1
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngeal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their children. mSystems 2025:e0156824. [PMID: 40261064 DOI: 10.1128/msystems.01568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest. The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 pandemic, on the nasopharyngeal microbiome among individuals living with HIV is not fully characterized. Here, we describe the nasopharyngeal microbiome before, during, and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their children (18 HIV-exposed, uninfected and 7 HIV-unexposed, uninfected) between September 2021 and March 2022. We show using genomic epidemiology that mother and child dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. We used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and children infected with SARS-CoV-2, six children negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint-matched SARS-CoV-2-negative mothers and children. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- (within a week of infection) and longer- (average of 38 days post-infection) term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and children had significantly different microbiome composition and bacterial load (P-values < 0.0001). In both mothers and children, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV. IMPORTANCE The nasopharyngeal microbiome plays an important role in human health. The degree of impact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has on the nasopharyngeal microbiome varies among studies and may be influenced by diverse SARS-CoV-2 variants and variations in the microbiome between individuals. Our results show that the nasopharyngeal microbiome was not altered substantially by SARS-CoV-2 infection nor by HIV infection in mothers or HIV exposure in children. Our findings highlight the resilience of the nasopharyngeal microbiome after SARS-CoV-2 infection. These findings advance our understanding of the nasopharyngeal microbiome and its interactions with viral infections.
Collapse
Affiliation(s)
- Ayla Žuštra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Victoria R Leonard
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tianchen Mu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Steven C Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Lily I Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Emily R Begnel
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ednah Ojee
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Bhavna H Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Barbra A Richardson
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dara A Lehman
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Centre de Recherche du CHU St-Justine, Montréal, Québec, Canada
| | - Efrem S Lim
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore, Singapore
| |
Collapse
|
2
|
Tepekule B, Barcik W, Staiger WI, Bergadà-Pijuan J, Scheier T, Brülisauer L, Hall AR, Günthard HF, Hilty M, Kouyos RD, Brugger SD. Computational and in vitro evaluation of probiotic treatments for nasal Staphylococcus aureus decolonization. Proc Natl Acad Sci U S A 2025; 122:e2412742122. [PMID: 39932999 PMCID: PMC11848298 DOI: 10.1073/pnas.2412742122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Despite the rising challenge of antibiotic resistance, current approaches to eradicate nasal pathobionts Staphylococcus aureus and Streptococcus pneumoniae rely on antibacterials. An alternative is the artificial inoculation of commensal bacteria, i.e., probiotic treatment, supported by the increasing evidence for commensal-mediated inhibition of pathogens. To systematically investigate the potential of this approach, we developed a quantitative framework simulating the nasal microbiome dynamics by combining mathematical modeling with longitudinal microbiota data. By inferring community parameters using 16S ribosomal RNA (rRNA) amplicon sequencing data and simulating the nasal microbial dynamics of patients colonized with S. aureus, we compared the decolonization performance of probiotic and antibiotic treatments under different assumptions on patients' community composition and susceptibility profile. To further compare the robustness of these treatments, we simulated an S. aureus challenge and quantified the recolonization probability. Through in vitro experiments using nasal swabs of adults colonized with S. aureus, we confirmed that after antibiotic treatment, recolonization of S. aureus was inhibited in samples treated with a probiotic mixture compared to the nontreated control. Our results suggest that probiotic treatment outperforms antibiotics in terms of decolonization performance, recolonization robustness, and leads to less collateral reduction in the microbiome diversity. Thus, probiotic treatment may provide a promising alternative to combat antibiotic resistance, with the additional advantage of personalized treatment options via using the patient's own metagenomic data. The combination of an in silico framework with in vitro experiments using clinical samples reported in this work is an important step forward to further investigate this alternative in clinical trials.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Weronika Barcik
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Willy I. Staiger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Judith Bergadà-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Laura Brülisauer
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich8092, Switzerland
| | - Alex R. Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich8092, Switzerland
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern3001, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| |
Collapse
|
3
|
Künstle N, Gorlanova O, Rüttimann C, Mostacci N, Röösli M, de Hoogh K, Flückiger B, Da Silva Sena CR, Steinberg R, Korten I, Yammine S, Schulzke S, Latzin P, Hilty M, Frey U. The association of increased pre- and postnatal NO 2 and PM 2.5 exposure with the infant nasal microbiome composition and respiratory symptoms. ENVIRONMENTAL RESEARCH 2025; 267:120694. [PMID: 39725140 DOI: 10.1016/j.envres.2024.120694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Little is known about the mediating role of nasal microbiome on the association between pre- and postnatal air pollution exposure and subsequent respiratory morbidity in infancy. We aimed to examine the impact of air pollution on microbiome and respiratory symptoms, and whether microbiome mediates the association between air pollution and symptoms. METHODS Nasal swabs from 270 infants in the prospective Basel-Bern Infant Lung Development cohort were analyzed by 16S ribosomal RNA gene sequencing. We investigated the association of pre- and postnatal nitrogen dioxide (NO2) and particulate matter ≤2.5 μm (PM2.5) with microbiome at 4-6 weeks and with respiratory symptoms during the first year of life. Hierarchical clustering and generalized structural equation modeling were used. RESULTS Mean prenatal air pollution levels were 21.54 μg/m3 (NO2) and 13.84 μg/m3 (PM2.5) (WHO guideline limits: NO2: 40 μg/m3 (2005), 10 μg/m3 (2021); PM2.5: 10 μg/m3 (2005), 5 μg/m3 (2021)). We identified two distinct microbiome clusters, characterized by high Corynebacterium/Dolosigranulum and high Staphylococcus abundance. Higher pre- and postnatal air pollution exposure was associated with Staphylococcus cluster (e.g., per 10 μg/m3 increase of prenatal NO2: odds ratio 1.58, 95% confidence interval 1.08; 2.29, padj = 0.034). Pre- and postnatal PM2.5 was associated with increased risk of severe respiratory symptoms. This association was not mediated by nasal microbiome. CONCLUSION Pre- and postnatal air pollution was associated with microbiome and respiratory symptoms in infancy. The microbiome did not mediate the association of air pollution with respiratory symptoms, which may indicate that other mechanisms are more relevant at this age.
Collapse
Affiliation(s)
- Noëmi Künstle
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Céline Rüttimann
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Carla Rebeca Da Silva Sena
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Asthma & Breathing Research Program, Hunter Medical Research Institute, Newcastle, University of Newcastle, Newcastle, Australia
| | - Ruth Steinberg
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Pirr S, Willers M, Viemann D. The neonate respiratory microbiome. Acta Physiol (Oxf) 2025; 241:e14266. [PMID: 39840649 PMCID: PMC11752418 DOI: 10.1111/apha.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/12/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Over the past two decades, it has become clear that against earlier assumptions, the respiratory tract is regularly populated by a variety of microbiota even down to the lowest parts of the lungs. New methods and technologies revealed distinct microbiome compositions and developmental trajectories in the differing parts of the respiratory tract of neonates and infants. In this review, we describe the current understanding of respiratory microbiota development in human neonates and highlight multiple factors that have been identified to impact human respiratory microbiome development including gestational age, mode of delivery, diet, antibiotic treatment, and early infections. Moreover, we discuss to date revealed respiratory microbiome-disease associations in infants and children that may indicate a potentially imprinting cross talk between microbial communities and the host immune system in the respiratory tract. It becomes obvious how insufficient our knowledge still is regarding the exact mechanisms underlying such cross talk in humans. Lastly, we highlight strong findings that emphasize the important role of the gut-lung axis in educating and driving pulmonary immunity. Further research is needed to better understand the host - respiratory microbiome interaction in order to enable the translation into microbiome-based strategies to protect and improve human respiratory health from early childhood.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST 2155—Resolving Infection Susceptibility, Hannover Medical SchoolHannoverGermany
- University Hospital FreiburgPRIMAL (Priming Immunity at the Beginning of Life) ConsortiumFreiburgGermany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST 2155—Resolving Infection Susceptibility, Hannover Medical SchoolHannoverGermany
- University Hospital FreiburgPRIMAL (Priming Immunity at the Beginning of Life) ConsortiumFreiburgGermany
- Translational Pediatrics, Department of PediatricsUniversity Hospital WürzburgWürzburgGermany
- Center for Infection ResearchUniversity WürzburgWürzburgGermany
| |
Collapse
|
5
|
Hao Y, Lee YJ, Yap K, Samuel M, Chow VT. Comparison of Respiratory Microbiomes in Influenza Versus Other Respiratory Infections: Systematic Review and Analysis. Int J Mol Sci 2025; 26:778. [PMID: 39859492 PMCID: PMC11765715 DOI: 10.3390/ijms26020778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Studies have indicated the potential importance of the human nasal and respiratory microbiomes in health and disease. However, the roles of these microbiomes in the pathogenesis of influenza and its complications are not fully understood. Therefore, the objective of this systematic review and analysis is to identify the patterns of nasal and respiratory microbiome dysbiosis and to define the unique signature bacteria associated with influenza compared with other respiratory tract infections. We compared the respiratory microbiome composition between influenza patients and healthy controls; across different influenza severities; in adult versus pediatric influenza patients; as well as influenza versus other respiratory infections. The desired outcomes include the signature bacteria in each cohort and the Shannon index to reflect the alpha diversity. Of the 2269 articles identified, 31 studies fulfilled the inclusion criteria. These studies investigated the respiratory tract microbiomes of patients with influenza, COVID-19, pneumonia, other respiratory infections, and chronic rhinosinusitis (CRS). Our review revealed that the phylum Firmicutes and Actinobacteria, genus Actinomyces, Streptococcus and Granulicatella, and species Neisseria are more prominent in severe influenza than mild to moderate influenza. Reduced microbiome alpha diversity is noted in influenza patients compared to healthy controls. There are some similarities and differences between the signature bacteria in pediatric and adult influenza patients, e.g., Streptococcus is common in both age groups, whereas Pseudomonas is associated with adults. Intriguingly, there is a common predominance of Streptococcus and Firmicutes among influenza and pneumonia patients. COVID-19 patients exhibit an increased abundance of Firmicutes as well as Pseudomonas. In CRS patients, Proteobacteria and Haemophilus are found in high abundance. This review highlights some similarities and differences in the respiratory microbiomes and their signature organisms in influenza of varying severity and in different age groups compared with other respiratory infections. The dysbiosis of the respiratory microbiomes in these respiratory infections enhances our understanding of their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Yunrui Hao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Ying-Jou Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Kihan Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Miny Samuel
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (Y.H.); (Y.-J.L.); (K.Y.); (M.S.)
| | - Vincent T. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
6
|
Tran TH, F Escapa I, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. mSystems 2024; 9:e0113224. [PMID: 39508593 DOI: 10.1128/msystems.01132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the United States. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the U.S. clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches. IMPORTANCE Pangenomic analysis with estimation of functional capabilities facilitates our understanding of the full biologic diversity of bacterial species. We performed systematic genomic, phylogenomic, and pangenomic analyses with qualitative estimation of the metabolic capabilities of four common human nasal Corynebacterium species, along with focused experimental validations, generating a foundational resource. The prevalence of each species in human nasal microbiota is consistent with the common coexistence of at least two species. We identified a notably high level of metabolic conservation within and among species indicating limited options for species to occupy distinct metabolic niches, highlighting the importance of investigating interactions among nasal Corynebacterium species. Comparing strains from two continents, C. pseudodiphtheriticum had restricted geographic strain distribution characterized by an evolutionarily recent loss of assimilatory sulfate reduction in U.S. strains. Our findings contribute to understanding the functions of Corynebacterium within human nasal microbiota and to evaluating their potential for future use as biotherapeutics.
