1
|
Konieczny MJ, Omarov M, Zhang L, Malik R, Richardson TG, Baumeister SE, Bernhagen J, Dichgans M, Georgakis MK. The genomic architecture of circulating cytokine levels points to drug targets for immune-related diseases. Commun Biol 2025; 8:34. [PMID: 39794498 PMCID: PMC11724035 DOI: 10.1038/s42003-025-07453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Circulating cytokines orchestrate immune reactions and are promising drug targets for immune-mediated and inflammatory diseases. Exploring the genetic architecture of circulating cytokine levels could yield key insights into causal mediators of human disease. Here, we performed genome-wide association studies (GWAS) for 40 circulating cytokines in meta-analyses of 74,783 individuals. We detected 359 significant associations between cytokine levels and variants in 169 independent loci, including 150 trans- and 19 cis-acting loci. Integration with transcriptomic data point to key regulatory mechanisms, such as the buffering function of the Atypical Chemokine Receptor 1 (ACKR1) acting as scavenger for multiple chemokines and the role of tumor necrosis factor receptor-associated factor 1 (TRAFD1) in modulating the cytokine storm triggered by TNF signaling. Applying Mendelian randomization (MR), we detected a network of complex cytokine interconnections with TNF-b, VEGF, and IL-1ra exhibiting pleiotropic downstream effects on multiple cytokines. Drug target cis-MR using 2 independent proteomics datasets paired with colocalization revealed G-CSF/CSF-3 and CXCL9/MIG as potential causal mediators of asthma and Crohn's disease, respectively, but also a potentially protective role of TNF-b in multiple sclerosis. Our results provide an overview of the genetic architecture of circulating cytokines and could guide the development of targeted immunotherapies.
Collapse
Affiliation(s)
- Marek J Konieczny
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Murad Omarov
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Lanyue Zhang
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Tom G Richardson
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHKMunich), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHKMunich), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Safir W, Altaf S, Jan PFU, Shujaat N, Khan FU, Rehman A, Kousar S, Ghani MU, Sabar MF, Shahid M. Association of ORMDL3 single nucleotide polymorphic variants with bronchial asthma in Pathan population. GENE REPORTS 2024; 36:101958. [DOI: 10.1016/j.genrep.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
3
|
Sio YY, Victoria Nanong GA, Lim JA, Matta SA, Say YH, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. Sensitization to oil palm pollen associates with risks and severity of allergic diseases. World Allergy Organ J 2024; 17:100853. [PMID: 38235258 PMCID: PMC10792632 DOI: 10.1016/j.waojou.2023.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Background Elaeis guineensis (Ela g, oil palm) pollen is one of the most predominant species of inhalant allergens in the tropical Southeast Asia region; however, its association with the manifestation of allergic diseases remains largely unexplored. This study aimed to determine the sensitization pattern of oil palm pollen and associate this with the risk and severity of allergic diseases. Methods Participants were recruited as a part of the Singapore and Malaysia cross-sectional genetic and epidemiological study (SMCSGES). Two independent cohorts were recruited: n = 564 serum samples were collected and serological assessment was performed against a panel of 16 crude inhalant allergens including house dust mite, pet, insect, pollen, and fungal allergens; n = 13 652 Singapore/Malaysia Chinese young adults were recruited and skin prick test was used to assess oil palm sensitization, which was tested for its association with the risk and severity of asthma, allergic rhinitis (AR), and atopic dermatitis (AD). Results The sensitization rate of oil palm pollen is 9.6% in the n = 564 Singapore/Malaysia cohort. In the n = 13 652 Singapore/Malaysia Chinese cohort, oil palm sensitization significantly associates with increased risks of asthma (p = 1.34x10-4), AR (p = 2.91x10-13), and AD (p = 6.95x10-7). Asthmatic patients with oil palm sensitization have increased risks of wheezing (p = 0.00995), nocturnal cough (p = 0.0122), and exacerbations (p = 0.00139) in the past 12 months. AR patients with oil palm sensitization also have an increased risk of developing moderate-to-severe symptoms (p = 0.00113). Conclusions We have identified significant associations of oil palm sensitization with increased risks, exacerbations, and the severity of symptoms of allergic diseases in the tropical Southeast Asian region (Singapore/Malaysia).
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Jie Ann Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
4
|
Almacioglu M, Keskin O, Ozkars MY, Balci SO, Kucukosmanoglu E, Pehlivan S, Keskin M. Association of childhood asthma with Gasdermin B (GSDMB) and Oromucoid-like 3 (ORMDL3) genes. North Clin Istanb 2023; 10:769-777. [PMID: 38328715 PMCID: PMC10846573 DOI: 10.14744/nci.2023.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Genome-length association studies have shown that Gasdermin B (GSDMB) and Orosomucoid-like 3 (ORMDL3) genes located on the long arm of chromosome 17 are associated with asthma. In this study, it was aimed to determine the possible relationship between asthma control test (ACT), exercise provocation test (ECT), and fractional nitric oxide (FENO) levels and GSDMB and ORMDL3 gene expressions. METHODS 59 asthmatic and 38 non-asthmatic children were included in the study. We divided the patient group into two subgroups as mild persistent asthma (29 patients) and moderate persistent asthma (30 patients). ORMDL3, GSDMB gene expression levels, ECT, total IgE levels, and eosinophil counts were measured in all cases. In addition, ACT and FeNO levels were measured in children with asthma. Afterward, the relationship of ORMDL3 and GSDMB gene expression coefficient changes with ECT, ACT, and FeNO was examined. RESULTS When patients with ACT ≤15 were compared with patients with ACT ≥20, ORMDL3 and GSDMB gene expressions were increased 6.74 and 11.74 times, respectively. Comparing patients with ACT ≥20 and ACT ≤15 in terms of coefficient changes (ΔCq), higher change values were observed for ΔCq ORMDL3 in patients with ACT ≤15 (p=0.015). Similarly, when patients with FENO ≤25 ppb were compared with patients with FENO >25 ppb, ORMDL3 and GSDMB gene expressions were increased by 2.93 and 3.56 times, respectively. When the coefficient changes were compared, no significant difference was found between FENO≤25 and FENO >25 patients. There was a slight negative correlation between ΔCq values and ACT score (p=0.003, r=-0.418 for ORMDL3, and p=0.016, r=-0.345 for GSDMB). In addition, we observed a statistically significant positive correlation between ORMDL3 and GSDMB gene expressions (r=0.80, p<0.001). CONCLUSION We showed that increased ORMDL3 and GSDMB gene expression levels may be associated with ACT scores, FeNO and ECT in asthma. These findings may encourage future studies with larger numbers of subjects that can use gene expression levels in various asthma phenotypes for prognostic prediction.
