1
|
Singh P, Chaturvedi R, Somvanshi P. Network-Based Integrative Analysis to Identify Key Genes and Corresponding Reporter Biomolecules for Triple-Negative Breast Cancer. Cancer Med 2025; 14:e70674. [PMID: 40287845 PMCID: PMC12034156 DOI: 10.1002/cam4.70674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The malignant neoplasm of the TNBC is the leading cause of death among Indian women. Recent studies identified the global burden of TNBC affecting approximately more than 40 percent of all BC cases in women worldwide. The absence of expression of receptors such as ER, PR, and HER2 characterizes TNBC. OBJECTIVES Due to the lack of specific targets, standard treatment options for TNBC are limited. This integrative study aims to identify key genes and provide insights into the underlying molecular mechanisms of TNBC, which can potentially lead to the development of more effective therapeutic strategies. MATERIAL AND METHODOLOGY This study integrates PPI and WGCNA analysis of TNBC-related datasets (GSE52194 and GSE58135) to identify key genes. Subsequently, downstream analysis is conducted to explore potential therapeutic targets for TNBC. RESULTS The present study renders the potential 13 key genes (PLCG2, CXCL10, CDK1, STAT1, IL6, PLK1, CCNB1, AURKA, NDC80, EGFR, 1L1B, FN1, BUB1B), along with their associated 6 TFs and 20 miRNAs, as reporter biomolecules around which the most significant changes occur. There were some miRNAs hsa-mir-449b-5p, hsa-let-7b-5p, hsa-mir-26a-5p, hsa-mir-155-5p, hsa-mir-24-3p, hsa-mir-212-3p, hsa-mir-21-5p, hsa-mir-210-3p and hsa-mir-20a-5p whose association with other cancers and other BC subtypes have been reported but their association with TNBC need to be explored. Further, enrichment and cumulative survival analysis support the disease association of identified key genes with TNBC. CONCLUSION This integrative analysis could be regarded for experimental inspection as it provides the platform for future researchers in drug designing and biomarker discovery for TNBC diagnosis and treatment.
Collapse
Affiliation(s)
- Pooja Singh
- School of Computational & Sciences (SCIS)Jawaharlal Nehru UniversityNew DelhiIndia
| | - Rupesh Chaturvedi
- School of Biotechnology (SBT)Jawaharlal Nehru UniversityNew DelhiIndia
| | - Pallavi Somvanshi
- School of Computational & Sciences (SCIS)Jawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
2
|
Fan H, Yang Z, Wu Y, Lu X, Li T, Lu X, Lu G, He L, Lu G, Huang L. Human inborn errors of immunity underlying Talaromyces marneffei infections: a multicenter, retrospective cohort study. Front Immunol 2025; 16:1492000. [PMID: 39911395 PMCID: PMC11794527 DOI: 10.3389/fimmu.2025.1492000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Talaromyces marneffei (T. marneffei) infections in children can occur secondary to inborn errors of immunity (IEIs). We aimed to investigate the clinical and genetic features of T. marneffei infection in Chinese pediatric patients. Materials and methods We retrospectively reviewed 18 pediatric patients with IEIs who were diagnosed with T. marneffei infections at five public hospitals in China from January 2015 to January 2023. Results The common clinical features among the patients were fever, cough, and hepatomegaly. The most common severe complications included septic shock, hemophagocytic lymphohistiocytosis (HLH), and acute respiratory distress syndrome (ARDS). Three cases presented with pan-hypogammaglobulinemia, while three other cases showed heightened levels of IgM. Elevated levels of IgE were detected in five cases, and six cases exhibited decreased T lymphocyte absolute counts. Four children were diagnosed with hyperimmunoglobulin M syndrome (HIGM) due to CD40LG mutations, three cases had severe combined immunodeficiency (SCID), and five were diagnosed with hyper-IgE syndrome (HIES). Gain-of-function (GOF) mutations in STAT1 led to STAT1 GOF in four cases. One patient was diagnosed with caspase-recruitment domain (CARD9) deficiency due to a compound mutation in the CARD9 gene, while another patient was confirmed with adenosine deaminase (ADA) deficiency. Conclusion T. marneffei infections in children with IEIs induced severe systemic complications. These children commonly exhibited abnormal immunoglobulin levels in peripheral blood, and underlying IEIs associated with T. marneffei infections have enhanced our understanding of the disease.
Collapse
Affiliation(s)
- Huifeng Fan
- Department of Respiratory Infection, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University/Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, Nanning, China
| | - Yuhui Wu
- Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xiulan Lu
- Department of Pediatrics, Hunan Children’s Hospital, Changsha, China
| | - Tian Li
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuyang Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University/Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, Nanning, China
| | - Gen Lu
- Department of Respiratory Infection, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liming He
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Li Huang
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Dotta L, Todaro F, Baronio M, Giacomelli M, Pinelli M, Giambarda M, Brognoli B, Greco S, Rota F, Cortesi M, Soresina A, Moratto D, Tomasi C, Ferraro RM, Giliani S, Badolato R. Patients with STAT1 Gain-of-function Mutations Display Increased Apoptosis which is Reversed by the JAK Inhibitor Ruxolitinib. J Clin Immunol 2024; 44:85. [PMID: 38578354 PMCID: PMC10997685 DOI: 10.1007/s10875-024-01684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION The signal transducer and activator of transcription (STAT1) gain-of-function (GOF) syndrome accounts for most cases of chronic mucocutaneous candidiasis but is characterized by a broader clinical phenotype that may include bacterial, viral, or invasive fungal infections, autoimmunity, autoinflammatory manifestations, vascular complications, or malignancies. The severity of lymphopenia may vary and influence the infectious morbidity. METHODS In our cohort of seven STAT1-GOF patients, we investigated the mechanisms that may determine T lymphopenia, we characterized the interferon gene signature (IGS) and analyzed the effect of ruxolitinib in reverting the immune dysregulation. RESULTS STAT1-GOF patients exhibited increased T lymphocyte apoptosis that was significantly augmented in both resting conditions and following stimulation with mitogens and IFNα, as evaluated by flow cytometry by Annexin V/ Propidium iodide assay. The JAK inhibitor ruxolitinib significantly reduced the IFNα-induced hyperphosphorylation of STAT1 and reverted the stimulation-induced T-cell apoptosis, in vitro. In two adult STAT1-GOF patients, the JAKinib treatment ameliorated chronic mucocutaneous candidiasis and lymphopenia. Most STAT1-GOF patients, particularly those who had autoimmunity, presented increased IGS that significantly decreased in the two patients during ruxolitinib treatment. CONCLUSION In STAT1-GOF patients, T lymphocyte apoptosis is increased, and T lymphopenia may determine higher risk of severe infections. The JAKinib target therapy should be evaluated to treat severe chronic candidiasis and lymphopenia, and to downregulate the IFNs in patients with autoinflammatory or autoimmune manifestations.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Francesca Todaro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Clinical and Experimental Sciencies, University of Brescia, Brescia, Italy
| | - Mauro Giacomelli
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pinelli
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Martina Giambarda
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Beatrice Brognoli
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Silvia Greco
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Francesca Rota
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Manuela Cortesi
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Daniele Moratto
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cesare Tomasi
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Gonzalez-Ferrer S, Peñaloza HF, van der Geest R, Xiong Z, Gheware A, Tabary M, Kochin M, Dalton K, Zou H, Lou D, Lockwood K, Zhang Y, Bain WG, Mallampalli RK, Ray A, Ray P, Van Tyne D, Chen K, Lee JS. STAT1 Employs Myeloid Cell-Extrinsic Mechanisms to Regulate the Neutrophil Response and Provide Protection against Invasive Klebsiella pneumoniae Lung Infection. Immunohorizons 2024; 8:122-135. [PMID: 38289252 PMCID: PMC10832384 DOI: 10.4049/immunohorizons.2300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.
Collapse
Affiliation(s)
- Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hernán F. Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Zeyu Xiong
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Atish Gheware
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Megan Kochin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn Dalton
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Henry Zou
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Dequan Lou
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Karina Lockwood
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - Rama K. Mallampalli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ohio State University, Columbus, OH
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Janet S. Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Pulmonary and Critical Care Medicine, The John T. Milliken Department of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
5
|
Hou F, Zhang T, Chen F, Jiang L. Novel STAT1 mutation in a paediatric case of chronic mucocutaneous candidiasis complicated by primary hypothyroidism: clinical presentation, genetic analysis and prognostic implications. BMJ Case Rep 2023; 16:e258133. [PMID: 38154872 PMCID: PMC10759009 DOI: 10.1136/bcr-2023-258133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
This case report presents a young girl in her early childhood diagnosed with chronic mucocutaneous candidiasis (CMC) and primary hypothyroidism. Genetic analysis revealed a novel de novo mutation in the STAT1 gene (exon 11, c.972C>G, p.Cys324Trp), adding to the existing literature on STAT1 mutations, which account for approximately 53% of CMC cases. The identified mutation is predicted to have a more severe pathogenic impact based on PolyPhen-2 scoring. Our findings emphasise the importance of comprehensive genetic testing in CMC diagnosis and suggest that the specific mutation site may correlate with disease prognosis. The case underscores the need for vigilant monitoring and targeted therapeutic interventions, given the potential for poorer outcomes.