Collapse
Affiliation(s)
- Tommy H Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Abiola C Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine P Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Xiao S, Zhou W, Caldwell R, Decker S, Oh J, Milstone AM. Association of Neonatal and Maternal Nasal Microbiome Among Neonates in the Intensive Care Unit. Open Forum Infect Dis 2024; 11:ofae644. [PMID: 39544492 PMCID: PMC11561572 DOI: 10.1093/ofid/ofae644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
The neonatal nasal microbiota may help protect neonates in the neonatal intensive care unit from pathogen colonization and infection. This preliminary study characterized the biodiversity of nasal microbiota comparing neonates in the neonatal intensive care unit and their mothers, highlighting the potential of strain sharing between mother-neonate pairs.
Collapse
Affiliation(s)
- Shaoming Xiao
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wei Zhou
- The Jackson Laboratory, Farmington, Connecticut, USA
| | - Ryan Caldwell
- The Jackson Laboratory, Farmington, Connecticut, USA
| | - Slade Decker
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julia Oh
- The Jackson Laboratory, Farmington, Connecticut, USA
| | - Aaron M Milstone
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Shenhav L, Fehr K, Reyna ME, Petersen C, Dai DLY, Dai R, Breton V, Rossi L, Smieja M, Simons E, Silverman MA, Levy M, Bode L, Field CJ, Marshall JS, Moraes TJ, Mandhane PJ, Turvey SE, Subbarao P, Surette MG, Azad MB. Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development. Cell 2024; 187:5431-5452.e20. [PMID: 39303691 PMCID: PMC11531244 DOI: 10.1016/j.cell.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/02/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.
Collapse
Affiliation(s)
- Liat Shenhav
- Institute for Systems Genetics, New York Grossman School of Medicine, New York University, New York, NY, USA; Department of Microbiology, New York Grossman School of Medicine, New York University, New York, NY, USA; Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
| | - Kelsey Fehr
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Myrtha E Reyna
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Darlene L Y Dai
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ruixue Dai
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vanessa Breton
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Laura Rossi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marek Smieja
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Michael A Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maayan Levy
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Catherine J Field
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jean S Marshall
- Department of Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | | | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
9
|
Tran TH, Escapa IF, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.543719. [PMID: 37333201 PMCID: PMC10274666 DOI: 10.1101/2023.06.05.543719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the USA. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the USA clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
Collapse
Affiliation(s)
- Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F. Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Abiola C. Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi H. Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Zhou J, Hou W, Zhong H, Liu D. Lung microbiota: implications and interactions in chronic pulmonary diseases. Front Cell Infect Microbiol 2024; 14:1401448. [PMID: 39233908 PMCID: PMC11372588 DOI: 10.3389/fcimb.2024.1401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The lungs, as vital organs in the human body, continuously engage in gas exchange with the external environment. The lung microbiota, a critical component in maintaining internal homeostasis, significantly influences the onset and progression of diseases. Beneficial interactions between the host and its microbial community are essential for preserving the host's health, whereas disease development is often linked to dysbiosis or alterations in the microbial community. Evidence has demonstrated that changes in lung microbiota contribute to the development of major chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung cancer. However, in-depth mechanistic studies are constrained by the small scale of the lung microbiota and its susceptibility to environmental pollutants and other factors, leaving many questions unanswered. This review examines recent research on the lung microbiota and lung diseases, as well as methodological advancements in studying lung microbiota, summarizing the ways in which lung microbiota impacts lung diseases and introducing research methods for investigating lung microbiota.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huilin Zhong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257641. [PMID: 38699359 PMCID: PMC11065085 DOI: 10.21203/rs.3.rs-4257641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest and of clinical relevance. The impact of SARS-CoV-2, the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, on the nasopharyngeal microbiome, particularly among individuals living with HIV, is not fully characterized. Here we describe the nasopharyngeal microbiome before, during and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their infants (18 HIV-exposed, uninfected and 18 HIV-unexposed, uninfected), followed between September 2021 through March 2022. We show using genomic epidemiology that mother and infant dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. Additionally, we used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and infants infected with SARS-CoV-2, 6 infants negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint matched SARS-CoV-2 negative mothers and infants. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- and long-term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and infants had significantly different microbiome composition and bacterial load (p-values <.0001). However, in both mothers and infants, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV-exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV.
Collapse
|
12
|
Salem Y, Jakob J, Steinberg R, Gorlanova O, Fuchs O, Müller L, Usemann J, Frey U, Latzin P, Yammine S. Cohort Profile Update: The Bern Basel Infant Lung Development Cohort. Int J Epidemiol 2024; 53:dyad164. [PMID: 38061036 DOI: 10.1093/ije/dyad164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Affiliation(s)
- Yasmin Salem
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Julian Jakob
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Ruth Steinberg
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Oliver Fuchs
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Allergology, Department of Medicine, Lucerne Cantonal Hospital and University of Lucerne, Lucerne, Switzerland
| | - Loretta Müller
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Shaffer M, Best K, Tang C, Liang X, Schulz S, Gonzalez E, White CH, Wyche TP, Kang J, Wesseling H, Topçuoğlu BD, Cairns T, Sana TR, Kaufhold RM, Maritz JM, Woelk CH, Swaminathan G, Norton JE, Pichichero ME. Very early life microbiome and metabolome correlates with primary vaccination variability in children. mSystems 2023; 8:e0066123. [PMID: 37610205 PMCID: PMC10654091 DOI: 10.1128/msystems.00661-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE We show that simultaneous study of stool and nasopharyngeal microbiome reveals divergent timing and patterns of maturation, suggesting that local mucosal factors may influence microbiome composition in the gut and respiratory system. Antibiotic exposure in early life as occurs commonly, may have an adverse effect on vaccine responsiveness. Abundance of gut and/or nasopharyngeal bacteria with the machinery to produce lipopolysaccharide-a toll-like receptor 4 agonist-may positively affect future vaccine protection, potentially by acting as a natural adjuvant. The increased levels of serum phenylpyruvic acid in infants with lower vaccine-induced antibody levels suggest an increased abundance of hydrogen peroxide, leading to more oxidative stress in low vaccine-responding infants.
Collapse
Affiliation(s)
- Michael Shaffer
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Katharine Best
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Catherine Tang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Steven Schulz
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, Rochester, New York, USA
| | - Eduardo Gonzalez
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, Rochester, New York, USA
| | - Cory H. White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - John Kang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Hendrik Wesseling
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Begüm D. Topçuoğlu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Thomas Cairns
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Theodore R. Sana
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Robin M. Kaufhold
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Julia M. Maritz
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | | | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Michael E. Pichichero
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, Rochester, New York, USA
| |
Collapse
|
15
|
Paulo AC, Lança J, Almeida ST, Hilty M, Sá-Leão R. The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children. MICROBIOME 2023; 11:199. [PMID: 37658443 PMCID: PMC10474643 DOI: 10.1186/s40168-023-01640-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The microbiota of the upper respiratory tract is increasingly recognized as a gatekeeper of respiratory health. Despite this, the microbiota of healthy adults remains understudied. To address this gap, we investigated the composition of the nasopharyngeal and oropharyngeal microbiota of healthy adults, focusing on the effect of Streptococcus pneumoniae carriage, smoking habits, and contact with children. RESULTS Differential abundance analysis indicated that the microbiota of the oropharynx was significantly different from that of the nasopharynx (P < 0.001) and highly discriminated by a balance between the classes Negativicutes and Bacilli (AUC of 0.979). Moreover, the oropharynx was associated with a more homogeneous microbiota across individuals, with just two vs. five clusters identified in the nasopharynx. We observed a shift in the nasopharyngeal microbiota of carriers vs. noncarriers with an increased relative abundance of Streptococcus, which summed up to 30% vs. 10% in noncarriers and was not mirrored in the oropharynx. The oropharyngeal microbiota of smokers had a lower diversity than the microbiota of nonsmokers, while no differences were observed in the nasopharyngeal microbiota. In particular, the microbiota of smokers, compared with nonsmokers, was enriched (on average 16-fold) in potential pathogenic taxa involved in periodontal diseases of the genera Bacillus and Burkholderia previously identified in metagenomic studies of cigarettes. The microbiota of adults with contact with children resembled the microbiota of children. Specifically, the nasopharyngeal microbiota of these adults had, on average, an eightfold increase in relative abundance in Streptococcus sp., Moraxella catarrhalis, and Haemophilus influenzae, pathobionts known to colonize the children's upper respiratory tract, and a fourfold decrease in Staphylococcus aureus and Staphylococcus lugdunensis. CONCLUSIONS Our study showed that, in adults, the presence of S. pneumoniae in the nasopharynx is associated with a shift in the microbiota and dominance of the Streptococcus genus. Furthermore, we observed that smoking habits are associated with an increase in bacterial genera commonly linked to periodontal diseases. Interestingly, our research also revealed that adults who have regular contact with children have a microbiota enriched in pathobionts frequently carried by children. These findings collectively contribute to a deeper understanding of how various factors influence the upper respiratory tract microbiota in adults. Video Abstract.