Collapse
Affiliation(s)
- Mehmet Almacioglu
- Department of Pediatrics, SANKO University Faculty of Medicine, Gaziantep, Turkiye
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Mehmet Yasar Ozkars
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Sibel Oguzkan Balci
- Department of Biology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Sacide Pehlivan
- Department of Biology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Mehmet Keskin
- Department of Pediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| |
Collapse
|
5
|
Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. The ERBB2 Exonic Variant Pro1170Ala Modulates Mitogen-Activated Protein Kinase Signaling Cascades and Associates with Allergic Asthma. Int Arch Allergy Immunol 2023; 184:1010-1021. [PMID: 37336194 DOI: 10.1159/000530960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies. METHODS This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches. RESULTS The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk. CONCLUSIONS The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore,
| | - Wei Liang Gan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wing Shan Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR)Kampar Campus, Kampar, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Wang Y, Wang J, Yan Z, Liu S, Xu W. Microenvironment modulation by key regulators of RNA N6-methyladenosine modification in respiratory allergic diseases. BMC Pulm Med 2023; 23:210. [PMID: 37328853 DOI: 10.1186/s12890-023-02499-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) regulators are considered post-transcriptional regulators that affect several biological functions, and their role in immunity, in particular, is emerging. However, the role of m6A regulators in respiratory allergic diseases remains unclear. Therefore, we aimed to investigate the role of key m6A regulators in mediating respiratory allergic diseases and immune microenvironment infiltration characteristics. METHODS We downloaded gene expression profiles of respiratory allergies from the Gene Expression Omnibus (GEO) database and we performed hierarchical clustering, difference analysis, and construction of predictive models to identify hub m6A regulators that affect respiratory allergies. Next, we investigate the underlying biological mechanisms of key m6A regulators by performing PPI network analysis, functional enrichment analysis, and immune microenvironment infiltration analysis. In addition, we performed a drug sensitivity analysis on the key m6A regulator, hoping to be able to provide some implications for clinical medication. RESULTS In this study, we identified four hub m6A regulators that affect the respiratory allergy and investigated the underlying biological mechanisms. In addition, studies on the characteristics of immune microenvironment infiltration revealed that the expression of METTL14, METTL16, and RBM15B correlated with the infiltration of the mast and Th2 cells in respiratory allergy, and METTL16 expression was found to be significantly negatively correlated with macrophages for the first time (R = -0.53, P < 0.01). Finally, a key m6A regulator, METTL14, was screened by combining multiple algorithms. In addition, by performing a drug sensitivity analysis on METTL14, we hypothesized that it may play an important role in the improvement of allergic symptoms in the upper and lower airways with topical nasal glucocorticoids. CONCLUSIONS Our findings suggest that m6A regulators, particularly METTL14, play a crucial role in the development of respiratory allergic diseases and the infiltration of immune cells. These results may provide insight into the mechanism of action of methylprednisolone in treating respiratory allergic diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Zhanfeng Yan
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siming Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
8
|
Shamsi BH, Chen H, Yang X, Liu M, Liu Y. Association between polymorphisms of the GSDMB gene and allergic rhinitis risk in the Chinese population: a case-control study. J Asthma 2023:1-10. [PMID: 36847643 DOI: 10.1080/02770903.2023.2185893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a great risk factor for developing asthma, and its pathogenesis is affected by various factors, such as gene and environment. GSDMB is related to allergic diseases. Our purpose is to explore the correlation of single nucleotide polymorphisms (SNPs) in GSDMB and AR risk in the Chinese population. METHODS We performed a case-control study including 1005 cases and 1004 controls. Rs2305479, rs4795400, and rs12450091 in GSDMB were geneotyped using Agena MassARRAY. The relationships between GSDMB SNPs and AR risk were assessed by logistic regression analysis in PLINK1.9. RESULTS Our study showed that rs4795400 was a protective factor for AR in overall (TT vs. CC: OR = 0.66, p = 0.009; TT vs. CC/TC: OR = 0.67, p = 0.008; additive: OR = 0.87, p = 0.042 males, people with BMI ≤ 24, and living in wind-blown sand area. Rs2305479 was associated with a reduced AR risk in males (TT vs. CC: OR = 0.47, p = 0.014; TT vs. CC/TC: OR = 0.43, p = 0.004). However, rs12450091 was a risk factor for AR in people living in the loess hilly region (CC: OR = 4.75, p = 0.047). The levels of EO and EO_per in the case group were significantly higher than those in the control group (p < 0.05). CONCLUSION This study indicated that GSDMB polymorphisms (rs4795400, rs2305479, and rs12450091) were associated with AR susceptibility. Further studies are required to confirm our findings and to clarify the functional relationship.