Collapse
Affiliation(s)
- Feifei Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Shanxi, Xi'an, China
| | - Fangman Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, zhejinag, Hangzhou, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Peng XP, Al-Ddafari MS, Caballero-Oteyza A, El Mezouar C, Mrovecova P, Dib SE, Massen Z, Smahi MCE, Faiza A, Hassaïne RT, Lefranc G, Aribi M, Grimbacher B. Next generation sequencing (NGS)-based approach to diagnosing Algerian patients with suspected inborn errors of immunity (IEIs). Clin Immunol 2023; 256:109758. [PMID: 37678716 DOI: 10.1016/j.clim.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The advent of next-generation sequencing (NGS) technologies has greatly expanded our understanding of both the clinical spectra and genetic landscape of inborn errors of immunity (IEIs). Endogamous populations may be enriched for unique, ancestry-specific disease-causing variants, a consideration that significantly impacts molecular testing and analysis strategies. Herein, we report on the application of a 2-step NGS-based testing approach beginning with targeted gene panels (TGPs) tailored to specific IEI subtypes and reflexing to whole exome sequencing (WES) if negative for Northwest Algerian patients with suspected IEIs. Our overall diagnostic yield of 57% is comparable to others broadly applying short-read NGS to IEI detection, but data from our localized cohort show some similarities and differences from NGS studies performed on larger regional IEI cohorts. This suggests the importance of tailoring diagnostic strategies to local demographics and needs, but also highlights ongoing concerns inherent to the application of genomics for clinical IEI diagnostics.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Andres Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | - Chahrazed El Mezouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Saad Eddin Dib
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Zoheir Massen
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Specialized Mother-Child Hospital of Tlemcen, Department of Neonatology, Faculty of Medicine, University of Tlemcen, Algeria
| | - Alddafari Faiza
- Department of Internal Medicine, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Tlemcen, Algeria
| | | | - Gérard Lefranc
- Institute of Human Genetics, UMR 9002 CNRS-University of Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
7
|
Scott O, Visuvanathan S, Reddy E, Mahamed D, Gu B, Roifman CM, Cohn RD, Guidos CJ, Ivakine EA. The human Stat1 gain-of-function T385M mutation causes expansion of activated T-follicular helper/T-helper 1-like CD4 T cells and sex-biased autoimmunity in specific pathogen-free mice. Front Immunol 2023; 14:1183273. [PMID: 37275873 PMCID: PMC10235531 DOI: 10.3389/fimmu.2023.1183273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shagana Visuvanathan
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Emily Reddy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deeqa Mahamed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronald D. Cohn
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Cynthia J. Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
8
|
Borgström EW, Edvinsson M, Pérez LP, Norlin AC, Enoksson SL, Hansen S, Fasth A, Friman V, Kämpe O, Månsson R, Estupiñán HY, Wang Q, Ziyang T, Lakshmikanth T, Smith CIE, Brodin P, Bergman P. Three Adult Cases of STAT1 Gain-of-Function with Chronic Mucocutaneous Candidiasis Treated with JAK Inhibitors. J Clin Immunol 2023; 43:136-150. [PMID: 36050429 PMCID: PMC9840596 DOI: 10.1007/s10875-022-01351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE The aim of this study was to characterize clinical effects and biomarkers in three patients with chronic mucocutaneous candidiasis (CMC) caused by gain-of-function (GOF) mutations in the STAT1 gene during treatment with Janus kinase (JAK) inhibitors. METHODS Mass cytometry (CyTOF) was used to characterize mononuclear leukocyte populations and Olink assay to quantify 265 plasma proteins. Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA) was used to quantify the reactivity against Candida albicans. RESULTS Overall, JAK inhibitors improved clinical symptoms of CMC, but caused side effects in two patients. Absolute numbers of neutrophils, T cells, B cells, and NK cells were sustained during baricitinib treatment. Detailed analysis of cellular subsets, using CyTOF, revealed increased expression of CD45, CD52, and CD99 in NK cells, reflecting a more functional phenotype. Conversely, monocytes and eosinophils downregulated CD16, consistent with reduced inflammation. Moreover, T and B cells showed increased expression of activation markers during treatment. In one patient with a remarkable clinical effect of baricitinib treatment, the immune response to C. albicans increased after 7 weeks of treatment. Alterations in plasma biomarkers involved downregulation of cellular markers CXCL10, annexin A1, granzyme B, granzyme H, and oncostatin M, whereas FGF21 was the only upregulated marker after 7 weeks. After 3 months, IFN-ɣ and CXCL10 were downregulated. CONCLUSIONS The clinical effect of JAK inhibitor treatment of CMC is promising. Several biological variables were altered during baricitinib treatment demonstrating that lymphocytes, NK cells, monocytes, and eosinophils were affected. In parallel, cellular reactivity against C. albicans was enhanced.
Collapse
Affiliation(s)
- Emilie W. Borgström
- Department of Laboratory Medicine, Clinical Microbiology, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Edvinsson
- grid.412354.50000 0001 2351 3333Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, Uppsala, Sweden
| | - Lucía P. Pérez
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna C. Norlin
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara L. Enoksson
- grid.24381.3c0000 0000 9241 5705Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Hansen
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Fasth
- grid.8761.80000 0000 9919 9582Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vanda Friman
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Kämpe
- grid.4714.60000 0004 1937 0626Experimental Endocrinology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Robert Månsson
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hernando Y. Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tan Ziyang
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Carl Inge E. Smith
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Stockholm, Sweden
| | - Petter Brodin
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden ,grid.7445.20000 0001 2113 8111Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Lyra PT, Falcão ACAM, Cruz RA, Coelho AVC, Souza EDS, Alencar LCAD, Oliveira JB. Gain-of-function STAT1 mutation and visceral leishmaniasis. EINSTEIN-SAO PAULO 2022; 20:eRC0048. [PMID: 36102410 PMCID: PMC9444186 DOI: 10.31744/einstein_journal/2022rc0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
|
10
|
Scott O, Sharfe N, Dadi H, Vong L, Garkaby J, Abrego Fuentes L, Willett Pachul J, Nelles S, Nahum A, Roifman CM. Case Report: Eosinophilic Esophagitis in a Patient With a Novel STAT1 Gain-of-Function Pathogenic Variant. Front Immunol 2022; 13:801832. [PMID: 35126392 PMCID: PMC8812721 DOI: 10.3389/fimmu.2022.801832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background STAT1 gain-of-function (GOF) is a primary immune dysregulatory disorder marked by wide infectious predisposition (most notably chronic mucocutaneous Candidiasis), autoimmunity, vascular disease and malignant predisposition. While atopic features have been described in some STAT1 GOF patients, they are not considered a predominant feature of the disease. Additionally, while eosinophilic gastrointestinal infiltration has been reported in some cases, this has always been described in the context of pre-existing oropharyngeal and/or esophageal Candidiasis. Clinical cases Herein, we report 3 members of a multi-generational family diagnosed with STAT1 GOF caused by a novel mutation in the N-terminal domain, c.194A>C (p.D65A). The proband presented initially with a long-standing history of treatment-refractory eosinophilic esophagitis (EoE) without preceding gastrointestinal tract fungal infections, and her mother was diagnosed with esophagitis as well. Conclusion EoE has been previously associated with alterations to STAT6 and STAT3 signaling pathways. The current report expands the possible association between JAK/STAT-related disorders and EoE, suggesting that EoE could be a primary disease manifestation of STAT1 GOF, even in the absence of oropharyngeal and/or esophageal Candidiasis.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Nigel Sharfe
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harjit Dadi
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Linda Vong
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jenny Garkaby
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Laura Abrego Fuentes
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Jessica Willett Pachul
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sandra Nelles
- Department of Gastroenterology, Trillium Health Partners, Mississauga Hospital, Mississauga, ON, Canada
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center, Beer Sheva, Israel
- The Primary Immunodeficiency Research Laboratory, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Chaim M. Roifman,
| |
Collapse
|
11
|
Scott O, Dadi H, Vong L, Pasternak Y, Garkaby J, Willett Pachul J, Mandola AB, Brager R, Hostoffer R, Nahum A, Roifman CM. DNA-Binding domain mutations confer severe outcome at an early age among STAT1 gain-of-function patients. Pediatr Allergy Immunol 2022; 33:e13694. [PMID: 34738677 DOI: 10.1111/pai.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND STAT1 gain-of-function (GOF) is an immune dysregulatory disorder with poorly studied genotype-phenotype correlation, impeding prognostication and early intervention. Given previous mechanistic studies, as well as anecdotal clinical reports, we sought to systematically determine whether DNA-binding domain (DBD) mutations in STAT1 result in a different phenotype than mutations in other gene domains. METHODS Negative prognostic features previously identified by the International STAT1 GOF Study Group (invasive infections, intracranial aneurysms, and malignancy), as well as other clinical features and mortality, were compared within a cohort of 30 patients with STAT1 GOF diagnosed at our center, consisting of 9 patients with DBD mutations and 21 patients with non-DBD mutations. We subsequently re-analyzed mortality data from a large, previously-published 274-patient cohort by the International STAT1 GOF Study Group. RESULTS While no differences were noted with respect to malignancy or symptomatic aneurysms, invasive /opportunistic infections were substantially more common among DBD patients, as were sinopulmonary infections, bronchiectasis, enteropathy, endocrinopathies, lymphoproliferative manifestations, and recurrent fevers/HLH. DBD patients also had a lower probability of survival and younger age of mortality compared with non-DBD patients. Our re-evaluation of the published data from the International STAT1 GOF Study Group revealed a similar finding of earlier mortality among patients harboring DBD mutations. CONCLUSION We report that STAT1 GOF patients with DBD mutations may be regarded as a unique subgroup, impacted more by early-onset profound combined immunodeficiency and with earlier mortality. These findings may impact clinical decision making with respect to early intervention, and in particular hematopoietic stem cell transplant considerations, in such patients.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Harjit Dadi
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.,The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Linda Vong
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.,The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yehonatan Pasternak
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Jenny Garkaby
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Jessica Willett Pachul
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Amarilla B Mandola
- Pediatrics Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Rae Brager
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Robert Hostoffer
- Division of Pulmonary and Critical Care, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center, Beer-Sheva, Israel.,The Primary Immunodeficiency Research Laboratory, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.,The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cao B, Liu M, Zhao Y, Gong C. Chronic oral mucocutaneous candidiasis, recurrent respiratory infection, hepatosplenomegaly, and autoimmune diabetes mellitus: A case report of a gain-of-function mutation of STAT1 in a Chinese boy. Front Pediatr 2022; 10:1001290. [PMID: 36304533 PMCID: PMC9595572 DOI: 10.3389/fped.2022.1001290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations are characterized by chronic mucocutaneous candidiasis and autoimmune diseases. Type 1 diabetes mellitus is one of the well-characterized autoimmune conditions. CASE PRESENTATION We reported a 5-year-old boy who presented with polydipsia and polyuria, with a medical history of chronic oral mucocutaneous candidiasis, recurrent respiratory infection, hepatosplenomegaly, and abnormal liver function. Genetic analysis identified a heterozygous GOF mutation (c.866A > G, p.Y289C) in STAT1. RESULTS Various medicines were given to the boy during the follow-up, including insulin to keep blood glucose stable, intravenous immunoglobulin and antifungal agents for recurrent infections, and antituberculosis drugs (isoniazid, rifampicin) to combat tuberculosis infection. He did not show recurrent infection, but chronic oral mucocutaneous candidiasis still occurred twice per month. The blood glucose level was well controlled. CONCLUSION This article illustrates that early diagnosis and identification of STAT1 mutation are essential for assessing the severity of the disease and determining reasonable treatment options.