Collapse
Affiliation(s)
- A Cristina Paulo
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - João Lança
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sónia T Almeida
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Markus Hilty
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
16
|
Cai S, Gao J, Liu X, Yang J, Feng D, Li G, Li S, Yang H, Wang Z, Yi X, Zhou Y. Seasonal Dynamics of the Upper Respiratory Tract Microbiome in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:1267-1276. [PMID: 37362620 PMCID: PMC10290470 DOI: 10.2147/copd.s403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Increasing evidence suggests that seasonal changes can trigger the alternation of airway microbiome. However, the dynamics of the upper airway bacterial ecology of chronic obstructive pulmonary disease (COPD) patients across different seasons remains unclear. Methods In this study, we present a 16S ribosomal RNA survey of the airway microbiome on 72 swab samples collected in different months (March, May, July, September, and November) in 2019 from 18 COPD patients and from six resampled patients in November in 2020. Results Our study uncovered a dynamic airway microbiota where changes appeared to be associated with seasonal alternation in COPD patients. Twelve clusters of temporal patterns were displayed by differential and clustering analysis along the time course, systematically revealing distinct microbial taxa that prefer to grow in cool and warm seasons, respectively. Moreover, the upper airway microbiome composition was relatively stable in the same season in different years. Discussion Given the tight association between airway microbiome and COPD disease progression, this study can provide useful information for clinically understanding the seasonal trend of disease phenotypes in COPD patients.
Collapse
Affiliation(s)
- Shuping Cai
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, the Seventh Affiliated Hospital of SUN YAT-SEN University, Shenzhen, Guang Dong, People’s Republic of China
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Junhao Yang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| | - Guijun Li
- Department of Pulmonary and Critical Care Medicine, the Seventh Affiliated Hospital of SUN YAT-SEN University, Shenzhen, Guang Dong, People’s Republic of China
| | - Sijia Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guang Dong, People’s Republic of China
| | - Yuqi Zhou
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People’s Republic of China
| |
Collapse
|
17
|
Claassen-Weitz S, Gardner-Lubbe S, Xia Y, Mwaikono KS, Mounaud SH, Nierman WC, Workman L, Zar HJ, Nicol MP. Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort. MICROBIOME 2023; 11:127. [PMID: 37271810 PMCID: PMC10240772 DOI: 10.1186/s40168-023-01563-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Bacteria colonizing the nasopharynx play a key role as gatekeepers of respiratory health. Yet, dynamics of early life nasopharyngeal (NP) bacterial profiles remain understudied in low- and middle-income countries (LMICs), where children have a high prevalence of risk factors for lower respiratory tract infection. We investigated longitudinal changes in NP bacterial profiles, and associated exposures, among healthy infants from low-income households in South Africa. METHODS We used short fragment (V4 region) 16S rRNA gene amplicon sequencing to characterize NP bacterial profiles from 103 infants in a South African birth cohort, at monthly intervals from birth through the first 12 months of life and six monthly thereafter until 30 months. RESULTS Corynebacterium and Staphylococcus were dominant colonizers at 1 month of life; however, these were rapidly replaced by Moraxella- or Haemophilus-dominated profiles by 4 months. This succession was almost universal and largely independent of a broad range of exposures. Warm weather (summer), lower gestational age, maternal smoking, no day-care attendance, antibiotic exposure, or low height-for-age z score at 12 months were associated with higher alpha and beta diversity. Summer was also associated with higher relative abundances of Staphylococcus, Streptococcus, Neisseria, or anaerobic gram-negative bacteria, whilst spring and winter were associated with higher relative abundances of Haemophilus or Corynebacterium, respectively. Maternal smoking was associated with higher relative abundances of Porphyromonas. Antibiotic therapy (or isoniazid prophylaxis for tuberculosis) was associated with higher relative abundance of anerobic taxa (Porphyromonas, Fusobacterium, and Prevotella) and with lower relative abundances of health associated-taxa Corynebacterium and Dolosigranulum. HIV-exposure was associated with higher relative abundances of Klebsiella or Veillonella and lower relative abundances of an unclassified genus within the family Lachnospiraceae. CONCLUSIONS In this intensively sampled cohort, there was rapid and predictable replacement of early profiles dominated by health-associated Corynebacterium and Dolosigranulum with those dominated by Moraxella and Haemophilus, independent of exposures. Season and antibiotic exposure were key determinants of NP bacterial profiles. Understudied but highly prevalent exposures prevalent in LMICs, including maternal smoking and HIV-exposure, were associated with NP bacterial profiles. Video Abstract.
Collapse
Affiliation(s)
- Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Faculty of Economic and Management Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Yao Xia
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Center for Artificial Intelligence and Machine Learning, School of Science, Edith Cowan University, Joondalup, Australia
| | - Kilaza S. Mwaikono
- Computational Biology Group and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Department of Science and Laboratory Technology, Dar Es Salaam Institute of Technology, Dar Es Salaam, Tanzania
| | | | | | - Lesley Workman
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P. Nicol
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
18
|
Bloodworth JC, Hoji A, Wolff G, Mandal RK, Schmidt NW, Deshane JS, Morrow CD, Kloepfer KM, Cook-Mills JM. Dysbiotic lung microbial communities of neonates from allergic mothers confer neonate responsiveness to suboptimal allergen. FRONTIERS IN ALLERGY 2023; 4:1135412. [PMID: 36970065 PMCID: PMC10036811 DOI: 10.3389/falgy.2023.1135412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
In humans and animals, offspring of allergic mothers have increased responsiveness to allergens. This is blocked in mice by maternal supplementation with α-tocopherol (αT). Also, adults and children with allergic asthma have airway microbiome dysbiosis with increased Proteobacteria and may have decreased Bacteroidota. It is not known whether αT alters neonate development of lung microbiome dysbiosis or whether neonate lung dysbiosis modifies development of allergy. To address this, the bronchoalveolar lavage was analyzed by 16S rRNA gene analysis (bacterial microbiome) from pups of allergic and non-allergic mothers with a basal diet or αT-supplemented diet. Before and after allergen challenge, pups of allergic mothers had dysbiosis in lung microbial composition with increased Proteobacteria and decreased Bacteroidota and this was blocked by αT supplementation. We determined whether intratracheal transfer of pup lung dysbiotic microbial communities modifies the development of allergy in recipient pups early in life. Interestingly, transfer of dysbiotic lung microbial communities from neonates of allergic mothers to neonates of non-allergic mothers was sufficient to confer responsiveness to allergen in the recipient pups. In contrast, neonates of allergic mothers were not protected from development of allergy by transfer of donor lung microbial communities from either neonates of non-allergic mothers or neonates of αT-supplemented allergic mothers. These data suggest that the dysbiotic lung microbiota is dominant and sufficient for enhanced neonate responsiveness to allergen. Importantly, infants within the INHANCE cohort with an anti-inflammatory profile of tocopherol isoforms had an altered microbiome composition compared to infants with a pro-inflammatory profile of tocopherol isoforms. These data may inform design of future studies for approaches in the prevention or intervention in asthma and allergic disease early in life.
Collapse
Affiliation(s)
- Jeffery C. Bloodworth
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aki Hoji
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Garen Wolff
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rabindra K. Mandal
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nathan W. Schmidt
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kirsten M. Kloepfer
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joan M. Cook-Mills
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Karampatsas K, Faal A, Jaiteh M, Garcia-Perez I, Aller S, Shaw AG, Kopytek A, Witney AA, Le Doare K. Gastrointestinal, vaginal, nasopharyngeal, and breast milk microbiota profiles and breast milk metabolomic changes in Gambian infants over the first two months of lactation: A prospective cohort study. Medicine (Baltimore) 2022; 101:e31419. [PMID: 36401392 PMCID: PMC9678627 DOI: 10.1097/md.0000000000031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity. One hundred seven Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA gene sequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry. Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk (monosaccharides, sugar alcohols and fatty acids) increased between birth and day 60 of life. This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changes may contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.
Collapse
Affiliation(s)
- Konstantinos Karampatsas
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- * Correspondence: Konstantinos Karampatsas, Institute for Infection and Immunity, St George’s, University of London, Jenner Wing, Level 2, SW17 0RE London, UK (e-mail: )
| | - Amadou Faal
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mustapha Jaiteh
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sean Aller
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Alexander G. Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Aleksandra Kopytek
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Adam A. Witney
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Uganda, Virus Research Institute, Uganda
| |
Collapse
|
20
|
Vongbhavit K, Salinero LK, Kalanetra KM, Masarweh C, Yu A, Taft DH, Mills DA, Underwood MA. A comparison of bacterial colonization between nasogastric and orogastric enteral feeding tubes in infants in the neonatal intensive care unit. J Perinatol 2022; 42:1446-1452. [PMID: 35840710 PMCID: PMC9616717 DOI: 10.1038/s41372-022-01452-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Feeding tubes harbor microbial contaminants; studies to date have not explored differences between orogastric (OG) and nasogastric (NG) tube biofilms. We sought to extend a previous analysis by comparing bacterial colonization by location (OG v NG) and by evaluating clinical factors that may affect tube bacterial populations. STUDY DESIGN The pharyngeal segments of 41 infant feeding tubes (14 OG and 27 NG) from 41 infants were analyzed by next generation 16 S rRNA sequencing on the MiSeq platform. RESULTS At the phylum level, Proteobacteria had the highest relative abundance of both OG and NG tubes. At the genus/species level, nine taxa differed significantly between OG and NG tubes. Alpha and beta diversity analyses showed significant differences between OG and NG tubes with relatively little contribution from clinical factors. CONCLUSION The route of feeding tube insertion (oral vs nasal) had a greater impact on bacterial colonization than the assessed clinical factors.