Collapse
Affiliation(s)
- Bilal Haider Shamsi
- Department of Science and Education, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Haiyuan Chen
- Department of Information, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Xiong Yang
- Department of Nephrology, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Mingxia Liu
- Department of Prevention and Protection, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Yonglin Liu
- Department of Science and Education, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| |
Collapse
|
9
|
Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, Jóźwiak K, Kamiński K, Łosiewski W, Stegmayr J, Wagner D, Alsafadi HN, Lindstedt S, Dziuba M, Bielicka A, Graczyk Z, Szczepankiewicz A. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. J Asthma 2023; 60:458-467. [PMID: 35321632 DOI: 10.1080/02770903.2022.2056896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children. One of the most replicated genetic findings in childhood asthma is the ORMDL3 gene confirmed in several GWA studies in several pediatric populations. OBJECTIVES The purpose of this study was to analyze ORMDL3 variants and expression in childhood asthma in the Polish population. METHODS In the study we included 416 subject, 223 asthmatic children and 193 healthy control subjects. The analysis of two SNPs (rs3744246 and rs8076131) was performed using genotyping with TaqMan probes. The methylation of the ORMDL3 promoter was examined with Methylation Sensitive HRM (MS-HRM), covering 9 CpG sites. The expression of ORMDL3 was analyzed in PBMCs from pediatric patients diagnosed with allergic asthma and primary human bronchial epithelial cells derived from healthy subjects treated with IL-13, IL-4, or co-treatment with both cytokines to model allergic airway inflammation. RESULTS We found that ORMDL3 expression was increased in allergic asthma both in PBMCs from asthmatic patients as well as in human bronchial epithelial cells stimulated with the current cytokines. We did not observe significant differences between cases and controls either in the genotype distribution of analyzed SNPs (rs3744246 and rs8076131) nor in the level of promoter methylation. CONCLUSIONS Increased ORMDL3 expression is associated with pediatric allergic asthma and upregulated in the airways upon Th2-cytokines stimulation, but further functional studies are required to fully understand its role in this disease.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olechnowicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Koteluk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Żaneta Lemańska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Jóźwiak
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Kamiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Łosiewski
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - John Stegmayr
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Dziuba
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Bielicka
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Graczyk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Say YH, Sio YY, Heng AHS, Ng YT, Matta SA, Pang SL, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. Golgin A7 Family Member B (GOLGA7B) is a plausible novel gene associating high glycaemic index diet with acne vulgaris. Exp Dermatol 2022; 31:1208-1219. [PMID: 35416335 DOI: 10.1111/exd.14575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/30/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
While the IGF1/FoxO1/mTORC1 signalling pathway is a well-established nutrigenomic link between high glycaemic index (GI)/glycaemic load (GL) diet and acne vulgaris, other signalling pathways remain elusive. Therefore, we aimed to investigate other genes that are involved in the high GI/GL diet-acne link, using our Singapore/Malaysia population epidemiological, genomics and transcriptomics data. High GI/GL dietary habit of 3,207 acne cases (1,869 and 1,341 further classified into severity and scarring grades, respectively) and 2,521 controls were evaluated based on Quality of Diet based on Glycaemic Index Score (QDGIS). Overlapping concordant differentially expressed genes (DEGs) between acne case-controls and QDGIS poor-moderate/good classes were identified from whole-transcriptome sequencing data of PBMC of a subset of participants. Finally, we assessed the expression quantitative trait loci (eQTL) association of single nucleotide polymorphisms (SNPs) of the concordant DEGs. Daily intake of fruits significantly reduced the risk of acne presentation, severity and scarring by up to 48.5%. Those with good QDGIS had significantly lower risk of mild and moderate/severe acne, and grade 1/2 acne scarring. Sequential filtering identified four overlapping concordant DEGs that were significantly associated with acne and QDGIS, namely GOLGA7B, SNCB, LOC102723849 and LOC283683. Combining transcriptome and genetic association data, we identified intronic SNP rs1953947 in GOLGA7B as an eQTL for acne. In conclusion, we identified GOLGA7B as a plausible novel gene that links high GI/GL with acne, and hence propose a model for the involvement of Golga7b in high GI/GL diet-acne pathogenesis, which includes palmitoyl acyltransferase zDHHC5, fatty acid translocase CD36 and palmitic acid.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Anna Hwee Sing Heng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yu Ting Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Sze Lei Pang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
11
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
12
|
Karimi L, Vijverberg SJ, Engelkes M, Hernandez-Pacheco N, Farzan N, Soares P, Pino-Yanes M, Jorgensen AL, Eng C, Mukhopadhyay S, Schieck M, Kabesch M, Burchard EG, Chew FT, Sio YY, Potočnik U, Gorenjak M, Hawcutt DB, Palmer CN, Turner S, Janssens HM, Maitland-van der Zee AH, Verhamme KM. ADRB2 haplotypes and asthma exacerbations in children and young adults: An individual participant data meta-analysis. Clin Exp Allergy 2021; 51:1157-1171. [PMID: 34128573 PMCID: PMC8503671 DOI: 10.1111/cea.13965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The polymorphism Arg16 in β2 -adrenergic receptor (ADRB2) gene has been associated with an increased risk of exacerbations in asthmatic children treated with long-acting β2 -agonists (LABA). However, it remains unclear whether this increased risk is mainly attributed to this single variant or the combined effect of the haplotypes of polymorphisms at codons 16 and 27. OBJECTIVE We assessed whether the haplotype analysis could explain the association between the polymorphisms at codons 16 (Arg16Gly) and 27 (Gln27Glu) in ADRB2 and risk of asthma exacerbations in patients treated with inhaled corticosteroids (ICS) plus LABA. METHODS The study was undertaken using data from 10 independent studies (n = 5903) participating in the multi-ethnic Pharmacogenomics in Childhood Asthma (PiCA) consortium. Asthma exacerbations were defined as asthma-related use of oral corticosteroids or hospitalizations/emergency department visits in the past 6 or 12 months prior to the study visit/enrolment. The association between the haplotypes and the risk of asthma exacerbations was performed per study using haplo.stats package adjusted for age and sex. Results were meta-analysed using the inverse variance weighting method assuming random-effects. RESULTS In subjects treated with ICS and LABA (n = 832, age: 3-21 years), Arg16/Gln27 versus Gly16/Glu27 (OR: 1.40, 95% CI: 1.05-1.87, I2 = 0.0%) and Arg16/Gln27 versus Gly16/Gln27 (OR: 1.43, 95% CI: 1.05-1.94, I2 = 0.0%), but not Gly16/Gln27 versus Gly16/Glu27 (OR: 0.99, 95% CI: 0.71-1.39, I2 = 0.0%), were significantly associated with an increased risk of asthma exacerbations. The sensitivity analyses indicated no significant association between the ADRB2 haplotypes and asthma exacerbations in the other treatment categories, namely as-required short-acting β2 -agonists (n = 973), ICS monotherapy (n = 2623), ICS plus leukotriene receptor antagonists (LTRA; n = 338), or ICS plus LABA plus LTRA (n = 686). CONCLUSION AND CLINICAL RELEVANCE The ADRB2 Arg16 haplotype, presumably mainly driven by the Arg16, increased the risk of asthma exacerbations in patients treated with ICS plus LABA. This finding could be beneficial in ADRB2 genotype-guided treatment which might improve clinical outcomes in asthmatic patients.
