter MA, Gennery AR. Hematopoietic cell transplantation in primary immunodeficiency - conventional and emerging indications. Expert Rev Clin Immunol 2018; 14:103-114. [PMID: 29300535 DOI: 10.1080/1744666x.2018.1424627] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) is an established curative treatment for many primary immunodeficiencies. Advances in donor selection, graft manipulation, conditioning and treatment of complications, mean that survival for many conditions is now around 90%. Next generation sequencing is identifying new immunodeficiencies, many of which are treatable with HSCT. Challenges remain however with short and long-term sequalae. This article reviews latest developments in HSCT for conventional primary immunodeficiencies and presents data on outcome for emerging diseases, Areas covered: This article reviews recently published literature detailing advances, particularly in conditioning regimens and new methods of T-lymphocyte depletion, as well as new information regarding approach and out come of transplanting patients with conventional primary immunodeficiencies. The article reviews data regarding transplant outcomes for newly described primary immunodeficiencies, particularly those associated with gain-of-function mutations. Expert commentary: New methods of graft manipulation have had significant impact on HSCT outcomes, with the range of PIDs treated using T-lymphocyte depletion significantly expanded. Outcomes for newly described diseases with variable phenotypes and clinical features, transplanted when the diagnosis was unknown are beginning to be described, and will improve as patients are identified earlier, and targeted therapies such as JAK inhibitors are used as a bridge to transplantation.
Collapse
Affiliation(s)
- Mary A Slatter
- a Institute of Cellular Medicine , Newcastle University , Newcastle Upon Tyne , UK.,b Paediatric Immunology and HSCT , Great North Children's Hospital , Newcastle Upon Tyne , UK
| | - Andrew R Gennery
- a Institute of Cellular Medicine , Newcastle University , Newcastle Upon Tyne , UK.,b Paediatric Immunology and HSCT , Great North Children's Hospital , Newcastle Upon Tyne , UK
| |
Collapse
|
28
|
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2017; 14:7-18. [PMID: 29255211 DOI: 10.1038/nrrheum.2017.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Reinhold E Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, University Medical Centre, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, D-79106 Freiburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
29
|
Rapid generation of novel models of RAG1 deficiency by CRISPR/Cas9-induced mutagenesis in murine zygotes. Oncotarget 2017; 7:12962-74. [PMID: 26887046 PMCID: PMC4914335 DOI: 10.18632/oncotarget.7341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the Recombination Activating Gene 1 (RAG1) can cause a wide variety of clinical and immunological phenotypes in humans, ranging from absence of T and B lymphocytes to occurrence of autoimmune manifestations associated with expansion of oligoclonal T cells and production of autoantibodies. Although the mechanisms underlying this phenotypic heterogeneity remain poorly understood, some genotype-phenotype correlations can be made. Currently, mouse models of Rag deficiency are restricted to RAG1−/− mice and to knock-in models carrying severe missense mutations. The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system is a novel and powerful gene-editing strategy that permits targeted introduction of DNA double strand breaks with high efficiency through simultaneous delivery of the Cas9 endonuclease and a guide RNA (gRNA). Here, we report on CRISPR-based, single-step generation and characterization of mutant mouse models in which gene editing was attempted around residue 838 of RAG1, a region whose functional role had not been studied previously.