Collapse
Affiliation(s)
- Kannikar Vongbhavit
- Department of Pediatrics, HRH Princess Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Nakornayok, Thailand
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Lauren K Salinero
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Karen M Kalanetra
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Chad Masarweh
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Alice Yu
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Diana H Taft
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Mark A Underwood
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
21
|
Zeng Y, Liang JQ. Nasal Microbiome and Its Interaction with the Host in Childhood Asthma. Cells 2022; 11:cells11193155. [PMID: 36231116 PMCID: PMC9563732 DOI: 10.3390/cells11193155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood asthma is a major chronic non-communicable disease in infants and children, often triggered by respiratory tract infections. The nasal cavity is a reservoir for a broad variety of commensal microbes and potential pathogens associated with respiratory illnesses including asthma. A healthy nasal microenvironment has protective effects against respiratory tract infections. The first microbial colonisation in the nasal region is initiated immediately after birth. Subsequently, colonisation by nasal microbiota during infancy plays important roles in rapidly establishing immune homeostasis and the development and maturation of the immune system. Dysbiosis of microbiota residing in the mucosal surfaces, such as the nasopharynx and guts, triggers immune modulation, severe infection, and exacerbation events. Nasal microbiome dysbiosis is related to the onset of symptomatic infections. Dynamic interactions between viral infections and the nasal microbiota in early life affect the later development of respiratory infections. In this review, we summarise the existing findings related to nasal microbiota colonisation, dynamic variations, and host–microbiome interactions in childhood health and respiratory illness with a particular examination of asthma. We also discuss our current understanding of biases produced by environmental factors and technical concerns, the importance of standardised research methods, and microbiome modification for the prevention or treatment of childhood asthma. This review lays the groundwork for paying attention to an essential but less emphasized topic and improves the understanding of the overall composition, dynamic changes, and influence of the nasal microbiome associated with childhood asthma.
Collapse
Affiliation(s)
- Yao Zeng
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-37636124
| |
Collapse
|
22
|
Oyewole ORA, Latzin P, Brugger SD, Hilty M. Strain-level resolution and pneumococcal carriage dynamics by single-molecule real-time (SMRT) sequencing of the plyNCR marker: a longitudinal study in Swiss infants. MICROBIOME 2022; 10:152. [PMID: 36138483 PMCID: PMC9502908 DOI: 10.1186/s40168-022-01344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pneumococcal carriage has often been studied from a serotype perspective; however, little is known about the strain-specific carriage and inter-strain interactions. Here, we examined the strain-level carriage and co-colonization dynamics of Streptococcus pneumoniae in a Swiss birth cohort by PacBio single-molecule real-time (SMRT) sequencing of the plyNCR marker. METHODS A total of 872 nasal swab (NS) samples were included from 47 healthy infants during the first year of life. Pneumococcal carriage was determined based on the quantitative real-time polymerase chain reaction (qPCR) targeting the lytA gene. The plyNCR marker was amplified from 214 samples having lytA-based carriage for pneumococcal strain resolution. Amplicons were sequenced using SMRT technology, and sequences were analyzed with the DADA2 pipeline. In addition, pneumococcal serotypes were determined using conventional, multiplex PCR (cPCR). RESULTS PCR-based plyNCR amplification demonstrated a 94.2% sensitivity and 100% specificity for Streptococcus pneumoniae if compared to lytA qPCR. The overall carriage prevalence was 63.8%, and pneumococcal co-colonization (≥ 2 plyNCR amplicon sequence variants (ASVs)) was detected in 38/213 (17.8%) sequenced samples with the relative proportion of the least abundant strain(s) ranging from 1.1 to 48.8% (median, 17.2%; IQR, 5.8-33.4%). The median age to first acquisition was 147 days, and having ≥ 2 siblings increased the risk of acquisition. CONCLUSION The plyNCR amplicon sequencing is species-specific and enables pneumococcal strain resolution. We therefore recommend its application for longitudinal strain-level carriage studies of Streptococcus pneumoniae. Video Abstract.
Collapse
Affiliation(s)
- Oluwaseun Rume-Abiola Oyewole
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
23
|
Sanyang B, de Silva TI, Kanteh A, Bojang A, Manneh J, de Steenhuijsen Piters WA, Peno C, Bogaert D, Sesay AK, Roca A. Effect of intra-partum azithromycin on the development of the infant nasopharyngeal microbiota: A post hoc analysis of a double-blind randomized trial. EBioMedicine 2022; 83:104227. [PMID: 35988464 PMCID: PMC9420482 DOI: 10.1016/j.ebiom.2022.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Sepsis is a leading cause of neonatal death. Intrapartum azithromycin reduces neonatal nasopharyngeal carriage of potentially pathogenic bacteria, a prerequisite for sepsis. Early antibiotic exposure has been associated with microbiota perturbations with varying effects. This study aims to understand the effect of intrapartum azithromycin intervention on the developing nasopharyngeal microbiota of the child. Methods Using 16S rRNA gene sequencing, we analysed the microbiota of 343 nasopharyngeal samples collected from birth to 12 months from 109 healthy infants selected from a double-blind randomized placebo-controlled clinical trial conducted in the Gambia (PregnAnZI-1). In the trial, 829 women were given 2g oral azithromycin or placebo (1:1) during labour with the objective of reducing bacterial carriage in mother and child during the neonatal period. The post-hoc analysis presented here assessed the effect of the intervention on the child nasopharyngeal microbiota development. Findings 55 children were from mothers given azithromycin and 54 from mothers given placebo. Comparing arms, we found an increase in alpha-diversity at day-6 (p = 0·018), and a significant effect on overall microbiota composition at days 6 and 28 (R2 = 4.4%, q = 0·007 and R2 = 2.3%, q = 0·018 respectively). At genus level, we found lower representation of Staphylococcus at day-6 (q = 0·0303) and higher representation of Moraxella at 12 months (q = 0·0443). Unsupervised clustering of samples by microbial community similarity showed different community dynamics between the intervention and placebo arms during the neonatal period. Interpretation These results indicate that intrapartum azithromycin caused short-term alterations in the nasopharyngeal microbiota with modest overall effect at 12 months of age. Further exploration of the effects of these variations on microbiome function will give more insight on the potential risks and benefits, for the child, associated with this intervention. Funding This work was jointly funded by the Medical Research Council (UK) (MC_EX_MR/J010391/1/MRC), Bill & Melinda Gates Foundation (OPP1196513), and MRCG@LSHTM Doctoral Training Program.
Collapse
|
24
|
Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute otitis media (AOM) constitutes a multifactorial disease, as several host and environmental factors contribute to its occurrence. Prevention of AOM represents one of the most important goals in pediatrics, both in developing countries, in which complications, mortality, and deafness remain possible consequences of the disease, compared to in developed countries, in which this condition has an important burden in terms of medical, social, and economical implications. The strategies for AOM prevention are based on reducing the burden of risk factors, through the application of behavioral, environmental, and therapeutic interventions. The introduction of culture-independent techniques has allowed high-throughput investigation of entire bacterial communities, providing novel insights into the pathogenesis of middle ear diseases through the identification of potential protective bacteria. The upper respiratory tract (URT) is a pivotal region in AOM pathogenesis, as it could act as a source of pathogens than of protective microorganisms for the middle ear (ME). Due to its direct connection with the external ambient, the URT is particularly exposed to the influence of environmental agents. The aim of this review was to evaluate AOM environmental risk factors and their impact on URT microbial communities, and to investigate AOM pathogenesis from the microbiota perspective.
Collapse
|
25
|
Lee S, Zhang A, Flores MA, de Ángel Solá D, Cao L, Bolanos-Rosero B, Wang L, Godoy-Vitorino F, Matos NR, Wang L. Prenatal exposure to Hurricane Maria is associated with an altered infant nasal microbiome. JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: GLOBAL 2022; 1:128-137. [PMID: 36091489 PMCID: PMC9461092 DOI: 10.1016/j.jacig.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Prenatal adverse exposures have been associated with increased risks of development of respiratory diseases in children. The infant nasal microbiome is an important mechanism and indicator. Objective: Our aim was to characterize and compare the nasal microbiome of infants who were in utero and exposed to Hurricane Maria in Puerto Rico during 2017 with that of infants who were conceived at least 5 months after the hurricane as controls. Methods: We recruited 63 vaginally born infants, 29 of whom were in the exposure group and 34 of whom were in the control group. Nasal swab samples were collected and analyzed by using 16S ribosomal RNA gene sequencing at the community and taxon levels, respectively. Results: Infants in the exposure group were more likely to harbor a Staphylococcus-Streptococcus–dominant microbial community in their nose. The richness and diversity of the microbiome was significantly higher in the exposure group than in the control group. In the exposure group, the bacterial genera Rhodocista, Azospirillum, Massilia, Herbaspirillum, Aquabacterium, and Pseudomonas were enriched, whereas Corynebacterium and Ralstonia were depleted. Food insecurity due to Hurricane Maria was associated with an increase in Pseudomonas in the infant nasal microbiome. Conclusion: Infants who were exposed to Hurricane Maria during gestation had an altered nasal microbiome, with a higher prevalence of environmental bacteria. More research is needed to evaluate the long-term impacts of extreme weather events occurring in the prenatal stage on a child’s nasal microbiome and respiratory health.
Collapse
Affiliation(s)
- Sandra Lee
- Department of Medicine, Division of Allergy and Immunology
| | - Ai Zhang
- Department of Medicine, Division of Allergy and Immunology
| | - Midnela Acevedo Flores
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital
| | | | - Lijuan Cao
- Department of Medicine, Division of Allergy and Immunology
| | - Benjamin Bolanos-Rosero
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan
| | - Nicolás Rosario Matos
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital
| | - Leyao Wang
- Department of Medicine, Division of Allergy and Immunology
| |
Collapse
|
26
|
Patel N, AL-Sayyed B, Gladfelter T, Tripathi S. Epidemiology and Outcomes of Bacterial Coinfection in Hospitalized Children With Respiratory Viral Infections: A Single Center Retrospective Chart Review. J Pediatr Pharmacol Ther 2022; 27:529-536. [DOI: 10.5863/1551-6776-27.6.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE
Children with viral respiratory illness are often suspected of having bacterial coinfection. This study was designed to determine the impact of bacterial coinfection on hospital course and outcomes and the rate of antimicrobial misuse.