Collapse
Affiliation(s)
- Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marjolein Engelkes
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Niloufar Farzan
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Patricia Soares
- Academic department of Pediatrics, Brighton & Sussex Medical School, Royal Alexandra Children’s Hospital, Brighton, United Kingdom
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Andrea L. Jorgensen
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Somnath Mukhopadhyay
- Academic department of Pediatrics, Brighton & Sussex Medical School, Royal Alexandra Children’s Hospital, Brighton, United Kingdom
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Regensburg, Germany
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Regensburg, Germany
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States
| | - Fook Tim Chew
- Department of Biological Science, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Science, National University of Singapore, Singapore
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Daniel B. Hawcutt
- University of Liverpool and Alder Hey Children’s Hospital, members of Liverpool Health Partners, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s Hospital, Liverpool, UK
| | - Colin N. Palmer
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Hettie M. Janssens
- Department of Pediatrics/division Respiratory Medicine and Allergology Erasmus MC/Sophia Children’s Hospital, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Katia M.C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
García-Foncillas J, Argente J, Bujanda L, Cardona V, Casanova B, Fernández-Montes A, Horcajadas JA, Iñiguez A, Ortiz A, Pablos JL, Pérez Gómez MV. Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview. Mol Diagn Ther 2021; 25:563-576. [PMID: 34331269 DOI: 10.1007/s40291-021-00544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/11/2022]
Abstract
Although the concept of precision medicine, in which healthcare is tailored to the molecular and clinical characteristics of each individual, is not new, its implementation in clinical practice has been heterogenous. In some medical specialties, precision medicine has gone from being just a promise to a reality that achieves better patient outcomes. This is a fact if we consider, for example, the great advances made in the genetic diagnosis and subsequent treatment of countless hereditary diseases, such as cystic fibrosis, which have improved the life expectancy of many of the affected children. In the field of oncology, the development of targeted therapies has prolonged the survival of patients with breast, lung, colorectal, melanoma, and hematological malignancies. In other disciplines, clinical milestones are perhaps less well known, but no less important. The current challenge is to expand and generalize the use of technologies that are central to precision medicine, such as massively parallel sequencing, to improve the management (prevention and treatment) of complex conditions such as cardiovascular, kidney, or autoimmune diseases. This process requires investment in specialized expertise, multidisciplinary collaboration, and the nationwide organization of genetic laboratories for diagnosis of specific diseases.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Department of Oncology, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain.
- Medical Oncology Department, University Hospital Fundación Jiménez Díaz-Universidad Autonoma de Madrid, Madrid, Spain.
| | - Jesús Argente
- Department of Endocrinology, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Victoria Cardona
- Allergy Section, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- ARADyAL Research Network, Barcelona, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Fernández-Montes
- Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Andrés Iñiguez
- Department of Cardiology, Hospital Álvaro Cunqueiro-Complejo Hospitalario Universitario, Vigo, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
14
|
Sio YY, Shi P, Say YH, Chew FT. Functional variants in the chromosome 4q21 locus contribute to allergic rhinitis risk by modulating the expression of N-acylethanolamine acid amidase. Clin Exp Allergy 2021; 52:127-136. [PMID: 33866639 DOI: 10.1111/cea.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous haplotype-based association studies identified chromosome 4q21 as an allergic rhinitis (AR) susceptibility locus; however, the functional role of 4q21 single nucleotide polymorphisms (SNPs) on AR risk remains unclear. OBJECTIVE To investigate the functional effect of 4q21 SNPs on AR risk by conducting cohort-based functional genomics and genetic association analyses. METHODS The associations between 4q21 SNPs and mRNA expression levels of three 4q21-associated genes (SDAD1, NAAA and CXCL9) in peripheral blood mononuclear cells (PBMCs) were assessed in a Singapore/Malaysia Chinese cohort (n = 291). Exon expression levels of these genes in PBMCs were tested against the tag-SNP genotypes in a Singapore Chinese cohort (n = 30). Serum protein levels of these genes were assessed with tag-SNP genotypes in a Singapore Chinese cohort (n = 193). SNP functions were characterized through luciferase assay. In a Singapore Chinese cohort (n = 1794), we confirmed the associations between functional SNPs and AR. RESULTS Forty SNPs in 4q21 showed significant associations with NAAA (but not SDAD1 or CXCL9) mRNA expression in PBMCs, of which were tagged by two tag-SNPs, rs17001237 and rs2242470. Both tag-SNPs rs2242470 and rs12648687 (a proxy for rs17001237) were also significantly associated with the expression level of NAAA exon 1. Tag-SNP rs12648687 was correlated with serum NAAA level. A four promoter SNPs-haplotype tagged by rs17001237 influenced the NAAA promoter activity in HEK293T cells. Lastly, individuals carrying the risk allele A of rs12648687 exhibited significantly higher AR risk in the Singapore Chinese population. CONCLUSIONS & CLINICAL RELEVANCE The rs17001237 linkage set SNPs in the 4q21 locus are associated with NAAA expression at both gene and protein levels ex vivo, have functional consequences in vitro and contribute to AR susceptibility in our study population. Our findings provided a better understanding of the genetic mechanism that contributes to AR pathogenesis.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ping Shi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Pham AK, Miller M, Rosenthal P, Das S, Weng N, Jang S, Kurten RC, Badrani J, Doherty TA, Oliver B, Broide DH. ORMDL3 expression in ASM regulates hypertrophy, hyperplasia via TPM1 and TPM4, and contractility. JCI Insight 2021; 6:136911. [PMID: 33661765 PMCID: PMC8119187 DOI: 10.1172/jci.insight.136911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21.