Collapse
|
30
|
Taşkıran EZ, Sönmez HE, Ayvaz DÇ, Koşukcu C, Batu ED, Esenboğa S, Topaloğlu R, Orhan D, Bilginer Y, Alikaşifoğlu M, Özen S, Tezcan İ. Hypomorphic RAG1 defect in a child presented with pulmonary hemorrhage and digital necrosis. Clin Immunol 2017; 187:92-94. [PMID: 29107076 DOI: 10.1016/j.clim.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Ekim Z Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Hafize E Sönmez
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Ç Ayvaz
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Koşukcu
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Ezgi D Batu
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rezan Topaloğlu
- Department of Pediatrics, Division of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Diclehan Orhan
- Department of Pediatrics, Division of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seza Özen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
32
|
Dobbs K, Tabellini G, Calzoni E, Patrizi O, Martinez P, Giliani SC, Moratto D, Al-Herz W, Cancrini C, Cowan M, Bleesing J, Booth C, Buchbinder D, Burns SO, Chatila TA, Chou J, Daza-Cajigal V, Ott de Bruin LM, de la Morena M, Di Matteo G, Finocchi A, Geha R, Goyal RK, Hayward A, Holland S, Huang CH, Kanariou MG, King A, Kaplan B, Kleva A, Kuijpers TW, Lee BW, Lougaris V, Massaad M, Meyts I, Morsheimer M, Neven B, Pai SY, Parvaneh N, Plebani A, Prockop S, Reisli I, Soh JY, Somech R, Torgerson TR, Kim YJ, Walter JE, Gennery AR, Keles S, Manis JP, Marcenaro E, Moretta A, Parolini S, Notarangelo LD. Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56 bright NKG2A +++ Cells, and Yet Display Increased Degranulation and Higher Perforin Content. Front Immunol 2017; 8:798. [PMID: 28769923 PMCID: PMC5511964 DOI: 10.3389/fimmu.2017.00798] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Mutations of the recombinase-activating genes 1 and 2 (RAG1 and RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment; however, high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag−/− natural killer (NK) cells have a mature phenotype, reduced fitness, and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here, we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56bright CD16−/int CD57− cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT.
Collapse
Affiliation(s)
- Kerry Dobbs
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Calzoni
- "A. Nocivelli Institute for Molecular Medicine", Pediatric Clinic, University of Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paula Martinez
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvia Clara Giliani
- "A. Nocivelli Institute for Molecular Medicine", Pediatric Clinic, University of Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Daniele Moratto
- "A. Nocivelli Institute for Molecular Medicine", Pediatric Clinic, University of Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Caterina Cancrini
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,School of Medicine, University of Tor Vergata, Rome, Italy
| | - Morton Cowan
- Pediatric Allergy Immunology and Blood and Marrow Transplant Division, University of California San Francisco, Benioff Children's Hospital, San Francisco, CA, United States
| | - Jacob Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Claire Booth
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - David Buchbinder
- Division of Pediatric Hematology, Children's Hospital Orange County, University of California Irvine, Orange County, CA, United States
| | - Siobhan O Burns
- Institute for Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Vanessa Daza-Cajigal
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Lisa M Ott de Bruin
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - MaiteTeresa de la Morena
- Division of Allergy and Immunology, Southwestern Medical Center, University of Texas, Dallas, TX, United States
| | - Gigliola Di Matteo
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,School of Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,School of Medicine, University of Tor Vergata, Rome, Italy
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Rakesh K Goyal
- Division of Hematology/Oncology/BMT, Children's Mercy Hospital & Clinics, Kansas City, MO, United States
| | - Anthony Hayward
- Department of Pediatrics, Brown University, Providence, RI, United States
| | - Steven Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chiung-Hui Huang
- Department of Paediatrics, National University Hospital, Singapore, Singapore
| | - Maria G Kanariou
- Department of Immunology-Histocompatibility, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alejandra King
- Division of Pediatric Immunology, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Blanka Kaplan
- Department of Pediatrics, Division of Allergy and Immunology, Hofstra Northwell School of Medicine, Hofstra University, Great Neck, NY, United States
| | - Anastasiya Kleva
- Department of Pediatrics, Division of Allergy and Immunology, Hofstra Northwell School of Medicine, Hofstra University, Great Neck, NY, United States
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Bee Wah Lee
- Department of Paediatrics, National University Hospital, Singapore, Singapore