METHODS
Single-center retrospective chart review, including all hospitalized children who had a respiratory viral panel sent within 48 hours of admission from January 2015 to December 2019. Patients who had a positive respiratory, urine, blood culture within 24 hours of admission were identified. Demographics, resource utilization, and outcomes were compared between the 2 groups.
RESULTS
This study included 2192 patients. Of those, 269 patients had positive bacterial cultures. Out of these cultures from 192 patients were identified as contaminants. True bacterial coinfection was 3.5% (77/2192). Almost 1/3 of admitted patients were prescribed empiric antimicrobials. Children with bacterial coinfection tended to be younger (median age 8.4 months vs 16.3 months, p < 0.01) and had higher proportion of prematurity (23.3% vs 12.1%, p < 0.01). Children with bacterial coinfection were more likely to require ICU admission (37.6% vs 23.9%, p < 0.01) and intubation (28.5% vs 5.3 %, p < 0.01). They had higher ICU (5.7 days vs 1.9 days, p < 0.01) and hospital length of stay (4.0 days vs 2.0 days, p < 0.01), higher mortality (2.6% vs 0.2%, p = 0.02), and a higher median cost of hospital care ($3774.44 vs $2424.49.90, p < 0.01).
CONCLUSIONS
The rate of bacterial coinfection in hospitalized children with viral infections is very low, which contradicts the routine administration of empiric antimicrobials. Patients with coinfection require more hospital resources and have worse clinical outcomes.
Collapse
Affiliation(s)
- Nikita Patel
- Medical student (NP), University of Illinois College of Medicine at Peoria, IL
| | - Ban AL-Sayyed
- Department of Pediatrics (BAS), University of Illinois College of Medicine at Peoria, IL
| | | | - Sandeep Tripathi
- Pediatric Intensive Care, Department of Pediatrics (ST), University of Illinois College of Medicine at Peoria, IL
| |
Collapse
|
27
|
Yagi K, Asai N, Huffnagle GB, Lukacs NW, Fonseca W. Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:877771. [PMID: 35444639 PMCID: PMC9013880 DOI: 10.3389/fimmu.2022.877771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Several environmental factors can influence the development and establishment of the early-life microbiota. For example, exposure to different environmental factors from birth to childhood will shape the lung and gut microbiota and the development of the immune system, which will impact respiratory tract infection and widespread disease occurrence during infancy and later in life. Respiratory syncytial virus (RSV) infects most infants by the age of two and is the primary cause of bronchiolitis in children worldwide. Approximately a third of infants hospitalized with bronchiolitis develop asthma later in life. However, it is unclear what factors increase susceptibility to severe RSV-bronchiolitis and the subsequent asthma development. In recent years, the role of the gut and lung microbiota in airway diseases has received increased interest, and more studies have focused on this field. Different epidemiological studies and experimental animal models have associated early-life gut microbiota dysbiosis with an increased risk of lung disease later in life. This work will review published evidence that correlated environmental factors that affect the early-life microbiota composition and their role in developing severe RSV infection.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Gary B Huffnagle
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan , Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan , Ann Arbor, MI, United States
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Hurst JH, McCumber AW, Aquino JN, Rodriguez J, Heston SM, Lugo DJ, Rotta AT, Turner NA, Pfeiffer TS, Gurley TC, Moody MA, Denny TN, Rawls JF, Clark JS, Woods CW, Kelly MS. Age-Related Changes in the Nasopharyngeal Microbiome Are Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Symptoms Among Children, Adolescents, and Young Adults. Clin Infect Dis 2022; 75:e928-e937. [PMID: 35247047 PMCID: PMC8903463 DOI: 10.1093/cid/ciac184] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity. METHODS We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms. RESULTS Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2-infected individuals with and without respiratory symptoms (PERMANOVA, P = .002; R2 = 0.009). SARS-CoV-2-infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18-.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2-infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age. CONCLUSIONS We identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.
Collapse
Affiliation(s)
| | | | - Jhoanna N Aquino
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Javier Rodriguez
- Children’s Clinical Research Unit, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah M Heston
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Debra J Lugo
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexandre T Rotta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas A Turner
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Trevor S Pfeiffer
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thaddeus C Gurley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - M Anthony Moody
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA,Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USAand
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Christopher W Woods
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew S Kelly
- Correspondence: M. S. Kelly, 2301 Erwin Road, Durham, NC 27710 USA ()
| |
Collapse
|
29
|
Kelly MS, Plunkett C, Yu Y, Aquino JN, Patel SM, Hurst JH, Young RR, Smieja M, Steenhoff AP, Arscott-Mills T, Feemster KA, Boiditswe S, Leburu T, Mazhani T, Patel MZ, Rawls JF, Jawahar J, Shah SS, Polage CR, Cunningham CK, Seed PC. Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy. THE ISME JOURNAL 2022; 16:655-665. [PMID: 34511605 PMCID: PMC8857224 DOI: 10.1038/s41396-021-01108-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of severe infections among children and adults. Interactions between commensal microbes in the upper respiratory tract and S. pneumoniae are poorly described. In this study, we sought to identify interspecies interactions that modify the risk of S. pneumoniae colonization during infancy and to describe development of the upper respiratory microbiome during infancy in a sub-Saharan African setting. We collected nasopharyngeal swabs monthly (0-6 months of age) or bimonthly (6-12 months of age) from 179 mother-infant dyads in Botswana. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and identified S. pneumoniae colonization using a species-specific PCR assay. We detect S. pneumoniae colonization in 144 (80%) infants at a median age of 71 days and identify a strong negative association between the relative abundance of the bacterial genera Corynebacterium within the infant nasopharyngeal microbiome and the risk of S. pneumoniae colonization. Using in vitro cultivation experiments, we demonstrate growth inhibition of S. pneumoniae by secreted factors from strains of several Corynebacterium species isolated from these infants. Finally, we demonstrate that antibiotic exposures and the winter season are associated with a decline in the relative abundance of Corynebacterium within the nasopharyngeal microbiome, while breastfeeding is associated with an increase in the Corynebacterium relative abundance. Our findings provide novel insights into the interspecies interactions that contribute to colonization resistance to S. pneumoniae and suggest that the nasopharyngeal microbiome may be a previously unrecognized mechanism by which environmental factors influence the risk of pneumococcal infections during childhood. Moreover, this work lays the foundation for future studies seeking to use targeted manipulation of the nasopharyngeal microbiome to prevent infections caused by S. pneumoniae.
Collapse
Affiliation(s)
- Matthew S. Kelly
- grid.7621.20000 0004 0635 5486Botswana-University of Pennsylvania Partnership, Gaborone, Botswana ,grid.26009.3d0000 0004 1936 7961Division of Pediatric Infectious Diseases, Duke University, Durham, NC USA
| | - Catherine Plunkett
- grid.16753.360000 0001 2299 3507Division of Pediatric Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Yahe Yu
- grid.40803.3f0000 0001 2173 6074Department of Mathematics, North Carolina State University, Raleigh, NC USA
| | - Jhoanna N. Aquino
- grid.26009.3d0000 0004 1936 7961Division of Pediatric Infectious Diseases, Duke University, Durham, NC USA
| | - Sweta M. Patel
- grid.26009.3d0000 0004 1936 7961Division of Pulmonary Allergy, and Critical Care Medicine, Duke University, Durham, NC USA
| | - Jillian H. Hurst
- grid.26009.3d0000 0004 1936 7961Division of Pediatric Infectious Diseases, Duke University, Durham, NC USA
| | - Rebecca R. Young
- grid.26009.3d0000 0004 1936 7961Division of Pediatric Infectious Diseases, Duke University, Durham, NC USA
| | - Marek Smieja
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Andrew P. Steenhoff
- grid.7621.20000 0004 0635 5486Botswana-University of Pennsylvania Partnership, Gaborone, Botswana ,grid.239552.a0000 0001 0680 8770Global Health Center, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Tonya Arscott-Mills
- grid.7621.20000 0004 0635 5486Botswana-University of Pennsylvania Partnership, Gaborone, Botswana ,grid.239552.a0000 0001 0680 8770Global Health Center, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Kristen A. Feemster
- grid.239552.a0000 0001 0680 8770Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Sefelani Boiditswe
- grid.7621.20000 0004 0635 5486Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Tirayaone Leburu
- grid.7621.20000 0004 0635 5486Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Tiny Mazhani
- grid.7621.20000 0004 0635 5486University of Botswana School of Medicine, Gaborone, Botswana
| | - Mohamed Z. Patel
- grid.7621.20000 0004 0635 5486University of Botswana School of Medicine, Gaborone, Botswana
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke University, Durham, NC USA
| | - Jayanth Jawahar
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke University, Durham, NC USA
| | - Samir S. Shah
- grid.239573.90000 0000 9025 8099Divisions of Hospital Medicine and Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Christopher R. Polage
- grid.26009.3d0000 0004 1936 7961Department of Pathology, Duke University, Durham, NC USA
| | - Coleen K. Cunningham
- grid.26009.3d0000 0004 1936 7961Division of Pediatric Infectious Diseases, Duke University, Durham, NC USA
| | - Patrick C. Seed
- grid.16753.360000 0001 2299 3507Division of Pediatric Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| |
Collapse
|
30
|
Chauhan NS. Lung Microbiome in Human Health and Diseases. COMPREHENSIVE GUT MICROBIOTA 2022:497-507. [DOI: 10.1016/b978-0-12-819265-8.00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Vangrinsven E, Fastrès A, Taminiau B, Frédéric B, Daube G, Clercx C. Variations in facial conformation are associated with differences in nasal microbiota in healthy dogs. BMC Vet Res 2021; 17:361. [PMID: 34819074 PMCID: PMC8611846 DOI: 10.1186/s12917-021-03055-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extrinsic and intrinsic factors have been shown to influence nasal microbiota (NM) in humans. Very few studies investigated the association between nasal microbiota and factors such as facial/body conformation, age, and environment in dogs. The objectives are to investigate variations in NM in healthy dogs with different facial and body conformations. A total of 46 dogs of different age, living environment and from 3 different breed groups were recruited: 22 meso-/dolichocephalic medium to large breed dogs, 12 brachycephalic dogs and 12 terrier breeds. The nasal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V1-V3 regions) amplicons. RESULTS We showed major differences in the NM composition together with increased richness and α-diversity in brachycephalic dogs, compared to meso-/dolichocephalic medium to large dogs and dogs from terrier breeds. CONCLUSION Healthy brachycephalic breeds and their unique facial conformation is associated with a distinct NM profile. Description of the NM in healthy dogs serves as a foundation for future researches assessing the changes associated with disease and the modulation of NM communities as a potential treatment.