Collapse
Affiliation(s)
- Bingyan Cao
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Meijuan Liu
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yun Zhao
- Department of Pediatric, Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
13
|
Frede N, Rojas-Restrepo J, Caballero Garcia de Oteyza A, Buchta M, Hübscher K, Gámez-Díaz L, Proietti M, Saghafi S, Chavoshzadeh Z, Soler-Palacin P, Galal N, Adeli M, Aldave-Becerra JC, Al-Ddafari MS, Ardenyz Ö, Atkinson TP, Kut FB, Çelmeli F, Rees H, Kilic SS, Kirovski I, Klein C, Kobbe R, Korganow AS, Lilic D, Lunt P, Makwana N, Metin A, Özgür TT, Karakas AA, Seneviratne S, Sherkat R, Sousa AB, Unal E, Patiroglu T, Wahn V, von Bernuth H, Whiteford M, Doffinger R, Jouhadi Z, Grimbacher B. Genetic Analysis of a Cohort of 275 Patients with Hyper-IgE Syndromes and/or Chronic Mucocutaneous Candidiasis. J Clin Immunol 2021; 41:1804-1838. [PMID: 34390440 PMCID: PMC8604890 DOI: 10.1007/s10875-021-01086-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/05/2021] [Indexed: 01/24/2023]
Abstract
Hyper-IgE syndromes and chronic mucocutaneous candidiasis constitute rare primary immunodeficiency syndromes with an overlapping clinical phenotype. In recent years, a growing number of underlying genetic defects have been identified. To characterize the underlying genetic defects in a large international cohort of 275 patients, of whom 211 had been clinically diagnosed with hyper-IgE syndrome and 64 with chronic mucocutaneous candidiasis, targeted panel sequencing was performed, relying on Agilent HaloPlex and Illumina MiSeq technologies. The targeted panel sequencing approach allowed us to identify 87 (32 novel and 55 previously described) mutations in 78 patients, which generated a diagnostic success rate of 28.4%. Specifically, mutations in DOCK8 (26 patients), STAT3 (21), STAT1 (15), CARD9 (6), AIRE (3), IL17RA (2), SPINK5 (3), ZNF341 (2), CARMIL2/RLTPR (1), IL12RB1 (1), and WAS (1) have been detected. The most common clinical findings in this cohort were elevated IgE (81.5%), eczema (71.7%), and eosinophilia (62.9%). Regarding infections, 54.7% of patients had a history of radiologically proven pneumonia, and 28.3% have had other serious infections. History of fungal infection was noted in 53% of cases and skin abscesses in 52.9%. Skeletal or dental abnormalities were observed in 46.2% of patients with a characteristic face being the most commonly reported feature (23.1%), followed by retained primary teeth in 18.9% of patients. Targeted panel sequencing provides a cost-effective first-line genetic screening method which allows for the identification of mutations also in patients with atypical clinical presentations and should be routinely implemented in referral centers.
Collapse
Affiliation(s)
- Natalie Frede
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrés Caballero Garcia de Oteyza
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mary Buchta
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Hübscher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shiva Saghafi
- Immunology Asthma and Allergy Research Institute Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infectious Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall D'Hebron, Barcelona, Catalonia, Spain
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mehdi Adeli
- Sidra Medicine, Weill Cornell Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, University of Abou-Bekr Belkaïd, Tlemcen, Algeria
| | - Ömür Ardenyz
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - T Prescott Atkinson
- Division of Pediatric Allergy & Immunology, University of Alabama At Birmingham, Birmingham, AL, USA
| | - Fulya Bektas Kut
- Departmant of Pediatrics, Division of Pediatric Immunology and Allergy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Çelmeli
- Antalya Education and Research Hospital Department of Pediatric Immunology and Allergy, Antalya, Turkey
| | - Helen Rees
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Sara S Kilic
- Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ilija Kirovski
- Medical Faculty Skopje, 50 Divizija BB, 1000, Skopje, Macedonia
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Robin Kobbe
- First Department of Medicine, Division of Infectious Diseases, University Medical Center , Hamburg-Eppendorf, Germany
| | | | - Desa Lilic
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Lunt
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| | - Niten Makwana
- Department of Pediatrics, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Tuba Turul Özgür
- Department of Pediatrics, Division of Immunology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Ayse Akman Karakas
- Department of Dermatology and Venerology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Suranjith Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London, UK
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ana Berta Sousa
- Serviço de Genética, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, and Laboratório de Imunologia Básica, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey.,Deparment of Molecular Biology and Genetics, Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Immunology, Labor Berlin GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Margo Whiteford
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, Children's Hospital CHU Ibn Rochd, University Hassan 2, Casablanca, Morocco
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany. .,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany. .,CCI-Center for Chronic Immunodeficiency, Universitätsklinikum Freiburg, Breisacher Straße 115, 79106, Freiburg, Germany.
| |
Collapse
|
14
|
Marié IJ, Brambilla L, Azzouz D, Chen Z, Baracho GV, Arnett A, Li HS, Liu W, Cimmino L, Chattopadhyay P, Silverman G, Watowich SS, Khor B, Levy DE. Tonic interferon restricts pathogenic IL-17-driven inflammatory disease via balancing the microbiome. eLife 2021; 10:68371. [PMID: 34378531 PMCID: PMC8376249 DOI: 10.7554/elife.68371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Maintenance of immune homeostasis involves a synergistic relationship between the host and the microbiome. Canonical interferon (IFN) signaling controls responses to acute microbial infection, through engagement of the STAT1 transcription factor. However, the contribution of tonic levels of IFN to immune homeostasis in the absence of acute infection remains largely unexplored. We report that STAT1 KO mice spontaneously developed an inflammatory disease marked by myeloid hyperplasia and splenic accumulation of hematopoietic stem cells. Moreover, these animals developed inflammatory bowel disease. Profiling gut bacteria revealed a profound dysbiosis in the absence of tonic IFN signaling, which triggered expansion of TH17 cells and loss of splenic Treg cells. Reduction of bacterial load by antibiotic treatment averted the TH17 bias and blocking IL17 signaling prevented myeloid expansion and splenic stem cell accumulation. Thus, tonic IFNs regulate gut microbial ecology, which is crucial for maintaining physiologic immune homeostasis and preventing inflammation.
Collapse
Affiliation(s)
| | | | - Doua Azzouz
- NYU School of Medicine, New York, United States
| | - Ze Chen
- NYU School of Medicine, New York, United States
| | | | - Azlann Arnett
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States
| | - Haiyan S Li
- University of Texas MD Anderson Cancer Center, Houston, United States
| | - Weiguo Liu
- NYU School of Medicine, New York, United States
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, United States
| | | | | | | | - Bernard Khor
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States
| | | |
Collapse
|
15
|
Shamriz O, Lev A, Simon AJ, Barel O, Javasky E, Matza-Porges S, Shaulov A, Davidovics Z, Toker O, Somech R, Zlotogorski A, Molho-Pessach V, Tal Y. Chronic demodicosis in patients with immune dysregulation: An unexpected infectious manifestation of Signal transducer and activator of transcription (STAT)1 gain-of-function. Clin Exp Immunol 2021; 206:56-67. [PMID: 34114647 DOI: 10.1111/cei.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)1 heterozygous gain-of-function (GOF) mutations are known to induce immune dysregulation and chronic mucocutaneous candidiasis (CMCC). Previous reports suggest an association between demodicosis and STAT1 GOF. However, immune characterization of these patients is lacking. Here, we present a retrospective analysis of patients with immune dysregulation and STAT1 GOF who presented with facial and ocular demodicosis. In-depth immune phenotyping and functional studies were used to characterize the patients. We identified five patients (three males) from two non-consanguineous Jewish families. The mean age at presentation was 11.11 (range = 0.58-24) years. Clinical presentation included CMCC, chronic demodicosis and immune dysregulation in all patients. Whole-exome and Sanger sequencing revealed a novel heterozygous c.1386C>A; p.S462R STAT1 GOF mutation in four of the five patients. Immunophenotyping demonstrated increased phosphorylated signal transducer and activator of transcription in response to interferon-α stimuli in all patients. The patients also exhibited decreased T cell proliferation capacity and low counts of interleukin-17-producing T cells, as well as low forkhead box protein 3+ regulatory T cells. Specific antibody deficiency was noted in one patient. Treatment for demodicosis included topical ivermectin and metronidazole. Demodicosis may indicate an underlying primary immune deficiency and can be found in patients with STAT1 GOF. Thus, the management of patients with chronic demodicosis should include an immunogenetic evaluation.