Collapse
Affiliation(s)
- Alexa K. Pham
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Peter Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sudipta Das
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ning Weng
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sunghoon Jang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard C. Kurten
- Department of Pediatrics, Arkansas Children’s Research Institute, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jana Badrani
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Taylor A. Doherty
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Veterans Affairs San Diego Health Care System, La Jolla, California, USA
| | - Brian Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - David H. Broide
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
16
|
ORMDL3/GSDMB genotype as a risk factor for early-onset adult asthma is linked to total serum IgE levels but not to allergic sensitization. Allergol Int 2021; 70:55-60. [PMID: 32444308 DOI: 10.1016/j.alit.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND An orosomucoid-like 3 (ORMDL3)/gasdermin B (GSDMB) gene locus on chromosome 17q is consistently associated with childhood-onset asthma, which is highly atopic. As some evidence suggests the relationship between asthma and allergic sensitization reflects asthma patient susceptibility to augmented IgE responses driven by common environmental allergens rather than an increased asthma risk after allergen exposure, we aimed to determine any relationships between this locus region and childhood-onset adult asthma with regard to serum total IgE levels or allergic sensitization. METHODS We conducted a case-control association study using three independent Japanese populations (3869 total adults) and analyzed the ORs for association of rs7216389, an expression quantitative trait locus for ORMDL3/GSDMB, with adult asthma according to onset age. Additionally, associations between the rs7216389 genotype and total serum IgE levels or allergic sensitization was examined. RESULTS Rs7216389 was associated with both childhood-onset adult asthma (OR for asthmatic patients afflicted at the age of 10 years or younger = 1.61, p = 0.00021) and asthmatic patients with higher levels of total serum IgE (OR for asthmatic patients with IgE ≥1000IU/mL = 1.55, p = 0.0033). In both healthy controls and in the combined healthy and asthmatic individuals, rs7216389 was correlated with increased total serum IgE levels (p < 0.0005), but not allergic sensitization (p > 0.1). CONCLUSIONS ORMDL3/GSDMB is an important susceptibility gene for childhood-onset adult asthma in Japanese populations and this association is linked to elevated total serum IgE levels but not to allergic sensitization.
Collapse
|
17
|
Hur GY, Pham A, Miller M, Weng N, Hu J, Kurten RC, Broide DH. ORMDL3 but not neighboring 17q21 gene LRRC3C is expressed in human lungs and lung cells of asthmatics. Allergy 2020; 75:2061-2065. [PMID: 32086831 DOI: 10.1111/all.14243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Gyu Young Hur
- Department of Medicine University of California San Diego La Jolla CA USA
- Department of Internal Medicine Korea University College of Medicine Seoul Korea
| | - Alexa Pham
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Marina Miller
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Ning Weng
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Jingwen Hu
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Richard C. Kurten
- Department of Physiology and Biophysics Arkansas Children's Research Institute University of Arkansas for Medical Sciences Little Rock AR USA
| | - David H. Broide
- Department of Medicine University of California San Diego La Jolla CA USA
| |
Collapse
|
18
|
Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clin Rev Allergy Immunol 2020; 60:200-219. [PMID: 32378146 DOI: 10.1007/s12016-020-08787-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allergic diseases are highly complex with respect to pathogenesis, inflammation, and response to treatment. Current efforts for allergic disease diagnosis have focused on clinical evidence as a binary outcome. Although outcome status based on clinical phenotypes (observable characteristics) is convenient and inexpensive to measure in large studies, it does not adequately provide insight into the complex molecular determinants of allergic disease. Individuals with similar clinical diagnoses do not necessarily have similar disease etiologies, natural histories, or responses to treatment. This heterogeneity contributes to the ineffective response to treatment leading to an annual estimated cost of $350 billion in the USA alone. There has been a recent focus to deconvolute the clinical heterogeneity of allergic diseases into specific endotypes using molecular and omics approaches. Endotypes are a means to classify patients based on the underlying pathophysiological mechanisms involving distinct functions or treatment response. The advent of high-throughput molecular omics, immunophenotyping, and bioinformatics methods including machine learning algorithms is facilitating the development of endotype-based diagnosis. As we move to the next decade, we should truly start treating clinical endotypes not clinical phenotype. This review highlights current efforts taking place to improve allergic disease endotyping via molecular omics profiling, immunophenotyping, and machine learning approaches in the context of precision diagnostics in allergic diseases. Graphical Abstract.