Collapse
Affiliation(s)
- Emilie Vangrinsven
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium.
| | - Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences - Microbiology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Billen Frédéric
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences - Microbiology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| |
Collapse
|
32
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
33
|
Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, Gorlanova O, Soti A, Hilty M, Latzin P, Usemann J. Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. ENVIRONMENTAL RESEARCH 2021; 202:111633. [PMID: 34256075 DOI: 10.1016/j.envres.2021.111633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Air pollution and greenness are associated with short- and long-term respiratory health in children but the underlying mechanisms are only scarcely investigated. The nasal microbiota during the first year of life has been shown to be associated with respiratory tract infections and asthma development. Thus, an interplay between greenness, air pollution and the early nasal microbiota may contribute to short- and long-term respiratory health. We aimed to examine associations between fine particulate matter (PM2.5), nitrogen dioxide (NO2) and greenness with the nasal microbiota of healthy infants during the first year of life in a European context with low-to-moderate air pollution levels. METHODS Microbiota characterization was performed using 16 S rRNA pyrosequencing of 846 nasal swabs collected fortnightly from 47 healthy infants of the prospective Basel-Bern Infant Lung Development (BILD) cohort. We investigated the association of satellite-based greenness and an 8-day-average exposure to air pollution (PM2.5, NO2) with the nasal microbiota during the first year of life. Exposures were individually estimated with novel spatial-temporal models incorporating satellite data. Generalized additive mixed models adjusted for known confounders and considering the autoregressive correlation structure of the data were used for analysis. RESULTS Mean (SD) PM2.5 level was 17.1 (3.8 μg/m3) and mean (SD) NO2 level was 19.7 (7.9 μg/m3). Increased PM2.5 and increased NO2 were associated with reduced within-subject Ružička dissimilarity (PM2.5: per 1 μg/m3 -0.004, 95% CI -0.008, -0.001; NO2: per 1 μg/m3 -0.004, 95% CI -0.007, -0.001). Whole microbial community comparison with nonmetric multidimensional scaling revealed distinct microbiota profiles for different PM2.5 exposure levels. Increased NO2 was additionally associated with reduced abundance of Corynebacteriaceae (per 1 μg/m3: -0.027, 95% CI -0.053, -0.001). No associations were found between greenness and the nasal microbiota. CONCLUSION Air pollution was associated with Ružička dissimilarity and relative abundance of Corynebacteriaceae. This suggests that even low-to-moderate exposure to air pollution may impact the nasal microbiota during the first year of life. Our results will be useful for future studies assessing the clinical relevance of air-pollution-induced alterations of the nasal microbiota with subsequent respiratory disease development.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andras Soti
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Division of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Kang HM, Kang JH. Effects of nasopharyngeal microbiota in respiratory infections and allergies. Clin Exp Pediatr 2021; 64:543-551. [PMID: 33872488 PMCID: PMC8566799 DOI: 10.3345/cep.2020.01452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/02/2021] [Indexed: 11/27/2022] Open
Abstract
The human microbiome, which consists of a collective cluster of commensal, symbiotic, and pathogenic microorganisms living in the human body, plays a key role in host health and immunity. The human nasal cavity harbors commensal bacteria that suppress the colonization of opportunistic pathogens. However, dysbiosis of the nasal microbial community is associated with many diseases, such as acute respiratory infections including otitis media, sinusitis and bronchitis and allergic respiratory diseases including asthma. The nasopharyngeal acquisition of pneumococcus, which exists as a pathobiont in the nasal cavity, is the initial step in virtually all pneumococcal diseases. Although the factors influencing nasal colonization and elimination are not fully understood, the adhesion of opportunistic pathogens to nasopharyngeal mucosa receptors and the eliciting of immune responses in the host are implicated in addition to bacterial microbiota properties and colonization resistance dynamics. Probiotics or synbiotic interventions may show promising and effective roles in the adjunctive treatment of dysbiosis; however, more studies are needed to characterize how these interventions can be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Han Kang
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
35
|
Xu L, Earl J, Pichichero ME. Nasopharyngeal microbiome composition associated with Streptococcus pneumoniae colonization suggests a protective role of Corynebacterium in young children. PLoS One 2021; 16:e0257207. [PMID: 34529731 PMCID: PMC8445455 DOI: 10.1371/journal.pone.0257207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a leading respiratory tract pathogen that colonizes the nasopharynx (NP) through adhesion to epithelial cells and immune evasion. Spn actively interacts with other microbiota in NP but the nature of these interactions are incompletely understood. Using 16S rRNA gene sequencing, we analyzed the microbiota composition in the NP of children with or without Spn colonization. 96 children were included in the study cohort. 74 NP samples were analyzed when children were 6 months old and 85 NP samples were analyzed when children were 12 months old. We found several genera that correlated negatively or positively with Spn colonization, and some of these correlations appeared to be influenced by daycare attendance or other confounding factors such as upper respiratory infection (URI) or Moraxella colonization. Among these genera, Corynebacterium showed a consistent inverse relationship with Spn colonization with little influence by daycare attendance or other factors. We isolated Corynebacterium propinquum and C. pseudodiphtheriticum and found that both inhibited the growth of Spn serotype 22F strain in vitro.
Collapse
Affiliation(s)
- Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, New York, United States of America
| | - Joshua Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
37
|
Alamri A. Diversity of Microbial Signatures in Asthmatic Airways. Int J Gen Med 2021; 14:1367-1378. [PMID: 33889017 PMCID: PMC8057789 DOI: 10.2147/ijgm.s304339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting the respiratory system. The global incidence of asthma is rising. Clinical and experimental models of asthma clearly indicate that the disease is multifactorial in nature with a wide array of factors contributing to progression and exacerbation, including interactions between immunological markers and the microbial community populating the respiratory tract. In particular, strict hygiene compliance during the early years of life and early exposure to antibiotics are linked to alterations in the biological environment within the airways and to changes in immunological markers, leading to allergies, such as asthma. With the gap in current research knowledge on the various non-bacterial microbial communities in the asthmatic airways, this review summarizes current methods used to assess microbial diversity as well as evidence for the link between microbial alterations and asthma, including changes in the bacterial microbiome, often characterized by the outgrowth of certain bacterial phyla such as proteobacteria and Firmicutes, in addition to disrupted mycobiome, virome, and parasitome. The current review emphasizes the dynamic, context-dependent changes in the microbiome in asthma and the importance of broad-scope analyses, covering a wide range of taxa. In conclusion, the interaction between the resident microbiota and the immune system is essential and significant in modulating the inflammatory responses; however, further investigations are needed to improve our understanding of the risk factors that disrupt the diversity of the microbiome in the different body systems.
Collapse
Affiliation(s)
- Aisha Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Hurst JH, McCumber AW, Aquino JN, Rodriguez J, Heston SM, Lugo DJ, Rotta AT, Turner NA, Pfeiffer TS, Gurley TC, Moody MA, Denny TN, Rawls JF, Woods CW, Kelly MS. Age-related changes in the upper respiratory microbiome are associated with SARS-CoV-2 susceptibility and illness severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.20.21252680. [PMID: 33791716 PMCID: PMC8010748 DOI: 10.1101/2021.03.20.21252680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Children are less susceptible to SARS-CoV-2 and typically have milder illness courses than adults. We studied the nasopharyngeal microbiomes of 274 children, adolescents, and young adults with SARS-CoV-2 exposure using 16S rRNA gene sequencing. We find that higher abundances of Corynebacterium species are associated with SARS-CoV-2 infection and SARS-CoV-2-associated respiratory symptoms, while higher abundances of Dolosigranulum pigrum are present in SARS-CoV-2-infected individuals without respiratory symptoms. We also demonstrate that the abundances of these bacteria are strongly, and independently, associated with age, suggesting that the nasopharyngeal microbiome may be a potentially modifiable mechanism by which age influences SARS-CoV-2 susceptibility and severity. SUMMARY Evaluation of nasopharyngeal microbiome profiles in children, adolescents, and young adults with a SARS-CoV-2-infected close contact identified specific bacterial species that vary in abundance with age and are associated with SARS-CoV-2 susceptibility and the presence of SARS-CoV-2-associated respiratory symptoms.
Collapse
|
39
|
Tay CJX, Ta LDH, Ow Yeong YX, Yap GC, Chu JJH, Lee BW, Tham EH. Role of Upper Respiratory Microbiota and Virome in Childhood Rhinitis and Wheeze: Collegium Internationale Allergologicum Update 2021. Int Arch Allergy Immunol 2021; 182:265-276. [PMID: 33588407 DOI: 10.1159/000513325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022] Open
Abstract
There is emerging evidence that the respiratory microbiota influences airway health, and there has been intense research interest in its role in respiratory infections and allergic airway disorders. This review aims to summarize current knowledge of nasal microbiome and virome and their associations with childhood rhinitis and wheeze. The healthy infant nasal microbiome is dominated by Corynebacteriaceae and Staphylococcaceae. In contrast, infants who subsequently develop respiratory disorders are depleted of these microbes and are instead enriched with Proteobacteria spp. Although human rhinovirus and human respiratory syncytial virus are well-documented major viral pathogens that trigger rhinitis and wheezing disorders in infants, recent limited data indicate that bacteriophages may have a role in respiratory health. Future work investigating the interplay between commensal microbiota, virome, and host immunological responses is an important step toward understanding the dynamics of the nasal community in order to develop a strategical approach to combat these common childhood respiratory disorders.