Collapse
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J Simon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ortal Barel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Elisheva Javasky
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Sigal Matza-Porges
- Department of Human Genetics, Institute for Medical Research the Hebrew University of Jerusalem,, Jerusalem, Israel.,Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Adir Shaulov
- Department of Hematology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zev Davidovics
- Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Zlotogorski
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vered Molho-Pessach
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Chronic mucocutaneous Candidiasis caused by a novel STAT1 mutation: a report of 4 patients. LYMPHOSIGN JOURNAL 2021. [DOI: 10.14785/lymphosign-2021-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Chronic mucocutaneous Candidiasis (CMCC) is characterized by recurrent or persistent fungal infections of the skin, nails, and oral and genital mucosae. There are several underlying genetic causes for CMCC, with mutations in Signal Transducer and Activator of Transcription-1 (STAT1) accounting for the majority of cases. Aim: To broaden the genotypic spectrum of CMCC caused by STAT1 mutations. Methods: We evaluated a young patient and her family with CMCC. Immune workup and targeted gene sequencing were performed. Results: The proband presented at 7 years of age with persistent oral thrush. Immune evaluation revealed her cellular and humoral immunity to be within normal range. Given that her family history was significant for oral lesions in father, siblings, and paternal family members, STAT1 gene sequencing was performed. A novel heterozygous missense c.G799A, predicting a p. Ala267Thr amino acid change within the coiled-coil domain, was identified in our patient and 3 of her family members. Conclusion: Gain-of-function mutations in STAT1 have been associated with a variety of phenotypes, ranging from isolated CMCC to severe fatal combined immunodeficiency, mycobacterial infections, autoimmune disorders, as well as malignancy and aneurysms. Here, we describe a novel STAT1 mutation, c.G799A, resulting in a very mild phenotype of isolated CMCC in 4 members of one kindred. Statement of novelty: We describe 4 patients with a mild phenotype of CMCC caused by a novel STAT1 heterozygous mutation.
Collapse
|
17
|
STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. NPJ Genom Med 2021; 6:34. [PMID: 33990617 PMCID: PMC8121859 DOI: 10.1038/s41525-021-00196-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies. We generated heterozygous mutants in diploid HAP1 cells using CRISPR/Cas9 base-editing, targeting the endogenous STAT1 gene. Our models recapitulated the molecular phenotype of elevated pSTAT1, and were used to characterize the expression of five IFN-stimulated genes under a number of conditions. At baseline, transcriptional polarization was evident among mutants compared with wild type, and this was maintained following prolonged serum starvation. This suggests a possible role for unphosphorylated STAT1 in the pathogenesis of STAT1 GOF. Following stimulation with IFNα or IFNγ, differential patterns of gene expression emerged among mutants, including both gain and loss of transcriptional function. This work highlights the importance of modeling heterozygous conditions, and in particular transcription factor-related disorders, in a manner which accurately reflects patient genotype and molecular signature. Furthermore, we propose a complex and multifactorial transcriptional profile associated with various STAT1 mutations, adding to global efforts in establishing STAT1 GOF genotype-phenotype correlation and enhancing our understanding of disease pathogenesis.
Collapse
|
18
|
Howe MK, Dowdell K, Kuehn HS, Li Q, Hart GT, Garabedian D, Liepshutz K, Hsu AP, Su H, Niemela JE, Stoddard JL, Uzel G, Shereck E, Schulz L, Feldman T, Rosenzweig SD, Long EO, Dropulic L, Cohen JI. Patients With Natural Killer (NK) Cell Chronic Active Epstein-Barr Virus Have Immature NK Cells and Hyperactivation of PI3K/Akt/mTOR and STAT1 Pathways. J Infect Dis 2021; 222:1170-1179. [PMID: 32386415 DOI: 10.1093/infdis/jiaa232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus (CAEBV) presents with high levels of viral genomes in blood and tissue infiltration with Epstein-Barr virus (EBV)-positive lymphocytes. The pathogenesis of CAEBV is poorly understood. METHODS We evaluated 2 patients with natural killer (NK) cell CAEBV and studied their NK cell phenotype and signaling pathways in cells. RESULTS Both patients had increased numbers of NK cells, EBV predominantly in NK cells, and immature NK cells in the blood. Both patients had increased phosphorylation of Akt, S6, and STAT1 in NK cells, and increased total STAT1. Treatment of 1 patient with sirolimus reduced phosphorylation of S6 in T and B cells, but not in NK cells and did not reduce levels of NK cells or EBV DNA in the blood. Treatment of both patients' cells with JAK inhibitors in vitro reduced phosphorylated STAT1 to normal. Patients with T- or B-cell CAEBV had increased phosphorylation of Akt and S6 in NK cells, but no increase in total STAT1. CONCLUSIONS The increase in phosphorylated Akt, S6, and STAT1, as well as immature NK cells describe a new phenotype for NK cell CAEBV. The reduction of STAT1 phosphorylation in their NK cells with JAK inhibitors suggests a novel approach to therapy.
Collapse
Affiliation(s)
- Matthew K Howe
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Qingxue Li
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Geoffrey T Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Doreen Garabedian
- Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, Maryland, USA
| | - Kelly Liepshutz
- Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, Maryland, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hua Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer L Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Evan Shereck
- Doembecker Children's Hospital, Oregon Health and Science University, Portland, Oregon, USA
| | - Laura Schulz
- Pediatric Hematology and Oncology, Providence Alaska Medical Center, Anchorage, Alaska, USA
| | - Tatyana Feldman
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Abstract
Primary immune regulatory disorders (PIRDs) are a group of diseases belonging to inborn errors of immunity. They usually exhibit lymphoproliferation, autoimmunities, and malignancies, with less susceptibility to recurrent infections. Unlike classical primary immune deficiencies, in autoimmune manifestations, such as cytopenias, enteropathy can be the first symptom of diseases, and they are typically resistant to treatment. Increasing awareness of PIRDs among specialists and a multidisciplinary team approach would provide early diagnosis and treatment that could prevent end-organ damage related to the diseases. In recent years, many PIRDs have been described, and understanding the immunological pathways linked to these disorders provides us an opportunity to use directed therapies for specific molecules, which usually offer better disease control than known classical immunosuppressants. In this review, in light of the most recent literature, we will discuss the common PIRDs and explain their clinical symptoms and recent treatment modalities.
Collapse
Affiliation(s)
- Burcu Kolukısa
- Marmara University Faculty of Medicine, Division of Pediatric Allergy and Immunology, İstanbul, Turkey,İstanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, İstanbul, Turkey,The Işıl Berat Barlan Center for Translational Medicine, İstanbul, Turkey
| | - Safa Barış
- Marmara University Faculty of Medicine, Division of Pediatric Allergy and Immunology, İstanbul, Turkey,İstanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, İstanbul, Turkey,The Işıl Berat Barlan Center for Translational Medicine, İstanbul, Turkey
| |
Collapse
|
20
|
Primary Immunodeficiencies in India: Molecular Diagnosis and the Role of Next-Generation Sequencing. J Clin Immunol 2020; 41:393-413. [PMID: 33225392 DOI: 10.1007/s10875-020-00923-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PIDs) are a group of clinically and genetically heterogeneous disorders showing ethnic and geographic diversities. Next-generation sequencing (NGS) is a comprehensive tool to diagnose PID. Although PID is common in India, data on the genetic spectrum of PIDs are limited due to financial restrictions. The study aims to characterize the clinical and genetic spectrum of PID patients in India and highlight the importance of a cost-effective targeted gene panel sequencing approach for PID in a resource-limited setting. The study includes 229 patients with clinical and laboratory features suggestive of PIDs. Mutation analysis was done by Sanger sequencing and NGS targeting a customized panel of genes. Pathogenic variants were identified in 97 patients involving 42 different genes with BTK and IL12RB1 being the most common mutated genes. Autosomal recessive and X-linked recessive inheritance were seen in 51.6% and 23.7% of patients. Mendelian susceptibility to mycobacterial diseases (MSMD) and IL12RB1 mutations was more common in our population compared to the Western world and the Middle East. Two patients with hypomorphic RAG1 mutations and one female with skewed CYBB mutation were also identified. Another 40 patients had variants classified as variants of uncertain significance (VUS). The study shows that targeted NGS is an effective diagnostic strategy for PIDs in countries with limited diagnostic resources. Molecular diagnosis of PID helps in genetic counseling and to make therapeutic decisions including the need for a stem cell transplantation.
Collapse
|
21
|
Shamriz O, Tal Y, Talmon A, Nahum A. Chronic Mucocutaneous Candidiasis in Early Life: Insights Into Immune Mechanisms and Novel Targeted Therapies. Front Immunol 2020; 11:593289. [PMID: 33178226 PMCID: PMC7596184 DOI: 10.3389/fimmu.2020.593289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
Children with chronic mucocutaneous candidiasis (CMC) experience recurrent infections with Candida spp. Moreover, immune dysregulation in the early life of these patients induces various autoimmune diseases and affects normal growth and development. The adaptive and innate immune system components play a significant role in anti-fungal response. This response is mediated through IL-17 production by T helper cells. Inborn errors in IL-17-mediated pathways or Candida spp. sensing molecules are known to cause CMC. In this review, we describe underlying immune mechanisms of monogenic primary immune deficiency disorders known to cause CMC. We will explore insights into current management of these patients and novel available therapies.