Collapse
|
19
|
Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:429-440. [PMID: 32037107 PMCID: PMC7569362 DOI: 10.1016/j.jaip.2019.11.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
Allergic asthma is defined as asthma associated with sensitization to aeroallergens, which leads to asthma symptoms and airway inflammation. Allergic asthma is the most common asthma phenotype. The onset of allergic asthma is most often in childhood and is usually accompanied by other comorbidities including atopic dermatitis and allergic rhinitis. It is often persistent although there is a wide variation in disease severity. It is a TH2-driven process. Biomarkers have been identified to distinguish patients with allergic asthma, particularly serum IgE levels, tests to indicate sensitization to aeroallergens such as specific IgE or skin prick test positivity, blood and sputum eosinophil levels, fraction of exhaled nitric oxide, and periostin. Treatments for allergic asthma include environmental control measures, allergen immunotherapy, and glucocorticoids. Biologics, targeting the TH2 pathway, have been shown to be effective in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Thomas Casale
- Division of Allergy and Immunology, University of South Florida Health Morsani College of Medicine, Tampa, Fla
| | - Adnan Custovic
- Respiratory Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wanda Phipatanakul
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
20
|
Sio YY, Anantharaman R, Lee SQE, Matta SA, Ng YT, Chew FT. The Asthma-associated PER1-like domain-containing protein 1 (PERLD1) Haplotype Influences Soluble Glycosylphosphatidylinositol Anchor Protein (sGPI-AP) Levels in Serum and Immune Cell Proliferation. Sci Rep 2020; 10:715. [PMID: 31959860 PMCID: PMC6970992 DOI: 10.1038/s41598-020-57592-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022] Open
Abstract
Post-glycosylphosphatidylinositol (GPI) attachment to proteins 3, also known as PGAP3 or PERLD1 (PER1-like domain-containing protein 1), participates in the lipid remodeling process of glycosylphosphatidylinositol (GPI) anchor proteins during post-translational modification. Functional defect in PERLD1 was previously hypothesized to influence this process in T-cells and their subsequent activation and proliferation. This current study aims to functionally characterize PERLD1 genetic variants and relate this with human immune cells proliferation rate upon stimulation. We first showed the association between a PERLD1 tag-single nucleotide polymorphism (tagSNP), rs2941504, and the development of asthma in our study population. This association remained significant after conditioning for the other asthma-associated SNP rs8076131 that is also located within the 17q12–21 region. Subsequent sequencing of 40 unrelated Singapore Chinese individuals identified 12 more common PERLD1 SNPs (minor allele frequency > 5%) that are in linkage disequilibrium (LD, r2 > 0.8) with rs2941504. Through in vitro studies, 7 of these SNPs were found to form a functional haplotype that influences alternative splicing of PERLD1 transcript. This result was validated in human peripheral blood mononuclear cell (PBMC), where the minor haplotype (Hap2) was shown to be associated with significantly increased PERLD1 truncated transcript. Additionally, Hap2 was found to be related to increased levels of several soluble GPI-anchored proteins (such as sCD55 and sCD59) in serum. Elevated sCD55 in the serum was demonstrated to reduce the proliferation rate of PBMCs upon phytohaemagglutinin (PHA) stimulation. Taken together, the current study has shown a functional PERLD1 haplotype, which modifies PBMC sensitivity upon stimulation and may contribute to the individual’s susceptibility to allergic asthma.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ramani Anantharaman
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sean Qiu En Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yu Ting Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Kumar D, Lee B, Puan KJ, Lee W, Luis BS, Yusof N, Andiappan AK, Del Rosario R, Poschmann J, Kumar P, DeLibero G, Singhal A, Prabhakar S, De Yun W, Poidinger M, Rötzschke O. Resistin expression in human monocytes is controlled by two linked promoter SNPs mediating NFKB p50/p50 binding and C-methylation. Sci Rep 2019; 9:15245. [PMID: 31645609 PMCID: PMC6811637 DOI: 10.1038/s41598-019-51592-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Resistin is a key cytokine associated with metabolic and inflammatory diseases. Especially in East Asian populations, the expression levels are strongly influenced by genetic polymorphisms. Mechanisms and functional implications of this genetic control are still unknown. By employing reporter assays, EMSA, inhibition studies, bisulphite sequencing, ChIP-Seq and gene-editing we show that the p50/p50 homodimer known to act as repressor for a number of pro-inflammatory genes plays a central role in the genetic regulation of resistin in monocytes along with promoter methylation. In the common RETN haplotype p50/p50 constitutively dampens the expression by binding to the promoter. In an Asian haplotype variant however this interaction is disrupted by the A allele of rs3219175. The SNP is in very close linkage to rs34861192, a CpG SNP, located 280 bp upstream which provides an allele-specific C-methylation site. rs34861192 is located in a 100 bp region found to be methylated in the common but not in the Asian haplotype, resulting in the latter having a higher basal expression, which also associates with elevated histone acetylation (H3K27ac). Genotype associations within cohort data of 200 East Asian individuals revealed significant associations between this haplotype and the plasma levels of factors such as TGF-b, S100B, sRAGE and IL-8 as well as with myeloid DC counts. Thus, the common RETN haplotype is tightly regulated by the epigenetic mechanism linked to p50/p50-binding. This control is lost in the Asian haplotype, which may have evolved to balance the antagonistic RETN effects on pathogen protection vs. metabolic and inflammatory disease induction.
Collapse
Affiliation(s)
- Dilip Kumar
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Wendy Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Boris San Luis
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Ricardo Del Rosario
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research of Singapore (A*STAR), Singapore, Singapore.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA, 02142, USA
| | - Jeremie Poschmann
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research of Singapore (A*STAR), Singapore, Singapore.,Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Pavanish Kumar
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gennaro DeLibero
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amit Singhal
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research of Singapore (A*STAR), Singapore, Singapore
| | - Wang De Yun
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
22
|
Debeuf N, Zhakupova A, Steiner R, Van Gassen S, Deswarte K, Fayazpour F, Van Moorleghem J, Vergote K, Pavie B, Lemeire K, Hammad H, Hornemann T, Janssens S, Lambrecht BN. The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J Allergy Clin Immunol 2019; 144:1648-1659.e9. [PMID: 31330218 DOI: 10.1016/j.jaci.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Assem Zhakupova
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Chen J, Miller M, Unno H, Rosenthal P, Sanderson MJ, Broide DH. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca 2+ oscillations in asthma. J Allergy Clin Immunol 2018; 142:207-218.e6. [PMID: 28889952 PMCID: PMC5842097 DOI: 10.1016/j.jaci.2017.08.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. OBJECTIVE We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). METHODS Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3Zp3-Cre mice, which do not have a blood supply. RESULTS Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. CONCLUSION Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients.
Collapse
Affiliation(s)
- Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and the Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Mass
| | - Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Hirotoshi Unno
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Peter Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Mass
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
24
|
Abstract
Asthma is increasingly recognised as a heterogeneous group of diseases with similar clinical presentations rather than a singular disease entity. Asthma was historically categorised by clinical symptoms; however, newer methods of subgrouping, describing and categorising the disease have sub-defined asthma. These sub-definitions are intermittently called phenotypes or endotypes, but the real meanings of these words are poorly understood. Novel treatments are currently and increasingly available, partly in the monoclonal antibody environment, and also some physical therapies (bronchial thermoplasty), but additionally small molecules are not far away from clinical practice. Understanding the disease pathogenesis and the mechanism of action more completely may enable identification of treatable traits, biomarkers, mediators and modifiable therapeutic targets. However, there remains a danger that clinicians become preoccupied with the concept of endotypes and biomarkers, ignoring therapies that are hugely effective but have no companion biomarker. This review discusses our understanding of the concept of phenotypes and endotypes in appreciating and managing the heterogeneous condition that is asthma. We consider the role of functional imaging, physiology, blood-, sputum- and breath-based biomarkers and clinical manifestations that could be used to produce a personalised asthma profile, with implications on prognosis, pathophysiology and most importantly specific therapeutic responses. With the advent of increasing numbers of biological therapies and other interventional options such as bronchial thermoplasty, the importance of targeting expensive therapies to patients with the best chance of clinical response has huge health economic importance.