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Michel Massaad
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Megan Morsheimer
- Transplantation Branch, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Benedicte Neven
- Pediatric Hematology-Immunology Department, Hospital Necker-Enfants Malades, Institut Imagine, AP-HP, Paris Descartes University, Sorbonne-Paris-Cité, Paris, France
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States
| | | | - Alessandro Plebani
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Susan Prockop
- Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ismail Reisli
- Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Jian Yi Soh
- Department of Paediatrics, National University Hospital, Singapore, Singapore
| | - Raz Somech
- Pediatric Immunology Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Troy R Torgerson
- Department of Pediatrics and Immunology, Seattle Children's Hospital, University of Washingtin, Seattle, WA, United States
| | - Yae-Jaen Kim
- Division of Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Andrew R Gennery
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle Upon Tyne, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Emanuela Marcenaro
- Molecular Immunology Laboratories, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessandro Moretta
- Molecular Immunology Laboratories, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Ruiz-García R, Rodríguez-Vigil C, Marco FM, Gallego-Bustos F, Castro-Panete MJ, Diez-Alonso L, Muñoz-Ruiz C, Ruiz-Contreras J, Paz-Artal E, González-Granado LI, Allende LM. Acquired Senescent T-Cell Phenotype Correlates with Clinical Severity in GATA Binding Protein 2-Deficient Patients. Front Immunol 2017; 8:802. [PMID: 28747912 PMCID: PMC5506090 DOI: 10.3389/fimmu.2017.00802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
GATA binding protein 2 (GATA2) deficiency is a rare disorder of hematopoiesis, lymphatics, and immunity caused by spontaneous or autosomal dominant mutations in the GATA2 gene. Clinical manifestations range from neutropenia, lymphedema, deafness, to severe viral and mycobacterial infections, bone marrow failure, and acute myeloid leukemia. Patients also present with monocytopenia, dendritic cell, B- and natural killer (NK)-cell deficiency. We studied the T-cell and NK-cell compartments of four GATA2-deficient patients to assess if changes in these lymphocyte populations could be correlated with clinical phenotype. Patients with more severe clinical complications demonstrated a senescent T-cell phenotype whereas patients with lower clinical score had undetectable changes relative to controls. In contrast, patients’ NK-cells demonstrated an immature/activated phenotype that did not correlate with clinical score, suggesting an intrinsic NK-cell defect. These studies will help us to determine the contribution of T- and NK-cell dysregulation to the clinical phenotype of GATA2 patients, and may help to establish the most accurate therapeutic options for these patients. Asymptomatic patients may be taken into consideration for hematopoietic stem cell transplantation when dysregulation of T-cell and NK-cell compartment is present.
Collapse
Affiliation(s)
- Raquel Ruiz-García
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carmen Rodríguez-Vigil
- Servicio de Hemato-Oncología Pediátrica, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | | - María José Castro-Panete
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Diez-Alonso
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Muñoz-Ruiz
- Sección de Inmunología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Jesús Ruiz-Contreras
- Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Inmunodeficiencias, Servicio de Pediatría, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Sección de Inmunología, Universidad de San Pablo CEU, Madrid, Spain
| | - Luis Ignacio González-Granado
- Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Inmunodeficiencias, Servicio de Pediatría, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis Miguel Allende
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
34
|
Abstract
Polyarteritis nodosa (PAN) is a vasculitic disease characterized primarily by necrotizing vasculitis - inflammatory lesions in blood vessels that lead to vessel wall necrosis. Our understanding of PAN and necrotizing vasculitis has evolved over time. In addition to PAN, necrotizing vasculitis is now a recognized feature of a broad range of diseases with different aetiopathogenesis. For example, necrotizing vasculitis associated with hepatitis B virus infection has a different aetiopathogeneis to PAN and is now classified as a separate disease. Additionally, although 'classic' PAN is not an inherited disease, mutations in specific genes, such as ADA2 (also known as CECR1), can result in a necrotizing vasculopathy similar to PAN. The literature also suggests that the course of PAN differs in childhood-onset disease and in cases confined to the skin (so-called cutaneous PAN). Dissecting PAN and other autoinflammatory diseases with PAN-like features has enabled more-specific therapies and might also help us better understand the pathogenesis of these devastating conditions.