Collapse
Affiliation(s)
- Carina Jing Xuan Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Le Duc Huy Ta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Xiang Ow Yeong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, .,Khoo Teck Puat- National University Children's Medical Institute, National University Health System, Singapore, Singapore, .,Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,
| |
Collapse
|
40
|
Accorsi EK, Franzosa EA, Hsu T, Joice Cordy R, Maayan-Metzger A, Jaber H, Reiss-Mandel A, Kline M, DuLong C, Lipsitch M, Regev-Yochay G, Huttenhower C. Determinants of Staphylococcus aureus carriage in the developing infant nasal microbiome. Genome Biol 2020; 21:301. [PMID: 33308267 PMCID: PMC7731505 DOI: 10.1186/s13059-020-02209-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of healthcare- and community-associated infections and can be difficult to treat due to antimicrobial resistance. About 30% of individuals carry S. aureus asymptomatically in their nares, a risk factor for later infection, and interactions with other species in the nasal microbiome likely modulate its carriage. It is thus important to identify ecological or functional genetic elements within the maternal or infant nasal microbiomes that influence S. aureus acquisition and retention in early life. RESULTS We recruited 36 mother-infant pairs and profiled a subset of monthly longitudinal nasal samples from the first year after birth using shotgun metagenomic sequencing. The infant nasal microbiome is highly variable, particularly within the first 2 months. It is weakly influenced by maternal nasal microbiome composition, but primarily shaped by developmental and external factors, such as daycare. Infants display distinctive patterns of S. aureus carriage, positively associated with Acinetobacter species, Streptococcus parasanguinis, Streptococcus salivarius, and Veillonella species and inversely associated with maternal Dolosigranulum pigrum. Furthermore, we identify a gene family, likely acting as a taxonomic marker for an unclassified species, that is significantly anti-correlated with S. aureus in infants and mothers. In gene content-based strain profiling, infant S. aureus strains are more similar to maternal strains. CONCLUSIONS This improved understanding of S. aureus colonization is an important first step toward the development of novel, ecological therapies for controlling S. aureus carriage.
Collapse
Affiliation(s)
- Emma K. Accorsi
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - Eric A. Franzosa
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute, 415 Main St., Cambridge, MA 02142 USA
| | - Tiffany Hsu
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute, 415 Main St., Cambridge, MA 02142 USA
| | - Regina Joice Cordy
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
- Wake Forest University, 1834 Wake Forest Rd., Winston-Salem, NC 27109 USA
| | - Ayala Maayan-Metzger
- Sackler Faculty of Medicine, Tel Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
- Sheba Medical Center, Derech Sheba 2, Ramat Gan, Israel
| | - Hanaa Jaber
- Sheba Medical Center, Derech Sheba 2, Ramat Gan, Israel
| | | | - Madeleine Kline
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115 USA
| | - Casey DuLong
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - Marc Lipsitch
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - Gili Regev-Yochay
- Sackler Faculty of Medicine, Tel Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
- Sheba Medical Center, Derech Sheba 2, Ramat Gan, Israel
| | - Curtis Huttenhower
- Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
- Broad Institute, 415 Main St., Cambridge, MA 02142 USA
| |
Collapse
|
41
|
Adar A, Shalitin S, Eyal O, Loewenthal N, Pinhas-Hamiel O, Zuckerman Levin N, Dally-Gottfried O, Landau Z, Zung A, Levy-Khademi F, Zangen D, Tenenbaum-Rakover Y, Rachmiel M. Birth during the moderate weather seasons is associated with early onset of type 1 diabetes in the Mediterranean area. Diabetes Metab Res Rev 2020; 36:e3318. [PMID: 32270907 DOI: 10.1002/dmrr.3318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
AIM To assess the association of seasonal and perinatal parameters with early age of type 1 diabetes (T1D) onset. METHODS A cross-sectional review of all medical records of T1D patients born between the years 1990 and 2005, and diagnosed before/by the age of 10 years, from 13 university-affiliated paediatric medical centres in Israel, was performed. Data included: gender, ethnicity, seasons of birth and disease onset, birth gestational age and weight, and autoimmune diseases of the probands and their first-degree family members. Statistical analysis included the Chi-square test or Mann-Whitney test, as appropriate and multivariate regression analysis. RESULTS Enrolled were 1571 T1D patients at a median age of T1D onset 6.9 years (IQR 4.4,8.4); 336 of them presented before 4 years of age. The median age of this group was 2.5 years (IQR 1.7,3.2), and of the 1235 patients who presented after 4 years of age, median presentation age was 7.5 years (IQR 6.1,8.8). Multivariate regression analysis demonstrated that a more recent birth year; OR = 1.06, 95% CI 1.02-1.1, P = 0.003, and birth during the moderate weather months (September, October, March, and April) were significantly associated with younger age at T1D onset; OR = 1.68, 95% CI 1.17-2.4, P = 0.005. CONCLUSIONS Our novel finding demonstrates the association between younger than 4 years old age at presentation and birth during moderate weather months. The results also support previous reports, that there is a slight increase in the annual incidence of T1D in the youngest age groups.
Collapse
Affiliation(s)
- Adi Adar
- Pediatric Endocrinology Unit, Division of Pediatrics, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Shlomit Shalitin
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center of Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Eyal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology and Metabolic Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Orit Pinhas-Hamiel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- The Juvenile Diabetes Center, Maccabi Health Care Services, Ra'anana, Israel
| | - Nehama Zuckerman Levin
- Pediatric Diabetes Clinic, Institute of Diabetes, Endocrinology and Metabolism, Rambam Health Care Campus, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Orna Dally-Gottfried
- The Center for Juvenile Diabetes and Pediatric Endocrinology and Pediatric Outpatient Clinics, Rebecca Ziv Hospital, Safed, affiliated to the School of Medicine, Bar Ilan University, Safed, Israel
| | - Zohar Landau
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, E. Wolfson Medical Center, Holon, Israel
| | - Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical Center, Rehovot, Israel
- The School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Floris Levy-Khademi
- The School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Division of Pediatric Endocrinology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David Zangen
- The School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Unit, Ha'Emek Medical Center and the Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Marianna Rachmiel
- Pediatric Endocrinology Unit, Division of Pediatrics, Assaf Harofeh Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Saso A, Kampmann B. Maternal Immunization: Nature Meets Nurture. Front Microbiol 2020; 11:1499. [PMID: 32849319 PMCID: PMC7396522 DOI: 10.3389/fmicb.2020.01499] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccinating women in pregnancy (i.e., maternal immunization) has emerged as a promising tool to tackle infant morbidity and mortality worldwide. This approach nurtures a 'gift of nature,' whereby antibody is transferred from mother to fetus transplacentally during pregnancy, or postnatally in breast milk, thereby providing passive, antigen-specific protection against infections in the first few months of life, a period of increased immune vulnerability for the infant. In this review, we briefly summarize the rationale for maternal immunization programs and the landscape of vaccines currently in use or in the pipeline. We then direct the focus to the underlying biological phenomena, including the main mechanisms by which maternally derived antibody is transferred efficiently to the infant, at the placental interface or in breast milk; important research models and methodological approaches to interrogate these processes, particularly in the context of recent advances in systems vaccinology; the potential biological and clinical impact of high maternal antibody titres on neonatal ontogeny and subsequent infant vaccine responses; and key vaccine- and host-related factors influencing the maternal-infant dyad across different environments. Finally, we outline important gaps in knowledge and suggest future avenues of research on this topic, proposing potential strategies to ensure optimal testing, delivery and implementation of maternal vaccination programs worldwide.
Collapse
Affiliation(s)
- Anja Saso
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| | - Beate Kampmann
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| |
Collapse
|
43
|
Schippa S, Frassanito A, Marazzato M, Nenna R, Petrarca L, Neroni B, Bonfiglio G, Guerrieri F, Frasca F, Oliveto G, Pierangeli A, Midulla F. Nasal Microbiota in RSV Bronchiolitis. Microorganisms 2020; 8:731. [PMID: 32414211 PMCID: PMC7284514 DOI: 10.3390/microorganisms8050731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of bronchiolitis, and the severity may be influenced by the bacterial ecosystem. Our aim was to analyze the nasal microbiota from 48 infants affected by bronchiolitis from RSV virus and 28 infants with bronchiolitis but negative for the virus. Results showed a significantly lower biodiversity in the RSV-positive group with respect to the RSV-negative group, a specific microbial profile associated with the RSV-positive group different from that observed in the negative group, and significant modifications in the relative abundance of taxa in the RSV-positive group, as well as in the RSV-A group, with respect to the negative group. Furthermore, microbial network analyses evidenced, in all studied groups, the presence of two predominant sub-networks characterized by peculiar inter- and intra-group correlation patterns as well as a general loss of connectivity among microbes in the RSV-positive group, particularly in the RSV-A group. Our results indicated that infants with more severe bronchiolitis disease, caused by RSV-A infection, present significant perturbations of both the nasal microbiota structure and the microbial relationships. Patients with a milder bronchiolitis course (RSV-B-infected and patients who have cleared the virus) presented less severe alterations.
Collapse
Affiliation(s)
- Serena Schippa
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.M.); (B.N.); (G.B.)
| | - Antonella Frassanito
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.N.); (L.P.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.M.); (B.N.); (G.B.)
| | - Raffaella Nenna
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.N.); (L.P.)
| | - Laura Petrarca
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.N.); (L.P.)
| | - Bruna Neroni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.M.); (B.N.); (G.B.)
| | - Giulia Bonfiglio
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.M.); (B.N.); (G.B.)
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69008 Lyon, France;
| | - Federica Frasca
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (F.F.); (G.O.)
| | - Giuseppe Oliveto
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (F.F.); (G.O.)
| | - Alessandra Pierangeli
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (F.F.); (G.O.)
| | - Fabio Midulla
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.N.); (L.P.)
| |
Collapse
|
44
|
Season of Birth Impacts the Neonatal Nasopharyngeal Microbiota. CHILDREN-BASEL 2020; 7:children7050045. [PMID: 32403236 PMCID: PMC7278723 DOI: 10.3390/children7050045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
Abstract
Objective: Pathogenic airway bacteria colonizing the neonatal airway increase the risk of childhood asthma, but little is known about the determinants of the establishment and dynamics of the airway microbiota in early life. We studied associations between perinatal risk factors and bacterial richness of the commensal milieu in the neonatal respiratory tract. Methods: Three hundred and twenty-eight children from the Copenhagen Prospective Studies on Asthma in the Childhood2000 (COPSAC2000) at-risk birth cohort were included in this study. The bacterial richness in each of the nasopharynxes of the 1-month old, asymptomatic neonates was analyzed by use of a culture-independent technique (T-RFLP). Information on perinatal risk factors included predisposition to asthma, allergy and eczema; social status of family; maternal exposures during pregnancy; mode of delivery; and postnatal exposures. The risk factor analysis was done by conventional statistics and partial least square discriminant analysis (PLSDA). Results: The nasopharyngeal bacterial community at 1-month displayed an average of 35 (IQR: 14-55, range 1-161) phylogenetically different bacteria groups. Season of birth was associated with nasopharyngeal bacterial richness at 1-month of age with a higher bacterial richness (p = 0.003) and more abundant specific bacterial profiles representing Gram-negative alpha-proteobacteria and Gram-positive Bacilli in the nasopharynx of summer-born children. Conclusion: Early postnatal bacterial colonization of the upper airways is significantly affected by birth season, emphasizing a future focus on the seasonality aspect in modelling the impact of early dynamic changes in airway bacterial communities in relation to later disease development.