Collapse
Affiliation(s)
- Katrina Dean
- University Hospital South Manchester, Manchester, UK
| | - Robert Niven
- Manchester Academic Health Science Centre, The University of Manchester and University Hospital South Manchester, Manchester, UK.
| |
Collapse
|
25
|
Turner JD. Holistic, personalized, immunology? The effects of socioeconomic status on the transcriptional milieu of immune cells. Pediatr Pulmonol 2018; 53:696-697. [PMID: 29667347 DOI: 10.1002/ppul.23986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Grand-Duchy of Luxembourg
| |
Collapse
|
26
|
Farzan N, Vijverberg SJ, Kabesch M, Sterk PJ, Maitland-van der Zee AH. The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: Where do we stand? Pediatr Pulmonol 2018; 53:836-845. [PMID: 29493882 DOI: 10.1002/ppul.23976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/01/2018] [Indexed: 01/11/2023]
Abstract
Asthma is a complex multifactorial disease and it is the most common chronic disease in children. There is a high variability in response to asthma treatment, even in patients with good adherence to maintenance treatment, and a correct inhalation technique. Distinct underlying disease mechanisms in childhood asthma might be the reason of this heterogeneity. A deeper knowledge of the underlying molecular mechanisms of asthma has led to the recent development of advanced and mechanism-based treatments such as biologicals. However, biologicals are recommended only for patients with specific asthma phenotypes who remain uncontrolled despite high dosages of conventional asthma treatment. One of the main unmet needs in their application is lack of clinically available biomarkers to individualize pediatric asthma management and guide treatment. Pharmacogenomics, epigenomics, and transcriptomics are three omics fields that are rapidly advancing and can provide tools to identify novel asthma mechanisms and biomarkers to guide treatment. Pharmacogenomics focuses on variants in the DNA, epigenomics studies heritable changes that do not involve changes in the DNA sequence but lead to alteration of gene expression, and transcriptomics investigates gene expression by studying the complete set of mRNA transcripts in a cell or a population of cells. Advances in high-throughput technologies and statistical tools together with well-phenotyped patient inclusion and collaborations between different centers will expand our knowledge of underlying molecular mechanisms involved in disease onset and progress. Furthermore, it could help to select and stratify appropriate therapeutic strategies for subgroups of patients and hopefully bring precision medicine to daily practice.
Collapse
Affiliation(s)
- Niloufar Farzan
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy Clin Immunol 2018; 142:749-764.e3. [PMID: 29307657 PMCID: PMC6172038 DOI: 10.1016/j.jaci.2017.12.974] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Chromosome 17q12–21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12–21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus. (J Allergy Clin Immunol 2018;142:749–64.)
Collapse
|
28
|
Best LG, Azure C, Segarra A, Enright KJ, Hamley S, Jerome D, O'Leary MA, O'Leary RA, Parisien A, Trottier K, Yracheta JM, Torgerson DG. Genetic variants and risk of asthma in an American Indian population. Ann Allergy Asthma Immunol 2017; 119:31-36.e1. [PMID: 28668238 DOI: 10.1016/j.anai.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Asthma is recognized as a complex, multifactorial disease with a genetic component that is well recognized. Certain genetic variants are associated with asthma in a number of populations. OBJECTIVE To determine whether the same variants increase the risk of asthma among American Indian children. METHODS The electronic medical records of an Indian Health Service facility identified all children between 6 and 17 years of age with case-defining criteria for asthma (n = 108). Control children (n = 216), matched for age, were also identified. Real-time polymerase chain reaction assays were used to genotype 10 single-nucleotide polymorphisms (SNPs) at 6 genetic loci. Genotypic distributions among cases and controls were evaluated by χ2 and logistic regression methods. RESULTS A variant at 5q22.1 revealed a statistically significant imbalance in the distribution of genotypes between case-control pairs (rs10056340, P < .001). In logistic regression analyses, the same variant at 5q22.1 and a variant at 17q21 were associated with asthma at P < .05 (rs10056340 and rs9303277). Inclusions of age, body mass index, and atopy in multivariate models revealed significant associations between rs10056340 (odds ratio, 2.020; 95% confidence interval, 1.283-3.180; P = .002) and all 5 17q21 SNPs and asthma in this population. In analyses restricted to atopic individuals, the association of rs10056340 was essentially unchanged, whereas among nonatopic individuals the trend was in the same direction but nonsignificant. The reverse was true for the 17q21 SNPs. CONCLUSION These findings demonstrate that many variants commonly associated with asthma in other populations also accompany this condition among American Indian children. American Indian children also appear to have an increased risk of asthma associated with obesity.