Collapse
|
35
|
Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, Ru H, Ott de Bruin L, Adeli M, Bleesing JH, Buchbinder D, Butte MJ, Cancrini C, Chen K, Choo S, Elfeky RA, Finocchi A, Fuleihan RL, Gennery AR, El-Ghoneimy DH, Henderson LA, Al-Herz W, Hossny E, Nelson RP, Pai SY, Patel NC, Reda SM, Soler-Palacin P, Somech R, Palma P, Wu H, Giliani S, Walter JE, Notarangelo LD. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol 2016; 1:eaah6109. [PMID: 28783691 PMCID: PMC5586490 DOI: 10.1126/sciimmunol.aah6109] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Recombination-activating genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell development by initiating the recombination process that controls the expression of T cell receptor (TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a broad spectrum of phenotypes, including severe combined immunodeficiency (SCID) with lack of T and B cells, Omenn syndrome, leaky SCID, and combined immunodeficiency with granulomas or autoimmunity (CID-G/AI). Using next-generation sequencing, we analyzed the TCR and B cell receptor (BCR) repertoire in 12 patients with RAG mutations presenting with Omenn syndrome (n = 5), leaky SCID (n = 3), or CID-G/AI (n = 4). Restriction of repertoire diversity skewed usage of variable (V), diversity (D), and joining (J) segment genes, and abnormalities of CDR3 length distribution were progressively more prominent in patients with a more severe phenotype. Skewed usage of V, D, and J segment genes was present also within unique sequences, indicating a primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, suggesting in vivo activation of these B cells. These data provide a framework to better understand the phenotypic heterogeneity of RAG deficiency.
Collapse
Affiliation(s)
- Yu Nee Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Frugoni
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kerry Dobbs
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irit Tirosh
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Likun Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca A Ververs
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Heng Ru
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lisa Ott de Bruin
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Adeli
- Pediatrics Department, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Jacob H Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital Orange County, Orange County, CA 92868, USA
| | - Manish J Butte
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Karin Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sharon Choo
- Department of Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Reem A Elfeky
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Andrea Finocchi
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew R Gennery
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle Upon Tyne, U.K
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, U.K
| | - Dalia H El-Ghoneimy
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Elham Hossny
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Robert P Nelson
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sung-Yun Pai
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Niraj C Patel
- Division of Infectious Disease and Immunology, Department of Pediatrics, Levine Children's Hospital, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Shereen M Reda
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Pere Soler-Palacin
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Raz Somech
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paolo Palma
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Section of Medical Genetics, Department of Pathology, Spedali Civili di Bresia, Brescia, Italy
| | - Jolan E Walter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Pediatric Allergy/Immunology, University of South Florida, and Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
John T, Walter JE, Schuetz C, Chen K, Abraham RS, Bonfim C, Boyce TG, Joshi AY, Kang E, Carvalho BTC, Mahajerin A, Nugent D, Puthenveetil G, Soni A, Su H, Cowan MJ, Notarangelo L, Buchbinder D. Unrelated Hematopoietic Cell Transplantation in a Patient with Combined Immunodeficiency with Granulomatous Disease and Autoimmunity Secondary to RAG Deficiency. J Clin Immunol 2016; 36:725-32. [PMID: 27539235 DOI: 10.1007/s10875-016-0326-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCT was completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency.
Collapse
Affiliation(s)
- Tami John
- Division of Hematology/Oncology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA.
| | - Jolan E Walter
- Division of Immunology, MassGeneral Hospital for Children, 55 Fruit Street, Boston, MA, 02114, USA
| | - Catherina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Karin Chen
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Utah School of Medicine, 81 Mario Capecchi Drive, Salt Lake City, UT, USA
| | - Roshini S Abraham
- Allergy and Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Paraná, Rua XV de Novembro, 1299 - Centro, Curitiba, PR, 80060-000, Brazil
| | - Thomas G Boyce
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Avni Y Joshi
- Allergy and Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elizabeth Kang
- NIAID, National Institutes of Health, Building 10CRC, Room 5-3940, 10 Center Drive, MSC 1456, Bethesda, MD, 20892-9806, USA
| | | | - Arash Mahajerin
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Diane Nugent
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Geetha Puthenveetil
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Amit Soni
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Helen Su
- NIAID, National Institutes of Health, Building 10CRC, Room 5-3940, 10 Center Drive, MSC 1456, Bethesda, MD, 20892-9806, USA
| | - Morton J Cowan
- Department of Pediatrics, University of California, San Francisco, Box 1278, UCSF, San Francisco, CA, 94143, USA
| | - Luigi Notarangelo
- Division of Immunology, Children's Hospital Boston, Karp Building, Room 10217, 1 Blackfan Circle, Boston, MA, 02115, USA
| | - David Buchbinder
- Division of Hematology, CHOC Children's Hospital, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| |
Collapse
|
37
|
Abstract
Autoimmune diseases represent a heterogeneous group of common disorders defined by complex trait genetics and environmental effects. The genetic variants usually align in immune and metabolic pathways that affect cell survival or apoptosis and modulate leukocyte function. Nevertheless, the exact triggers of disease development remain poorly understood and the current therapeutic interventions only modify the disease course. Both the prevention and the cure of autoimmune disorders are beyond our present medical capabilities. In contrast, a growing number of single gene autoimmune disorders have also been identified and characterized in the last few decades. Mutations and other gene alterations exert significant effects in these conditions, and often affect genes involved in central or peripheral immunologic tolerance induction. Even though a single genetic abnormality may be the disease trigger, it usually upsets a number of interactions among immune cells, and the biological developments of these monogenic disorders are also complex. Nevertheless, identification of the triggering molecular abnormalities greatly contributes to our understanding of the pathogenesis of autoimmunity and facilitates the development of newer and more effective treatment strategies.