Collapse
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviv Talmon
- Allergy and Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
22
|
Bodmer D, Kern P, Bächinger D, Monge Naldi A, Levano Huaman S. STAT1 deficiency predisposes to spontaneous otitis media. PLoS One 2020; 15:e0239952. [PMID: 32991625 PMCID: PMC7523960 DOI: 10.1371/journal.pone.0239952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is known to be an important player in inflammatory responses. STAT1 as a transcription factor regulates the expression of multiple proinflammatory genes. Inflammatory response is one of the common effects of ototoxicity. Our group reported that hair cells of STAT1 knockout (STAT1-KO) mice are less sensitive to ototoxic agents in-vitro. The effect of inflammatory responses in STAT1-KO mice has primarily been studied challenging them with several pathogens and analyzing different organs of those mice. However, the effect of STAT1 ablation in the mouse inner ear has not been reported. Therefore, we evaluated the cochlear function of wild type and STAT1-KO mice via auditory brain stem response (ABR) and performed histopathologic analysis of their temporal bones. We found ABR responses were affected in STAT1-KO mice with cases of bilateral and unilateral hearing impairment. Histopathologic examination of the middle and inner ears showed bilateral and unilateral otitis media. Otitis media was characterized by effusion of middle and inner ear that varied between the mice in volume and inflammatory cell content. In addition, the thickness of the middle ear mucosae in STAT1-KO mice were more pronounced than those in wild type mice. The degree of middle and inner ear inflammation correlated with ABR threshold elevation in STAT1-KO mice. It appears that a number of mice with inflammation underwent spontaneous resolution. The ABR thresholds were variable and showed a tendency to increase in homozygous and heterozygous STAT1-KO mice. These findings suggest that STAT1 ablation confers an increased susceptibility to otitis media leading to hearing impairment. Thus, the study supports the new role of STAT1 as otitis media predisposition gene.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - Peter Kern
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Arianne Monge Naldi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Soledad Levano Huaman
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Most ZM, Lieu T, Filkins L, Nicolaides R, Rakheja D, Gelfand A, Kahn J. Disseminated Nannizziopsis Infection in an Adolescent With a STAT1 Mutation. Open Forum Infect Dis 2020; 7:ofaa390. [PMID: 33005702 PMCID: PMC7518371 DOI: 10.1093/ofid/ofaa390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
An adolescent with failure to thrive developed cuboid bone osteomyelitis and brain abscesses. Mold isolated from both locations was identified by universal genetic sequencing as Nannizziopsis spp, which is typically a pathogen of reptiles. The patient was subsequently diagnosed with a STAT1 mutation and was successfully treated.
Collapse
Affiliation(s)
- Zachary M Most
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Infectious Disease, Dallas, Texas, USA
| | - Tiffany Lieu
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Hospital Medicine, Dallas, Texas, USA
| | - Laura Filkins
- University of Texas Southwestern Medical Center, Department of Pathology, Dallas, Texas, USA
| | - Rory Nicolaides
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Allergy and Immunology, Dallas, Texas, USA
| | - Dinesh Rakheja
- University of Texas Southwestern Medical Center, Department of Pathology, Dallas, Texas, USA
| | - Andrew Gelfand
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Respiratory Medicine, Dallas, Texas, USA
| | - Jeffrey Kahn
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Infectious Disease, Dallas, Texas, USA.,University of Texas Southwestern Medical Center, Department of Microbiology, Dallas, Texas, USA
| |
Collapse
|
24
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
25
|
Novel heterozygous PIK3CD mutation presenting with only laboratory markers of combined immunodeficiency. LYMPHOSIGN JOURNAL 2020. [DOI: 10.14785/lymphosign-2020-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta (PIK3CD) is one part of a heterodimer forming the enzyme phosphoinositide 3-kinase (PI3K), found primarily in leukocytes. PIK3CD generates phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and is involved in cell growth, survival, proliferation, motility, and morphology. An increasing number of patients have been described with heterozygous PIK3CD gain-of-function (GOF) mutations, leading to combined immunodeficiency with both B- and T-cell dysfunction. Patients suffer recurrent respiratory infections, often associated with bronchiectasis and ear and sinus damage, as well as severe recurrent or persistent infections by herpesviruses, including EBV-induced lymphoproliferation. Aim: To present the clinical phenotypic variability of a novel PI3KCD mutation within a family. Methods: Patient information was collected prospectively and retrospectively from medical records. Comprehensive immune work up, genetic, and signaling evaluation was performed. Results: We describe here 2 patients, daughter and mother, with heterozygous PIK3CD mutation identified by whole exome sequencing and Sanger confirmation. The child was screen-positive by newborn screening for severe combined immunodeficiency (SCID). Cellular assays revealed an increase in the baseline phosphorylation of T cells in the patient. Furthermore, both patients had hyper-activation of the catalytic domain, resulting in increased phosphorylation of AKT upon activation. Discussion: GOF mutations affecting the PIK3CD gene are associated with an increased risk for lymphoproliferation leading to Activated PIK3-delta syndrome (APDS). The clinical course of APDS is highly variable, ranging from combined immunodeficiency with recurrent infections, autoimmune complications, and requiring stem cell transplantation, through isolated antibody deficiency, to asymptomatic adults. Our patient is the first to be identified by newborn screening for SCID. Surprisingly, the clinical course has so far been unremarkable, as well, the mother appears to be completely asymptomatic. Nevertheless, the persistent lymphopenia indicates PIK3CD dysfunction. Because of the wide gap between laboratory findings and clinical manifestations, this kindred poses both a diagnostic as well treatment challenge. Statement of novelty: We report here a novel PIK3CD mutation diagnosed due to abnormal newborn screen for SCID.
Collapse
|
26
|
Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Suppresses Type I Interferon Signaling To Promote EBV Reactivation. J Virol 2020; 94:JVI.00258-20. [PMID: 32213613 DOI: 10.1128/jvi.00258-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
Interferon alpha (IFN-α) and IFN-β are type I IFNs that are induced by virus infection and are important in the host's innate antiviral response. EBV infection activates multiple cell signaling pathways, resulting in the production of type I IFN which inhibits EBV infection and virus-induced B-cell transformation. We reported previously that EBV tegument protein BGLF2 activates p38 and enhances EBV reactivation. To further understand the role of BGLF2 in EBV infection, we used mass spectrometry to identify cellular proteins that interact with BGLF2. We found that BGLF2 binds to Tyk2 and confirmed this interaction by coimmunoprecipitation. BGLF2 blocked type I IFN-induced Tyk2, STAT1, and STAT3 phosphorylation and the expression of IFN-stimulated genes (ISGs) IRF1, IRF7, and MxA. In contrast, BGLF2 did not inhibit STAT1 phosphorylation induced by IFN-γ. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of the protein to repress type I IFN signaling. Treatment of gastric carcinoma and Raji cells with IFN-α blocked BZLF1 expression and EBV reactivation; however, expression of BGLF2 reduced the ability of IFN-α to inhibit BZLF1 expression and enhanced EBV reactivation. In summary, EBV BGLF2 interacts with Tyk2, inhibiting Tyk2, STAT1, and STAT3 phosphorylation and impairs type I IFN signaling; BGLF2 also counteracts the ability of IFN-α to suppress EBV reactivation.IMPORTANCE Type I interferons are important for controlling virus infection. We have found that the Epstein-Barr virus (EBV) BGLF2 tegument protein binds to a protein in the type I interferon signaling pathway Tyk2 and inhibits the expression of genes induced by type I interferons. Treatment of EBV-infected cells with type I interferon inhibits reactivation of the virus, while expression of EBV BGLF2 reduces the ability of type I interferon to inhibit virus reactivation. Thus, a tegument protein delivered to cells during virus infection inhibits the host's antiviral response and promotes virus reactivation of latently infected cells. Therefore, EBV BGLF2 might protect virus-infected cells from the type I interferon response in cells undergoing lytic virus replication.
Collapse
|
27
|
Tamaura M, Satoh-Takayama N, Tsumura M, Sasaki T, Goda S, Kageyama T, Hayakawa S, Kimura S, Asano T, Nakayama M, Koseki H, Ohara O, Okada S, Ohno H, Kobayashi M. Human gain-of-function STAT1 mutation disturbs IL-17 immunity in mice. Int Immunol 2019; 32:259-272. [DOI: 10.1093/intimm/dxz079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023] Open
Abstract
Abstract
Gain-of-function (GOF) mutations in the gene for signal transducer and activator of transcription 1 (STAT1) account for approximately one-half of patients with chronic mucocutaneous candidiasis (CMC) disease. Patients with GOF-STAT1 mutations display a broad variety of infectious and autoimmune manifestations in addition to CMC, and those with severe infections and/or autoimmunity have a poor prognosis. The establishment of safe and effective treatments based on a precise understanding of the molecular mechanisms of this disorder is required to improve patient care. To tackle this problem, we introduced the human R274Q GOF mutation into mice [GOF-Stat1 knock-in (GOF-Stat1R274Q)]. To investigate the immune responses, we focused on the small intestine (SI), which contains abundant Th17 cells. Stat1R274Q/R274Q mice showed excess phosphorylation of STAT1 in CD4+ T cells upon IFN-γ stimulation, consistent with the human phenotype in patients with the R274Q mutation. We identified two subpopulations of CD4+ T cells, those with ‘normal’ or ‘high’ level of basal STAT1 protein in Stat1R274Q/R274Q mice. Upon IFN-γ stimulation, the ‘normal’ level CD4+ T cells were more efficiently phosphorylated than those from WT mice, whereas the ‘high’ level CD4+ T cells were not, suggesting that the level of STAT1 protein does not directly correlate with the level of pSTAT1 in the SI. Inoculation of Stat1R274Q/R274Q mice with Candida albicans elicited decreased IL-17-producing CD4+RORγt+ cells. Stat1R274Q/R274Q mice also excreted larger amounts of C. albicans DNA in their feces than control mice. Under these conditions, there was up-regulation of T-bet in CD4+ T cells. GOF-Stat1R274Q mice thus should be a valuable model for functional analysis of this disorder.