Collapse
Affiliation(s)
- Lyle G Best
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota; Science Department, Turtle Mountain Community College, Belcourt, North Dakota; School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota.
| | - Crystal Azure
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota
| | - Alexandre Segarra
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota
| | - Kendra J Enright
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota
| | - Shawn Hamley
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota
| | - Dara Jerome
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota
| | - Marcia A O'Leary
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota
| | - Rae A O'Leary
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota
| | - Ashley Parisien
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota
| | - Kayana Trottier
- Science Department, Turtle Mountain Community College, Belcourt, North Dakota
| | | | - Dara G Torgerson
- Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
29
|
Rowe RK, Gill MA. Effects of Allergic Sensitization on Antiviral Immunity: Allergen, Virus, and Host Cell Mechanisms. Curr Allergy Asthma Rep 2017; 17:9. [PMID: 28233152 DOI: 10.1007/s11882-017-0677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and epidemiological studies demonstrate links between allergic sensitization and virus-induced atopic disease exacerbations. This review summarizes the recent findings regarding allergen, viral, and host cellular mechanisms relevant to these observations. RECENT FINDINGS Recent studies have focused on the molecular pathways and genetic influences involved in allergen-mediated inhibition of innate antiviral immune responses. Multiple tissue and cell types from atopic individuals across the atopy spectrum exhibit deficient interferon responses to a variety of virus infections. Impairment in barrier function, viral RNA and DNA recognition by intracellular sensing molecules, and dysregulation of signaling components are broadly affected by allergic sensitization. Finally, genetic predisposition by numerous nucleotide polymorphisms also impacts immune pathways and potentially contributes to virus-associated atopic disease pathogenesis. Allergen-virus interactions in the setting of atopy involve complex tissue and cellular mechanisms. Future studies defining the pathways underlying these interactions could uncover potential therapeutic targets. Available data suggest that therapies tailored to restore specific components of antiviral responses will likely lead to improved clinical outcomes in allergic disease.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA. .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Farzan N, Vijverberg SJ, Andiappan AK, Arianto L, Berce V, Blanca-López N, Bisgaard H, Bønnelykke K, Burchard EG, Campo P, Canino G, Carleton B, Celedón JC, Chew FT, Chiang WC, Cloutier MM, Daley D, Den Dekker HT, Dijk FN, Duijts L, Flores C, Forno E, Hawcutt DB, Hernandez-Pacheco N, de Jongste JC, Kabesch M, Koppelman GH, Manolopoulos VG, Melén E, Mukhopadhyay S, Nilsson S, Palmer CN, Pino-Yanes M, Pirmohamed M, Potočnik U, Raaijmakers JA, Repnik K, Schieck M, Sio YY, Smyth RL, Szalai C, Tantisira KG, Turner S, van der Schee MP, Verhamme KM, Maitland-van der Zee AH. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium. Pharmacogenomics 2017. [PMID: 28639505 DOI: 10.2217/pgs-2017-0035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM International collaboration is needed to enable large-scale pharmacogenomics studies in childhood asthma. Here, we describe the design of the Pharmacogenomics in Childhood Asthma (PiCA) consortium. MATERIALS & METHODS Investigators of each study participating in PiCA provided data on the study characteristics by answering an online questionnaire. RESULTS A total of 21 studies, including 14,227 children/young persons (58% male), from 12 different countries are currently enrolled in the PiCA consortium. Fifty six percent of the patients are Caucasians. In total, 7619 were inhaled corticosteroid users. Among patients from 13 studies with available data on asthma exacerbations, a third reported exacerbations despite inhaled corticosteroid use. In the future pharmacogenomics studies within the consortium, the pharmacogenomics analyses will be performed separately in each center and the results will be meta-analyzed. CONCLUSION PiCA is a valuable platform to perform pharmacogenetics studies within a multiethnic pediatric asthma population.
Collapse
Affiliation(s)
- Niloufar Farzan
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J Vijverberg
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Anand K Andiappan
- Singapore Immunology Network, Agency for Science, Technology & Research, Singapore 138648, Singapore
| | - Lambang Arianto
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev & Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Vojko Berce
- Department of Pediatrics, University Medical Centre Maribor, Maribor, Slovenia.,Centre for Human Molecular Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev & Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev & Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Esteban G Burchard
- Departments of Medicine, Bioengineering & Therapeutic Sciences University of California, San Francisco, CA 94110, USA
| | - Paloma Campo
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, Malaga, Spain
| | - Glorisa Canino
- Behavioral Sciences institute, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Bruce Carleton
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Juan C Celedón
- Division of Pulmonary Medicine, Allergy, & Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, & the Allergy & Immunology Division, Department of Paediatric Medicine, KK Children's Hospital, Singapore
| | - Wen Chin Chiang
- Department of Biological Sciences, National University of Singapore, Singapore, & the Allergy & Immunology Division, Department of Paediatric Medicine, KK Children's Hospital, Singapore
| | - Michelle M Cloutier
- Asthma Center, Connecticut Children's Medical Center, University of Connecticut Health Center, CT 06106, USA
| | - Denis Daley
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Herman T Den Dekker
- Department of Pediatrics, Division of Respiratory Medicine & Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - F Nicole Dijk
- Department of Pediatric Pulmonology & Pediatric Allergology, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.,Groningen Research Institute for Asthma & COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine & Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Erick Forno
- Division of Pulmonary Medicine, Allergy, & Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniel B Hawcutt
- Alder Hey Children's Hospital, Liverpool, UK.,Department of Women's & Children's Health, University of Liverpool, Liverpool, UK
| | - Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Johan C de Jongste
- Department of Pediatrics, Division of Respiratory Medicine & Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael Kabesch
- Department of Pediatric Pneumology & Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology & Pediatric Allergology, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.,Groningen Research Institute for Asthma & COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre of Occupational & Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Somnath Mukhopadhyay
- Academic Department of Paediatrics, Brighton & Sussex Medical School, Royal Alexandra Children's Hospital, Brighton, UK.,Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital & Medical School University of Dundee, Dundee, UK
| | - Sara Nilsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre of Occupational & Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Colin N Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital & Medical School University of Dundee, Dundee, UK
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Uros Potočnik
- Centre for Human Molecular Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty for Chemistry & Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Jan A Raaijmakers
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Katja Repnik
- Centre for Human Molecular Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty for Chemistry & Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Maximilian Schieck
- Department of Pediatric Pneumology & Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, & the Allergy & Immunology Division, Department of Paediatric Medicine, KK Children's Hospital, Singapore
| | - Rosalind L Smyth
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Csaba Szalai
- Department of Genetics, Cell & Immuno-biology, Semmelweis University, Budapest, Hungary.,Central Laboratory, Heim Pal Children Hospital, Budapest, Hungary
| | - Kelan G Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women's hospital & Harvard Medical School, Boston, MA 02115, USA.,Division of Pulmonary & Critical Care Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, UK
| | - Marc P van der Schee
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Katia M Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|