Collapse
Affiliation(s)
- Mark Plander
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and
| | - Bernadette Kalman
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and.,b University of Pecs , Pecs , Hungary
| |
Collapse
|
38
|
Abstract
The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate the V(D)J recombination process, which ultimately enables the generation of T cells and B cells with a diversified repertoire of antigen-specific receptors. Mutations of the RAG genes in humans are associated with a broad spectrum of clinical phenotypes, ranging from severe combined immunodeficiency to autoimmunity. Recently, novel insights into the phenotypic diversity of this disease have been provided by resolving the crystal structure of the RAG complex, by developing novel assays to test recombination activity of the mutant RAG proteins and by characterizing the molecular and cellular basis of immune dysregulation in patients with RAG deficiency.
Collapse
|
39
|
The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 2016; 137:3-17. [DOI: 10.1016/j.jaci.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
|
40
|
Pichard DC, Freeman AF, Cowen EW. Primary immunodeficiency update: Part II. Syndromes associated with mucocutaneous candidiasis and noninfectious cutaneous manifestations. J Am Acad Dermatol 2015; 73:367-81; quiz 381-2. [PMID: 26282795 DOI: 10.1016/j.jaad.2015.01.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
Several primary immunodeficiencies (PIDs) have recently been described that confer an elevated risk of fungal infections and noninfectious cutaneous manifestations. In addition, immunologic advances have provided new insights into our understanding of the pathophysiology of fungal infections in established PIDs. We reviewed PIDs that present with an eczematous dermatitis in part I. In part II of this continuing medical education article we discuss updates on PIDs associated with fungal infections, their biologic basis in PIDs, and noninfectious cutaneous manifestations.
Collapse
Affiliation(s)
- Dominique C Pichard
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | | | - Edward W Cowen
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
41
|
Late Onset Hypomorphic RAG2 Deficiency Presentation with Fatal Vaccine-Strain VZV Infection. J Clin Immunol 2015; 35:754-60. [PMID: 26515615 DOI: 10.1007/s10875-015-0207-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Hypomorphic mutations in RAG1 and RAG2 are associated with significant clinical heterogeneity and symptoms of immunodeficiency or autoimmunity may be late in appearance. As a result, immunosuppressive medications may be introduced that can have life-threatening consequences. We describe a previously healthy 13-month-old girl presenting with rash and autoimmune hemolytic anemia, while highlighting the importance of vigilance and consideration of an underlying severe immunodeficiency disease prior to instituting immunosuppressive therapy. METHODS Given clinical deterioration of the patient and a temporal association with recently administered vaccinations, virus genotyping was carried out via 4 real-time Forster Resonance Energy Transfer PCR protocols targeting vaccine-associated single nucleotide polymorphisms. Genomic DNA was extracted from whole blood and analyzed via the next-generation sequencing method of sequencing-by-synthesis. Immune function studies included immunophenotyping of peripheral blood lymphocytes, mitogen-induced proliferation and TLR ligand-induced production of TNFα. Analysis of recombination activity of wild-type and mutant RAG2 constructs was performed. RESULTS Virus genotyping revealed vaccine-strain VZV, mumps, and rubella. Next-generation sequencing identified heterozygosity for RAG2 R73H and P180H mutations. Profound lymphopenia was associated with intense corticosteroid therapy, with some recovery after steroid reduction. Residual, albeit low, RAG2 protein activity was demonstrated. CONCLUSIONS Because of the association of RAG deficiency with late-onset presentation and autoimmunity, live virus vaccination and immunosuppressive therapies are often initiated and can result in negative consequences. Here, hypomorphic RAG2 mutations were linked to disseminated vaccine-strain virus infections following institution of corticosteroid therapy for autoimmune hemolytic anemia.