Collapse
|
45
|
Liu Q, Liu Q, Meng H, Lv H, Liu Y, Liu J, Wang H, He L, Qin J, Wang Y, Dai Y, Otto M, Li M. Staphylococcus epidermidis Contributes to Healthy Maturation of the Nasal Microbiome by Stimulating Antimicrobial Peptide Production. Cell Host Microbe 2020; 27:68-78.e5. [PMID: 31866425 PMCID: PMC10988655 DOI: 10.1016/j.chom.2019.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
The composition of the human microbiome profoundly impacts human well-being. However, the mechanisms underlying microbiome maturation are poorly understood. The nasal microbiome is of particular importance as a source of many respiratory infections. Here, we performed a large sequencing and culture-based analysis of the human nasal microbiota from different age groups. We observed a significant decline of pathogenic bacteria before adulthood, with an increase of the commensal Staphylococcus epidermidis. In seniors, this effect was partially reversed. In vitro, many S. epidermidis isolates stimulated nasal epithelia to produce antimicrobial peptides, killing pathogenic competitors, while S. epidermidis itself proved highly resistant owing to its exceptional capacity to form biofilms. Furthermore, S. epidermidis isolates with high antimicrobial peptide-inducing and biofilm-forming capacities outcompeted pathogenic bacteria during nasal colonization in vivo. Our study identifies a pivotal role of S. epidermidis in healthy maturation of the nasal microbiome, which is achieved at least in part by symbiotic cooperation with innate host defense.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Qingyun Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Hongwei Meng
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Huiying Lv
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yao Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Junlan Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yingxin Dai
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD 20814, USA.
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
46
|
Cuthbertson L, Oo SWC, Cox MJ, Khoo SK, Cox DW, Chidlow G, Franks K, Prastanti F, Borland ML, Gern JE, Smith DW, Bizzintino JA, Laing IA, Le Souëf PN, Moffatt MF, Cookson WOC. Viral respiratory infections and the oropharyngeal bacterial microbiota in acutely wheezing children. PLoS One 2019; 14:e0223990. [PMID: 31622414 PMCID: PMC6797130 DOI: 10.1371/journal.pone.0223990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Acute viral wheeze in children is a major cause of hospitalisation and a major risk factor for the development of asthma. However, the role of the respiratory tract microbiome in the development of acute wheeze is unclear. To investigate whether severe wheezing episodes in children are associated with bacterial dysbiosis in the respiratory tract, oropharyngeal swabs were collected from 109 children with acute wheezing attending the only tertiary paediatric hospital in Perth, Australia. The bacterial community from these samples was explored using next generation sequencing and compared to samples from 75 non-wheezing controls. No significant difference in bacterial diversity was observed between samples from those with wheeze and healthy controls. Within the wheezing group, attendance at kindergarten or preschool was however, associated with increased bacterial diversity. Rhinovirus (RV) infection did not have a significant effect on bacterial community composition. A significant difference in bacterial richness was observed between children with RV-A and RV-C infection, however this is likely due to the differences in age group between the patient cohorts. The bacterial community within the oropharynx was found to be diverse and heterogeneous. Age and attendance at day care or kindergarten were important factors in driving bacterial diversity. However, wheeze and viral infection were not found to significantly relate to the bacterial community. Bacterial airway microbiome is highly variable in early life and its role in wheeze remains less clear than viral influences.
Collapse
Affiliation(s)
- Leah Cuthbertson
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
- * E-mail:
| | - Stephen W. C. Oo
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Respiratory Department, Perth Children’s Hospital, Perth, Western Australia
| | - Michael J. Cox
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
| | - Siew-Kim Khoo
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Des W. Cox
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Glenys Chidlow
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Australia
| | - Kimberley Franks
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Franciska Prastanti
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Meredith L. Borland
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Emergency Department, Perth Children’s Hospital, Perth, Australia
- Division of Emergency Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David W. Smith
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Australia
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Joelene A. Bizzintino
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Ingrid A. Laing
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Peter N. Le Souëf
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
| | - William O. C. Cookson
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London, England, United Kingdom
| |
Collapse
|
47
|
Rawls M, Ellis AK. The microbiome of the nose. Ann Allergy Asthma Immunol 2019; 122:17-24. [PMID: 30579432 DOI: 10.1016/j.anai.2018.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew Rawls
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Allergy Research Unit, Kingston General Health Research Institute, Kingston, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Allergy Research Unit, Kingston General Health Research Institute, Kingston, Canada; Department of Medicine, Queen's University, Kingston, Canada.
| |
Collapse
|
48
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Dai W, Wang H, Zhou Q, Li D, Feng X, Yang Z, Wang W, Qiu C, Lu Z, Xu X, Lyu M, Xie G, Li Y, Bao Y, Liu Y, Shen K, Yao K, Feng X, Yang Y, Zhou K, Li S, Zheng Y. An integrated respiratory microbial gene catalogue to better understand the microbial aetiology of Mycoplasma pneumoniae pneumonia. Gigascience 2019; 8:giz093. [PMID: 31367746 PMCID: PMC6669060 DOI: 10.1093/gigascience/giz093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The imbalanced respiratory microbiota observed in pneumonia causes high morbidity and mortality in childhood. Respiratory metagenomic analysis demands a comprehensive microbial gene catalogue, which will significantly advance our understanding of host-microorganism interactions. RESULTS We collected 334 respiratory microbial samples from 171 healthy children and 76 children with pneumonia. The respiratory microbial gene catalogue we established comprised 2.25 million non-redundant microbial genes, covering 90.52% of prevalent genes. The major oropharyngeal microbial species found in healthy children were Prevotella and Streptococcus. In children with Mycoplasma pneumoniae pneumonia (MPP), oropharyngeal microbial diversity and associated gene numbers decreased compared with those of healthy children. The concurrence network of oropharyngeal microorganisms in patients predominantly featured Staphylococcus spp. and M. pneumoniae. Functional orthologues, which are associated with the metabolism of various lipids, membrane transport, and signal transduction, accumulated in the oropharyngeal microbiome of children with pneumonia. Several antibiotic resistance genes and virulence factor genes were identified in the genomes of M. pneumoniae and 13 other microorganisms reconstructed via metagenomic data. Although the common macrolide/β-lactam resistance genes were not identified in the assembled M. pneumoniae genome, a single-nucleotide polymorphism (A2063G) related to macrolide resistance was identified in a 23S ribosomal RNA gene. CONCLUSIONS The results of this study will facilitate exploration of unknown microbial components and host-microorganism interactions in studies of the respiratory microbiome. They will also yield further insights into the microbial aetiology of MPP.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Qian Zhou
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Dongfang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Xin Feng
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Zhenyu Yang
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Chuangzhao Qiu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Zhiwei Lu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Ximing Xu
- Institute of Statistics, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Mengxuan Lyu
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Gan Xie
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Yinhu Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| | - Yanhong Liu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
| | - Kunling Shen
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
- Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045, China
| | - Kaihu Yao
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
- Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045, China
| | - Xikang Feng
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Yonghong Yang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
- Department of Microbial Research, WeHealthGene Institute, Shenzhen 518000, China
- Department of Respiratory Diseases, Beijing Children's Hospital, Beijing 100045, China
| | - Ke Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen 518026, China
| |
Collapse
|
50
|
Totté JEE, Pardo LM, Fieten KB, Vos MC, van den Broek TJ, Schuren FHJ, Pasmans SGMA. Nasal and skin microbiomes are associated with disease severity in paediatric atopic dermatitis. Br J Dermatol 2019; 181:796-804. [PMID: 30737999 DOI: 10.1111/bjd.17755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations of the skin microbiome have been associated with atopic dermatitis (AD) and its severity. The nasal microbiome in relation to AD severity is less well studied. OBJECTIVES We aimed to characterize the nasal and skin microbiomes in children with AD in relation to disease severity. In addition, we explored the differences and correlations between the nasal and skin communities. METHODS We characterized the microbial composition of 90 nasal and 108 lesional skin samples cross-sectionally from patients with AD, using 16S-rRNA sequencing. In addition, a quantitative polymerase chain reaction was performed for Staphylococcus aureus and Staphylococcus epidermidis on the skin samples, and AD severity was estimated using the self-administered Eczema Area and Severity Index. RESULTS We found an association between the microbial composition and AD severity in both the nose and skin samples (R2 = 2·6%; P = 0·017 and R2 = 7·0%; P = 0·004), strongly driven by staphylococci. However, other species also contributed, such as Moraxella in the nose. Skin lesions were positive for S. aureus in 50% of the children, and the presence and the load of S. aureus were not associated with AD severity. Although the nose and skin harbour distinct microbial communities (n = 48 paired samples; P < 0·001), we found that correlations exist between species in the nose and (other) species on the skin. CONCLUSIONS Our results indicate that both the nasal and the skin microbiomes are associated with AD severity in children and that, next to staphylococci, other species contribute to this association.
Collapse
Affiliation(s)
- J E E Totté
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - L M Pardo
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - K B Fieten
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - M C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - F H J Schuren
- Microbiology and Systems Biology Group, TNO, Zeist, the Netherlands
| | - S G M A Pasmans
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of (Pediatric) Dermatology, Erasmus MC University Medical Center Rotterdam, Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|