Collapse
Affiliation(s)
- Moe Tamaura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Goda
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
28
|
Mandola AB, Reid B, Sirror R, Brager R, Dent P, Chakroborty P, Bulman DE, Roifman CM. Ataxia Telangiectasia Diagnosed on Newborn Screening-Case Cohort of 5 Years' Experience. Front Immunol 2019; 10:2940. [PMID: 31921190 PMCID: PMC6932992 DOI: 10.3389/fimmu.2019.02940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022] Open
Abstract
Ataxia telangiectasia (AT) is a genetic condition caused by mutations involving ATM (Ataxia Telangiectasia Mutated). This gene is responsible for the expression of a DNA double stranded break repair kinase, the ATM protein kinase. The syndrome encompasses combined immunodeficiency and various degrees of neurological abnormalities and increased risk of malignancy. Typically, patients present early in life with delay in neurological milestones, but very infrequently, with life threatening infections typical of a profound T cell deficiency. It would therefore be unexpected to identify this condition immediately after birth using T cell receptor excision circle (TREC)-based newborn screening (NBS) for SCID. We sought to evaluate the frequency of AT detected by NBS, and to assess immunity as well as the genetic aberrations associated with this early presentation. Here, we describe the clinical, laboratory, and genetic features of patients diagnosed with AT through the Ontario NBS program for SCID, and followed in our center since its inception in 2013. Four patients were diagnosed with AT as a result of low TRECs on NBS. In each case, whole exome sequencing was diagnostic. All of our patients had compound heterozygous mutations involving the FRAP-ATM-TRRAP (FAT) domain of the ATM gene, which appears critical for kinase activity and is highly sensitive to mutagenesis. Our patients presented with profound lymphopenia involving both B and T cells. The ratio of naïve/memory CD45+RA/RO T cells population was variable. T cell repertoire showed decreased T cell diversity. Two out of four patients had decreased specific antibody response to vaccination and hypogammaglobulinemia requiring IVIG replacement. In two patients, profound decreased responses to phytohemagglutinin stimulation was observed. In the other two patients, the initial robust response declined with time. In summary, the rate of detection of AT through NBS had been surprisingly high at our center. One case was identified per year, while the total rate for SCID has been five new cases per year. This early detection may allow for better prospective evaluation of AT shortly after birth, and may assist in formulating early and more effective interventions both for the neurological as well as the immune abnormalities in this syndrome.
Collapse
Affiliation(s)
- Amarilla B Mandola
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| | - Brenda Reid
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| | - Raga Sirror
- Paediatric Allergy/Immunology, Thunder Bay Regional Health Sciences Center, North Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Rae Brager
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Peter Dent
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Pranesh Chakroborty
- Department of Pediatrics, CHEO Research Institute and Newborn Screening Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Dennis E Bulman
- Department of Pediatrics, CHEO Research Institute and Newborn Screening Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
29
|
Chen X, Xu Q, Li X, Wang L, Yang L, Chen Z, Zeng T, Xue X, Xu T, Wang Y, Jia Y, Zhao Q, Wu J, Liang F, Tang X, Yang J, An Y, Zhao X. Molecular and Phenotypic Characterization of Nine Patients with STAT1 GOF Mutations in China. J Clin Immunol 2019; 40:82-95. [DOI: 10.1007/s10875-019-00688-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022]
|
30
|
Maeshima K, Okada S, Shibata H. Dr. Maeshima, et al, reply. J Rheumatol 2019; 46:655-656. [PMID: 31154449 DOI: 10.3899/jrheum.181455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Keisuke Maeshima
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita;
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
31
|
|
32
|
Maeshima K, Ishii K, Shibata H. An Adult Fatal Case with a STAT1 Gain-of-function Mutation Associated with Multiple Autoimmune Diseases. J Rheumatol 2018; 46:325-327. [PMID: 30442829 DOI: 10.3899/jrheum.180210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
33
|
Ovadia A, Sharfe N, Hawkins C, Laughlin S, Roifman CM. Two different STAT1 gain-of-function mutations lead to diverse IFN-γ-mediated gene expression. NPJ Genom Med 2018; 3:23. [PMID: 30131873 PMCID: PMC6102291 DOI: 10.1038/s41525-018-0063-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/10/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) regulates multiple biological processes downstream of a variety of cytokine receptors in many cell types. Heterozygous gain-of-function (GOF) mutations in STAT1 have been associated with a diverse phenotype encompassing chronic mucocutaneous candidiasis (CMCC) and declining immunity. There is no clear correlation between STAT1 domain-specific mutations and phenotype, and it remains unclear why GOF mutations in STAT1 result in such a wide spectrum of clinical presentations. To begin exploring this dilemma, we have studied the patterns of gene expression mediated by two different GOF mutations. Analysis of IFN-γ response elements using RNA microarrays in cells transfected with the rare H629Y mutant or the common R274G mutant showed distinct patterns of gene expression. We show here that the impact of GOF mutations in STAT1 is variant-specific. This difference in gene expression may explain the diversity in clinical manifestations experienced by these patients.
Collapse
Affiliation(s)
- Adi Ovadia
- 1Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, ON Canada.,2The Canadian Center for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children and The University of Toronto, Toronto, ON Canada
| | - Nigel Sharfe
- 1Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, ON Canada.,2The Canadian Center for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children and The University of Toronto, Toronto, ON Canada
| | - Cynthia Hawkins
- 3Department of Laboratory Medicine & Pathobiology, The Hospital for Sick Children, Toronto, ON Canada
| | - Suzanne Laughlin
- 4Department of Radiology, The Hospital for Sick Children, Toronto, ON Canada
| | - Chaim M Roifman
- 1Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, ON Canada.,2The Canadian Center for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children and The University of Toronto, Toronto, ON Canada
| |
Collapse
|
34
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
35
|
Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svatoň M, Froňková E, Fejtková M, Zachová R, Rataj M, Zentsová I, Milota T, Klocperk A, Kalina T, Šedivá A. Utility of Ruxolitinib in a Child with Chronic Mucocutaneous Candidiasis Caused by a Novel STAT1 Gain-of-Function Mutation. J Clin Immunol 2018; 38:589-601. [DOI: 10.1007/s10875-018-0519-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
|
36
|
Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia. Sci Rep 2018; 8:6956. [PMID: 29725107 PMCID: PMC5934390 DOI: 10.1038/s41598-018-25260-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4+ T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.
Collapse
|
37
|
Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr 2017; 29:711-717. [PMID: 28914637 DOI: 10.1097/mop.0000000000000551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To describe primary immunodeficiencies caused by gain-of-function (GOF) mutations of signal transducer and activator of transcription (STAT) genes, a group of genetically determined disorders characterized by susceptibility to infections and, in many cases, autoimmune manifestations. RECENT FINDINGS GOF mutations affecting STAT1 result in increased STAT tyrosine phosphorylation and secondarily increased response to STAT1-signaling cytokines, such as interferons. In contrast, STAT3 hyperactivity is not usually related to hyperphosphorylation but rather to increased STAT3-mediated transcriptional activity. In both cases, heterozygous STAT1 and STAT3 GOF mutations trigger a distinct set of genes in target cells that lead to abnormal functioning of antimicrobial response and/or autoimmunity and result in autosomal dominant diseases. SUMMARY Clinical manifestations of patients with STAT1 GOF are characterized by mucocutaneous candidiasis and recurrent lower tract respiratory infections. In addition, many patients have thyroiditis, type 1 diabetes mellitus, autoimmune cytopenias, cancer or aneurysms. Patients with germline STAT3 GOF mutations have an increased frequency of early-onset multiorgan autoimmunity (i.e. autoimmune enteropathy, type 1 diabetes mellitus, autoimmune interstitial lung disease and autoimmune cytopenias), lymphoproliferation, short stature and, less frequently, severe recurrent infections. Treatment options range from antimicrobial therapy, intravenous or subcutaneous immunoglobulin and immunosuppressive drugs. Some patients with STAT1 GOF disorder have undergone hematopoietic stem cell transplantation, although these have been difficult because of the underlying proinflammatory milieu from the mutation.