Collapse
|
42
|
Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, Ujhazi B, Chen K, Lee YN, Tirosh I, Dobbs K, Al-Herz W, Cowan MJ, Puck J, Bleesing JJ, Grimley MS, Malech H, De Ravin SS, Gennery AR, Abraham RS, Joshi AY, Boyce TG, Butte MJ, Nadeau KC, Balboni I, Sullivan KE, Akhter J, Adeli M, El-Feky RA, El-Ghoneimy DH, Dbaibo G, Wakim R, Azzari C, Palma P, Cancrini C, Capuder K, Condino-Neto A, Costa-Carvalho BT, Oliveira JB, Roifman C, Buchbinder D, Kumanovics A, Franco JL, Niehues T, Schuetz C, Kuijpers T, Yee C, Chou J, Masaad MJ, Geha R, Uzel G, Gelman R, Holland SM, Recher M, Utz PJ, Browne SK, Notarangelo LD. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest 2015; 125:4135-48. [PMID: 26457731 DOI: 10.1172/jci80477] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Patients with mutations of the recombination-activating genes (RAG) present with diverse clinical phenotypes, including severe combined immune deficiency (SCID), autoimmunity, and inflammation. However, the incidence and extent of immune dysregulation in RAG-dependent immunodeficiency have not been studied in detail. Here, we have demonstrated that patients with hypomorphic RAG mutations, especially those with delayed-onset combined immune deficiency and granulomatous/autoimmune manifestations (CID-G/AI), produce a broad spectrum of autoantibodies. Neutralizing anti-IFN-α or anti-IFN-ω antibodies were present at detectable levels in patients with CID-G/AI who had a history of severe viral infections. As this autoantibody profile is not observed in a wide range of other primary immunodeficiencies, we hypothesized that recurrent or chronic viral infections may precipitate or aggravate immune dysregulation in RAG-deficient hosts. We repeatedly challenged Rag1S723C/S723C mice, which serve as a model of leaky SCID, with agonists of the virus-recognizing receptors TLR3/MDA5, TLR7/-8, and TLR9 and found that this treatment elicits autoantibody production. Altogether, our data demonstrate that immune dysregulation is an integral aspect of RAG-associated immunodeficiency and indicate that environmental triggers may modulate the phenotypic expression of autoimmune manifestations.
Collapse
|
43
|
Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens. PLoS One 2015; 10:e0133220. [PMID: 26186701 PMCID: PMC4506145 DOI: 10.1371/journal.pone.0133220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
Abstract
Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency.
Collapse
|
44
|
Immunodeficiencies with hypergammaglobulinemia: a review. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2015. [DOI: 10.14785/lpsn-2014-0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary immunodeficiencies (PID) can present with recurrent infections, autoimmunity, inflammation, or malignancy and each of these conditions can be associated with elevated immunoglobulin. A high level of immunoglobulin G (IgG) is an uncommon finding, especially in pediatrics, and does not rule out primary immunodeficiency. Deficiencies in varied aspects of immune response have been described with high IgG. Reported PID conditions with elevated IgG include defects in humoral, cellular, and innate immunity. Some of these immunodeficiencies can have fatal outcomes, some require hematopoetic stem cell transplantation, and some require systemic medications. The mechanisms driving elevated IgG are not well understood, but in some cases abnormal cytokine production has been proposed. The evaluation of a patient with high IgG is guided by the patient's history and a physical examination, with special attention to autoimmunity in pediatrics and malignancy and liver disease in adults. In the setting of autoimmunity, chronic gastrointestinal disease, or chronic infections, the measurement of specific antibodies to evaluate the function of the IgG should be considered. An increased appreciation of elevation in IgG reflecting immune dysregulation may lead to earlier PID diagnoses.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Immune deficiency and autoimmunity have been recognized as cotravelers for decades. This clinically oriented review brings together our evolving mechanistic understanding to highlight associations of particular relevance to rheumatologists. RECENT FINDINGS Conceptually, all autoimmunity derives from a loss of tolerance. This distinguishes it from autoinflammation in which the innate immune system is dysregulated without necessarily affecting tolerance. Studies have demonstrated the profound effects of signaling defects, apoptotic pathways and the ramifications of homeostatic proliferation on tolerance. This foundation has translated into an improved understanding of the specific associations of autoimmune diseases with immune deficiencies. This important foundation paves the way for personalized treatment strategies. SUMMARY This review identifies critical mechanisms important to conceptualize the association of primary immune deficiencies and autoimmunity. It highlights a growing appreciation of the hidden single gene defects affecting T-cells within the group of patients with early-onset pleomorphic autoimmunity.