Collapse
|
38
|
Veverka KK, Feldman SR. Chronic mucocutaneous candidiasis: what can we conclude about IL-17 antagonism? J DERMATOL TREAT 2017; 29:475-480. [PMID: 29076381 DOI: 10.1080/09546634.2017.1398396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE IL-17 antagonists are effective for psoriasis in clinical trials, but long-term safety is not fully characterized. Since chronic mucocutaneous candidiasis (CMC) is caused by defects in the IL-17 pathway, CMC risk data have been touted as providing reassurance about the safety of IL-17 antagonism. METHODS We performed a literature review to identify patients with CMC and compared the prevalence of cancer in these patients to the reported 5-year prevalence. RESULTS There was a higher prevalence of oropharyngeal (2.5% vs. 0.028%; p < .0001) and esophageal cancer (1.9% vs. 0.013%; p < .0001) in patients with CMC. There were no reports of cancer in 31 patients with CMC caused by an isolated IL-17 deficiency (IL-17F, IL-17RA, IL17RC); however, a study would need over 1000 patients to detect even a 10-fold increase in the most common malignancy of CMC patients. CONCLUSIONS There is evidence that some forms of CMC are associated with an increase in cancer. While CMC is heterogeneous, our findings suggest that we cannot use CMC data to reassure patients on the long-term safety of IL-17 antagonists beyond the safety results from clinical trials, and perhaps caution should be taken with the development of candidiasis in patients taking these medications.
Collapse
Affiliation(s)
- Kevin K Veverka
- a Department of Dermatology Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Steven R Feldman
- a Department of Dermatology Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
39
|
Leiding JW, Okada S, Hagin D, Abinun M, Shcherbina A, Balashov DN, Kim VHD, Ovadia A, Guthery SL, Pulsipher M, Lilic D, Devlin LA, Christie S, Depner M, Fuchs S, van Royen-Kerkhof A, Lindemans C, Petrovic A, Sullivan KE, Bunin N, Kilic SS, Arpaci F, Calle-Martin ODL, Martinez-Martinez L, Aldave JC, Kobayashi M, Ohkawa T, Imai K, Iguchi A, Roifman CM, Gennery AR, Slatter M, Ochs HD, Morio T, Torgerson TR. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol 2017; 141:704-717.e5. [PMID: 28601685 DOI: 10.1016/j.jaci.2017.03.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/18/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) cause susceptibility to a range of infections, autoimmunity, immune dysregulation, and combined immunodeficiency. Disease manifestations can be mild or severe and life-threatening. Hematopoietic stem cell transplantation (HSCT) has been used in some patients with more severe symptoms to treat and cure the disorder. However, the outcome of HSCT for this disorder is not well established. OBJECTIVE We sought to aggregate the worldwide experience of HSCT in patients with GOF-STAT1 mutations and to assess outcomes, including donor engraftment, overall survival, graft-versus-host disease, and transplant-related complications. METHODS Data were collected from an international cohort of 15 patients with GOF-STAT1 mutations who had undergone HSCT using a variety of conditioning regimens and donor sources. Retrospective data collection allowed the outcome of transplantation to be assessed. In vitro functional testing was performed to confirm that each of the identified STAT1 variants was in fact a GOF mutation. RESULTS Primary donor engraftment in this cohort of 15 patients with GOF-STAT1 mutations was 74%, and overall survival was only 40%. Secondary graft failure was common (50%), and posttransplantation event-free survival was poor (10% by 100 days). A subset of patients had hemophagocytic lymphohistiocytosis before transplant, contributing to their poor outcomes. CONCLUSION Our data indicate that HSCT for patients with GOF-STAT1 mutations is curative but has significant risk of secondary graft failure and death.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins - All Children's Hospital, St Petersburg, Fla
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - David Hagin
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - Mario Abinun
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anna Shcherbina
- Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Dmitry N Balashov
- Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Vy H D Kim
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adi Ovadia
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen L Guthery
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Michael Pulsipher
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, Calif
| | - Desa Lilic
- Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa A Devlin
- Regional Immunology Service, Royal Hospitals, Belfast, United Kingdom
| | - Sharon Christie
- Department of Pediatrics, Royal Hospitals, Belfast, United Kingdom
| | - Mark Depner
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Annet van Royen-Kerkhof
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Lindemans
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aleksandra Petrovic
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash; Blood and Bone Marrow Transplant Program, Johns Hopkins Medicine-All Children's Hospital, St Petersburg, Fla
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Nancy Bunin
- Division of Oncology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology, Department of Pediatrics, Uludag University Medical Faculty, Gorukle-Bursa, Turkey
| | - Fikret Arpaci
- GATA Faculty, Bone Marrow Transplant Center, Ankara, Turkey
| | | | | | | | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Teppei Ohkawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Chaim M Roifman
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew R Gennery
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary Slatter
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan.
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash.
| | | |
Collapse
|
40
|
Eslami N, Tavakol M, Mesdaghi M, Gharegozlou M, Casanova JL, Puel A, Okada S, Arshi S, Bemanian MH, Fallahpour M, Molatefi R, Seif F, Zoghi S, Rezaei N, Nabavi M. A gain-of-function mutation of STAT1: A novel genetic factor contributing to chronic mucocutaneous candidiasis. Acta Microbiol Immunol Hung 2017; 64:191-201. [PMID: 28597685 DOI: 10.1556/030.64.2017.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in the signal transducer and activator of transcription 1 (STAT1) have increasingly been identified as a genetic cause of autosomal-dominant (AD) chronic mucocutaneous candidiasis (CMC). In this article, we describe a 33-year-old man who experienced chronic refractory candidiasis, recurrent otitis media, and pneumonia resulting in bronchiectasis, severe oral and esophageal candidiases with strictures associated with hypothyroidism and immune hemolytic anemia. His son also suffered from persistent candidiasis, chronic diarrhea, poor weight gain, and pneumonia that resulted in his demise because of sepsis. The immunological workup showed that an inverse CD4/CD8 ratio and serum immunoglobulins were all within normal ranges. The laboratory data revealed failure in response to Candida lymphocyte transformation test. In addition, by Sanger sequencing method, we found a heterozygous mutation, Thr385Met (T385M), located in the DNA-binding domain of STAT1, which was previously shown to be GOF. These findings illustrate the broad and variable clinical phenotype of heterozygous STAT1 GOF mutations. However, more clinical information and phenotype-genotype studies are required to define the clinical phenotype caused by AD STAT1 GOF.
Collapse
Affiliation(s)
- Narges Eslami
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- 2 Department of Allergy and Clinical Immunology, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- 3 Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrnaz Mesdaghi
- 2 Department of Allergy and Clinical Immunology, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Gharegozlou
- 4 Department of Allergy and Immunology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- 6 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, French National Institute of Health and Medical Research (INSERM), Paris, France
- 7 Imagine Institute, Paris Descartes University, Paris, France
- 8 Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
- 9 Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Anne Puel
- 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- 6 Laboratory of Human Genetics of Infectious Diseases, Necker Branch, French National Institute of Health and Medical Research (INSERM), Paris, France
- 7 Imagine Institute, Paris Descartes University, Paris, France
| | - Satoshi Okada
- 5 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- 9 Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saba Arshi
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Molatefi
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- 10 Department of Allergy and Clinical Immunology, Bu Ali Children’s Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Seif
- 11 Department Immunology, School Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- 12 Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- 13 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 14 Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Vienna, Austria
| | - Nima Rezaei
- 12 Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- 13 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 15 Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| | - Mohammad Nabavi
- 1 Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol 2017; 139:1629-1640.e2. [PMID: 28139313 DOI: 10.1016/j.jaci.2016.11.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in the human signal transducer and activator of transcription 1 (STAT1) manifest in immunodeficiency and autoimmunity with impaired TH17 cell differentiation and exaggerated responsiveness to type I and II interferons. Allogeneic bone marrow transplantation has been attempted in severely affected patients, but outcomes have been poor. OBJECTIVE We sought to define the effect of increased STAT1 activity on T helper cell polarization and to investigate the therapeutic potential of ruxolitinib in treating autoimmunity secondary to STAT1 GOF mutations. METHODS We used in vitro polarization assays, as well as phenotypic and functional analysis of STAT1-mutated patient cells. RESULTS We report a child with a novel mutation in the linker domain of STAT1 who had life-threatening autoimmune cytopenias and chronic mucocutaneous candidiasis. Naive lymphocytes from the affected patient displayed increased TH1 and follicular T helper cell and suppressed TH17 cell responses. The mutation augmented cytokine-induced STAT1 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reduced hyperresponsiveness to type I and II interferons, normalized TH1 and follicular T helper cell responses, improved TH17 differentiation, cured mucocutaneous candidiasis, and maintained remission of immune-mediated cytopenias. CONCLUSIONS Autoimmunity and infection caused by STAT1 GOF mutations are the result of dysregulated T helper cell responses. Janus kinase inhibitor therapy could represent an effective targeted treatment for long-term disease control in severely affected patients for whom hematopoietic stem cell transplantation is not available.
Collapse
|
42
|
Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front Immunol 2017; 8:29. [PMID: 28184222 PMCID: PMC5266721 DOI: 10.3389/fimmu.2017.00029] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.
Collapse
Affiliation(s)
- Andrea Majoros
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ekaterini Platanitis
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Elisabeth Kernbauer-Hölzl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Felix Rosebrock
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Tabellini G, Vairo D, Scomodon O, Tamassia N, Ferraro RM, Patrizi O, Gasperini S, Soresina A, Giardino G, Pignata C, Lougaris V, Plebani A, Dotta L, Cassatella MA, Parolini S, Badolato R. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 140:553-564.e4. [PMID: 28069426 DOI: 10.1016/j.jaci.2016.10.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/19/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. OBJECTIVE We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. METHODS Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. RESULTS Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. CONCLUSION These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Omar Scomodon
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | | | - Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
44
|
Kagawa R, Fujiki R, Tsumura M, Sakata S, Nishimura S, Itan Y, Kong XF, Kato Z, Ohnishi H, Hirata O, Saito S, Ikeda M, El Baghdadi J, Bousfiha A, Fujiwara K, Oleastro M, Yancoski J, Perez L, Danielian S, Ailal F, Takada H, Hara T, Puel A, Boisson-Dupuis S, Bustamante J, Casanova JL, Ohara O, Okada S, Kobayashi M. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol 2016; 140:232-241. [PMID: 28011069 DOI: 10.1016/j.jaci.2016.09.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. OBJECTIVE We estimated variations in the CCD/DBD of STAT1. METHODS We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. RESULTS Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. CONCLUSION The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases.