Collapse
|
46
|
Carneiro-Sampaio M, Coutinho A. Early-onset autoimmune disease as a manifestation of primary immunodeficiency. Front Immunol 2015; 6:185. [PMID: 25999944 PMCID: PMC4419659 DOI: 10.3389/fimmu.2015.00185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
Autoimmune disorders (AID) have been increasingly observed in association with primary immunodeficiencies (PIDs). Here, we discuss the interface between PID and AID, focusing on autoimmune manifestations early in life, which can be diagnostic clues for underlying PIDs. Inflammatory bowel disease in infants and children has been associated with IL-10 and IL-10R deficiencies, chronic granulomatous disease, immunedysregulation-polyendocrinopathy-enteropathy-X-linked syndrome (IPEX), autoinflammatory disorders, and others. Some PIDs have been identified as underlying defects in juvenile systemic lupus erythematosus: C1q-, IgA-, IgM deficiencies, alterations of the IFN-α pathway (in Aicardi–Goutières syndrome due to TREX1 mutation). IPEX (due to FOXP3 mutation leading to Treg cell deficiency), usually appearing in the first months of life, was recently observed in miscarried fetuses with hydrops who presented with CD3+ infiltrating lymphocytes in the pancreas. Hemophagocytic lymphohistiocytosis due to perforin deficiency was also identified as a cause of fetal hydrops. In conclusion, PID should be suspected in any infant with signs of autoimmunity after excluding transferred maternal effects, or in children with multiple and/or severe AID.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | | |
Collapse
|
47
|
Compound heterozygous mutation of Rag1 leading to Omenn syndrome. PLoS One 2015; 10:e0121489. [PMID: 25849362 PMCID: PMC4388548 DOI: 10.1371/journal.pone.0121489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Omenn syndrome is a primary immunodeficiency disorder, featuring susceptibility to infections and autoreactive T cells and resulting from defective genomic rearrangement of genes for the T cell and B cell receptors. The most frequent etiologies are hypomorphic mutations in "non-core" regions of the Rag1 or Rag2 genes, the protein products of which are critical members of the cellular apparatus for V(D)J recombination. In this report, we describe an infant with Omenn syndrome with a previously unreported termination mutation (p.R142*) in Rag1 on one allele and a partially characterized substitution mutation (p.V779M) in a "core" region of the other Rag1 allele. Using a cellular recombination assay, we found that while the p.R142* mutation completely abolished V(D)J recombination activity, the p.V779M mutation conferred a severe, but not total, loss of V(D)J recombination activity. The recombination defect of the V779 mutant was not due to overall misfolding of Rag1, however, as this mutant supported wild-type levels of V(D)J cleavage. These findings provide insight into the role of this poorly understood region of Rag1 and support the role of Rag1 in a post-cleavage stage of recombination.
Collapse
|
48
|
Kato T, Crestani E, Kamae C, Honma K, Yokosuka T, Ikegawa T, Nishida N, Kanegane H, Wada T, Yachie A, Ohara O, Morio T, Notarangelo LD, Imai K, Nonoyama S. RAG1 deficiency may present clinically as selective IgA deficiency. J Clin Immunol 2015; 35:280-8. [PMID: 25739914 DOI: 10.1007/s10875-015-0146-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recombination-activating gene (RAG) 1 and 2 deficiency is seen in patients with severe combined immunodeficiency (SCID) and Omenn syndrome. However, the spectrum of the disease has recently expanded to include a milder phenotype. OBJECTIVE We analyzed a 4-year-old boy who was initially given the diagnosis of selective immunoglobulin A deficiency (SIgAD) based on immunoglobulin serum levels without any opportunistic infections, rashes, hepatosplenomegaly, autoimmunity or granulomas. The patient was found to be infected with varicella zoster; however, the clinical course was not serious. He produced antiviral antibodies. METHODS We performed lymphocyte phenotyping, quantification of T cell receptor excision circles (TRECs) and kappa deleting recombination excision circles (KRECs), an analysis of target sequences of RAG1 and 2, a whole-genome SNP array, an in vitro V(D)J recombination assay, a spectratype analysis of the CDR3 region and a flow cytometric analysis of the bone marrow. RESULTS Lymphocyte phenotyping demonstrated that the ratio of CD4+ to CD8+ T cells was inverted and the majority of CD4+T cells expressed CD45RO antigens in addition to the almost complete lack of B cells. Furthermore, both TRECs and KRECs were absent. Targeted DNA sequencing and SNP array revealed that the patient carried a deletion of RAG1 and RAG2 genes on the paternally-derived chromosome 11, and two maternally-derived novel RAG1 missense mutations (E455K, R764H). In vitro analysis of recombination activity showed that both RAG1 mutant proteins had low, but residual function. CONCLUSIONS The current case further expands the phenotypic spectrum of mild presentations of RAG deficiency, and suggests that TRECs and KRECs are useful markers for detecting hidden severe, as well as mild, cases.
Collapse
Affiliation(s)
- Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Autoimmune and other cytopenias in primary immunodeficiencies: pathomechanisms, novel differential diagnoses, and treatment. Blood 2014; 124:2337-44. [PMID: 25163701 DOI: 10.1182/blood-2014-06-583260] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autoimmunity and immune dysregulation may lead to cytopenia and represent key features of many primary immunodeficiencies (PIDs). Especially when cytopenia is the initial symptom of a PID, the order and depth of diagnostic steps have to be performed in accordance with both an immunologic and a hematologic approach and will help exclude disorders such as systemic lupus erythematosus, common variable immunodeficiency, and autoimmune lymphoproliferative syndromes, hemophagocytic disorders, lymphoproliferative diseases, and novel differential diagnoses such as MonoMac syndrome (GATA2 deficiency), CD27 deficiency, lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency, activated PI3KD syndrome (APDS), X-linked immunodeficiency with magnesium defect (MAGT1 deficiency), and others. Immunosuppressive treatment often needs to be initiated urgently, which impedes further relevant immunologic laboratory analyses aimed at defining the underlying PID. Awareness of potentially involved disease spectra ranging from hematologic to rheumatologic and immunologic disorders is crucial for identifying a certain proportion of PID phenotypes and genotypes among descriptive diagnoses such as autoimmune hemolytic anemia, chronic immune thrombocytopenia, Evans syndrome, severe aplastic anemia/refractory cytopenia, and others. A synopsis of pathomechanisms, novel differential diagnoses, and advances in treatment options for cytopenias in PID is provided to facilitate multidisciplinary management and to bridge different approaches.
Collapse
|
50
|
Atypical severe combined immunodeficiency caused by a novel homozygous mutation in Rag1 gene in a girl who presented with pyoderma gangrenosum: a case report and literature review. J Clin Immunol 2014; 34:792-5. [PMID: 25104208 DOI: 10.1007/s10875-014-0077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/06/2014] [Indexed: 10/24/2022]
Abstract
Severe combined immunodeficiency (SCID) is a heterogeneous group of inherited defects involving the development of T- and/or B-lymphocytes. We report a female with atypical severe combined immunodeficiency caused by a novel homozygous mutation at cDNA position 2290 (c.2290C > T) in exon 2 of the RAG1 gene. The patient presented with bronchopneumonia, pyoderma gangrenosum (PG), pancytopenia and splenomegaly. She presented to us with pancytopenia and splenomegaly at the age of 11. Her condition was complicated by PG on left lower ankle at the age of 12. She experienced bronchopneumonia at the age of 15. She was diagnosed with RAG1 deficiency at the age of 16. Her immunological presentation included leucopenia and diminished number of B cells.
Collapse
|