Collapse
Affiliation(s)
- Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Satoshi Saito
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Maiko Ikeda
- Department of Pediatrics, Okazaki City Hospital, Aichi, Japan
| | | | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Kaori Fujiwara
- Department of Pediatrics, National Hospital Organization Fukuyama Medical Center, Hiroshima, Japan
| | - Matias Oleastro
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Judith Yancoski
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Laura Perez
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Silvia Danielian
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|
45
|
Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A 2016; 113:E8277-E8285. [PMID: 27930337 DOI: 10.1073/pnas.1618300114] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC-autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency-was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface.
Collapse
|
46
|
Okada S, Puel A, Casanova JL, Kobayashi M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunology 2016; 5:e114. [PMID: 28090315 PMCID: PMC5192062 DOI: 10.1038/cti.2016.71] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections affecting the nails, skin and oral and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with inherited or acquired T-cell deficiency. Patients with autosomal-dominant (AD) hyper IgE syndrome (HIES), AD signal transducer and activator of transcription 1 (STAT1) gain-of-function, autosomal-recessive (AR) deficiencies in interleukin (IL)-12 receptor β1 (IL-12Rβ1), IL-12p40, caspase recruitment domain-containing protein 9 (CARD9) or retinoic acid-related orphan receptor γT (RORγT) or AR autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) develop CMC as a major infectious phenotype that is categorized as Syndromic CMC. In contrast, CMC disease (CMCD) is typically defined as CMC in patients in the absence of any other prominent clinical signs. This definition is not strict; thus, CMCD is currently used to refer to patients presenting with CMC as the main clinical phenotype. The etiology of CMCD is not related to genes that cause severe combined immunodeficiency or combined immunodeficiency, nor to genes responsible for Syndromic CMC. Four genetic etiologies, AR IL-17 receptor A, IL-17 receptor C and ACT1 deficiencies, and AD IL-17F deficiency, are reported to underlie CMCD. Each of these gene defects directly has an impact on IL-17 signaling, suggesting their nonredundant role in host mucosal immunity to Candida. Here, we review current knowledge focusing on IL-17 signaling and the genetic etiologies responsible for, and associated with, CMC.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| |
Collapse
|
47
|
Chen TT, Tsai MH, Kung JT, Lin KI, Decker T, Lee CK. STAT1 regulates marginal zone B cell differentiation in response to inflammation and infection with blood-borne bacteria. J Exp Med 2016; 213:3025-3039. [PMID: 27849553 PMCID: PMC5154933 DOI: 10.1084/jem.20151620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Chen et al. show that STAT1 positively regulates TLR- and S. pneumoniae–induced IgM responses of MZ B cells through up-regulation of Prdm1 expression, and STAT1 is crucial for MZ B cell–mediated clearance of blood-borne S. pneumoniae infection. Marginal zone B (MZ B) cells can rapidly produce antibody in response to infection with blood-borne encapsulated pathogens. Although TLR-mediated activation of MZ B is known to trigger humoral immune response, the signal cascade directing this response remains undefined. Here, we demonstrate that STAT1 plays an essential role in TLR-mediated antibody response of MZ B cells. Further, the TLR-induced IgM response is impaired in a type I and type II IFN-independent manner. Although activation, proliferation, and apoptosis are not affected, both differentiation into plasma cells and IgM production are impaired in Stat1−/− MZ B cells. Interestingly, STAT1 directly regulates the expression of Prdm1 (encodes BLIMP-1) by binding to its promoter, and Prdm1 expression is reduced in Stat1−/− MZ B cells. Restoration of BLIMP-1 to cells rescues TLR-induced IgM response. Moreover, Stat1−/− mice are more susceptible to S. pneumoniae infection, which can be rescued by the serum of bacteria-primed WT mice. The increased susceptibility to S. pneumoniae infection in Stat1−/− mice is also intrinsic to STAT1 requirement in MZ B cells. Collectively, these results define a differential regulation of TLR-mediated activation and differentiation of MZ B cells by STAT1 and reveal a STAT1-dependent, but IFN-independent, antibody response during infection and inflammation.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ming-Hsun Tsai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - John T Kung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
48
|
Wang X, van de Veerdonk FL, Netea MG. Basic Genetics and Immunology of Candida Infections. Infect Dis Clin North Am 2016; 30:85-102. [PMID: 26897063 DOI: 10.1016/j.idc.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida infections can cause superficial and invasive disease. Several essential mechanisms underlying the pathogenesis of these infections were known for some time, such as neutropenia predisposing to invasive disease, and CD4 lymphopenia causing increased susceptibility to mucosal candidiasis. However, the development of novel genetic screening techniques has led to several new insights in the genetics and immunology of candida infections. This article highlights novel insights in the pathogenesis of mucocutaneous and invasive candidiasis that have been identified in recent years.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Department of Dermatology, Peking University First Hospital, Xishiku Street 8, Xicheng District, Beijing 10034, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
49
|
Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, Charbonnier LM, Bakır M, Boztug K, Chatila TA, Barlan IB. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. J Clin Immunol 2016; 36:641-8. [PMID: 27379765 DOI: 10.1007/s10875-016-0312-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Loss and gain-of-function (GOF) mutations in human signal transducer and activator of transcription 1 (STAT1) lead to distinct phenotypes. Although recurrent infections are common to both types of STAT1 mutations, GOF mutations are distinguished by chronic mucocutaneous candidiasis and autoimmunity. However, the clinical spectra of STAT1 GOF mutations continue to expand. We here describe two patients with STAT1 GOF mutations presenting early in life with combined immunodeficiency (CID). METHODS Clinical data and laboratory findings including immunophenotyping, level of interferon (IFN)-γ/IL-17(+) T cells, interferon-induced STAT1 phosphorylation, and JAK inhibitor assays were evaluated. Sequencing of STAT1 gene was performed by Sanger sequencer. RESULTS Patient 1 (P1) had persistent oral candidiasis and cytomegalovirus (CMV) infection since 2 months of age and later developed cavitary lung lesions due to Mycobacterium tuberculosis. Patient 2 (P2) presented with oral candidiasis and recurrent pneumonia at 4 months of age and subsequently developed CMV pneumonitis. Both patients suffered heterozygous missense mutations in STAT1, leading to deleterious amino acid substitutions in the DNA binding domain (P1: c.1154C > T; p.T385M; P2. c.971G > T; p.C324F). Circulating CD4(+) T cells of both patients exhibited increased interferon-γ and decreased IL-17 expression as compared to controls. They also exhibited increased IFN-β and -γ-induced STAT1 phosphorylation that was reversed upon treatment with the JAK kinase inhibitor ruxolitinib. CONCLUSION STAT1 GOF mutations may present early in life with CID, consistent with the clinical heterogeneity of the disease. JAK kinase inhibitors may potentially be useful in some patients as adjunct therapy pending definitive treatment with bone marrow transplantation.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey.
| | - Fayhan Alroqi
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ayca Kiykim
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ismail Ogulur
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mustafa Bakır
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Isil B Barlan
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| |
Collapse
|
50
|
Nabavi M, Arshi S, Bemanian M, Aghamohammadi A, Mansouri D, Hedayat M, Nateghian A, Noorbakhsh S, Ehsanipour F, Faranoush M, Shakeri R, Mesdaghi M, Taghvaei B, Ghalebaghi B, Babaie D, Bahrami A, Fallahpour M, Esmaeilzadeh H, Ali Hamidieh A, Rekabi M, Ahmadian J, Eslami N, Shokri S, Afshar M, Jalali F, Akbarpour N, Molatefi R, Rezaei N. Long-term follow-up of ninety eight Iranian patients with primary immune deficiency in a single tertiary centre. Allergol Immunopathol (Madr) 2016; 44:322-30. [PMID: 26803694 DOI: 10.1016/j.aller.2015.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim was to describe the clinical manifestations, complications and long-term outcome of a cohort of Iranian patients with primary immune deficiency (PID). METHOD We retrospectively studied the demographic, clinical and immunological characteristics of the PID patients in a single tertiary centre, from January 1989 to July 2014. The patients were classified according to the International Union of Immunological Societies Expert Committee on PID. RESULTS 98 patients were diagnosed with and followed-up for 15 disorders. The mean age at onset and diagnosis and the diagnostic delay were 8±10, 14.2±13.1 and 6.1±7 years, respectively. Parental consanguinity rate was 57%. Predominantly Antibody Deficiency was the most common diagnosis (n=63), followed by congenital defects of phagocytes (n=16), combined immunodeficiencies (n=12), well defined syndromes (n=4) and defects in innate immunity (n=3). Recurrent sinopulmonary infection was the most common presentation. Active infections were treated appropriately, in addition to prophylactic therapy with IVIG and antimicrobials. Not all the patients were compliant with prophylactic regimens due to cost and unavailability. One SCID patient underwent successful bone marrow transplantation. The total mortality rate was 19% during the follow-up period (7.8±7.6 years). The mean age of living patients at the time of study was 23±11.7 years. CONCLUSIONS Physicians awareness of PID has been rising dramatically in Iran, ensuring an increasing number of patients being diagnosed and treated. More effective treatment services, including health insurance coverage and drug availability are needed to improve the outcome of PID patients.
Collapse
|