1
|
Ming S, Li X, Xiao Q, Qu S, Wang Q, Fang Q, Liang P, Xu Y, Yang J, Yang Y, Huang X, Wu Y. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J Clin Invest 2024; 135:e159400. [PMID: 39405126 DOI: 10.1172/jci159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly upregulated in sepsis patients and correlated with the severity of sepsis. Knockout of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2-knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit bruton tyrosine kinase-mediated (BTK-mediated) FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO that may provide a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiongyan Fang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yating Xu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Yang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yongqiang Yang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| |
Collapse
|
2
|
Liang P, Wu Y, Qu S, Younis M, Wang W, Wu Z, Huang X. Exploring the biomarkers and potential therapeutic drugs for sepsis via integrated bioinformatic analysis. BMC Infect Dis 2024; 24:32. [PMID: 38166628 PMCID: PMC10763157 DOI: 10.1186/s12879-023-08883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by an excessive inflammatory response to an infection, associated with high mortality. However, the regulatory mechanism of sepsis remains unclear. RESULTS In this study, bioinformatics analysis revealed the novel key biomarkers associated with sepsis and potential regulators. Three public datasets (GSE28750, GSE57065 and GSE95233) were employed to recognize the differentially expressed genes (DEGs). Taking the intersection of DEGs from these three datasets, GO and KEGG pathway enrichment analysis revealed 537 shared DEGs and their biological functions and pathways. These genes were mainly enriched in T cell activation, differentiation, lymphocyte differentiation, mononuclear cell differentiation, and regulation of T cell activation based on GO analysis. Further, pathway enrichment analysis revealed that these DEGs were significantly enriched in Th1, Th2 and Th17 cell differentiation. Additionally, five hub immune-related genes (CD3E, HLA-DRA, IL2RB, ITK and LAT) were identified from the protein-protein interaction network, and sepsis patients with higher expression of hub genes had a better prognosis. Besides, 14 drugs targeting these five hub related genes were revealed on the basis of the DrugBank database, which proved advantageous for treating immune-related diseases. CONCLUSIONS These results strengthen the new understanding of sepsis development and provide a fresh perspective into discriminating the candidate biomarkers for predicting sepsis as well as identifying new drugs for treating sepsis.
Collapse
Affiliation(s)
- Pingping Liang
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China
| | - Siying Qu
- Department of Clinical Laboratory, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Zhuhai, Guangdong Province, Zhuhai, 519020, China
| | - Muhammad Younis
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China
| | - Wei Wang
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China
| | - Zhilong Wu
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China.
| | - Xi Huang
- Foshan Fourth People's Hospital, Guangdong Province, Foshan, 528041, China.
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Zhu Y, Cai W, Zheng Y, Zhang W, Wang B, Kang Y. BIOINFORMATICS APPLICATIONS UNDER CONDITION CONTROL: HIGH DIAGNOSTIC VALUE OF DDX47 IN REAL MEDICAL SETTINGS. Shock 2024; 61:97-104. [PMID: 37553903 PMCID: PMC11841733 DOI: 10.1097/shk.0000000000002199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
ABSTRACT Sepsis is an organ dysfunction caused by a dysregulated host response to infection and remains an ongoing threat to human health worldwide. Septic shock is the most severe subset of sepsis as characterized by abnormalities in cells, circulation, and metabolism. As a time-dependent condition, early recognition allowing appropriate therapeutic measures to be started in a timely manner becomes the most effective way to improve prognosis. However, because of the lack of a criterion standard, most diagnoses merely rely on medical history, empirical diagnosis, and blood culture results. Gene expression profiles have specific diagnostic value, as they reflect a subjective host response to pathogens. We propose a method, Condition Control based on Real-life Medical Scenarios, to control for factors in realistic medical scenarios. Restricted variables are used as much as possible to identify unique differential genes and progressively test their diagnostic value by relaxing restrictions. In total, three data sets were included in the study; the first two data sets were from the Gene Expression Omnibus database, and the third involved patients who were diagnosed with sepsis or septic shock within 7 days of admission to the intensive care unit at West China Hospital of Sichuan University from 2020 to 2021. DDX47 showed preferable diagnostic value in various scenarios, especially in patients with common infections or sepsis and septic shock. Here we also show that hub genes may regulate immune function and immune cell counts through the interaction of different apoptotic pathways and immune checkpoints based on the high correlation. DDX47 is closely associated with B cells according to single-cell sequencing results.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Wei Cai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zheng
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University and Institute of Critical Care Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Wang G, Yang TX, Li JM, Huang ZY, Yang WB, Li P, He DL. Bruton tyrosine kinase (BTK) may be a potential therapeutic target for interstitial cystitis/bladder pain syndrome. Aging (Albany NY) 2022; 14:7052-7064. [PMID: 36069808 PMCID: PMC9512503 DOI: 10.18632/aging.204271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
AIMS To determine the potential diagnostic and therapeutic targets of Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). METHODS We selected the GSE11783, GSE57560 and GSE621 datasets from the GEO database and merged them. R software was used to screen differentially expressed genes (DEGs) between IC/BPS and normal bladder tissues. The "String" online tool is used to analyze DEGs interaction and functional protein enrichment. CIBERSORT online tool was used to analyze the infiltration of immune cells. In addition, we verified the function of BTK in IC/BPS at the clinical samples and cells level. RESULTS Bioinformatics analysis revealed that 5 genes were significantly overexpressed in IC/BPS, and the protein-protein interaction diagram showed that BTK was a critical link between these five proteins. At the same time, functional enrichment showed that they were significantly related to innate immunity. Immunoinfiltration showed that mast cell resting in IC/BPS was significantly higher. IHC staining of clinical samples showed that the mast cell markers Tryptase and BTK were highly expressed in IC/BPS tissues. At the cell level, knockdown of BTK inhibited proliferation, migration, invasion, and degranulation of mast cells. CONCLUSIONS This study provides a new perspective for understanding the molecular mechanisms involved in IC/BPS and suggests that BTK may be a target for treating IC/BPS.
Collapse
Affiliation(s)
- Guang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China
| | - Tong-Xin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Jiong-Ming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Zi-Ye Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wen-Bo Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Da-Lin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China
| |
Collapse
|
5
|
Wang H, Huang J, Yi W, Li J, He N, Kang L, He Z, Chen C. Identification of Immune-Related Key Genes as Potential Diagnostic Biomarkers of Sepsis in Children. J Inflamm Res 2022; 15:2441-2459. [PMID: 35444449 PMCID: PMC9015049 DOI: 10.2147/jir.s359908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The pathogenesis of sepsis is still unclear due to its complexity, especially in children. This study aimed to analyse the immune microenvironment and regulatory networks related to sepsis in children at the molecular level and to identify key immune-related genes to provide a new basis for the early diagnosis of sepsis. Methods The GSE145227 and GSE26440 datasets were downloaded from the Gene Expression Omnibus. The analyses included differentially expressed genes (DEGs), functional enrichment, immune cell infiltration, the competing endogenous RNA (ceRNA) interaction network, weighted gene coexpression network analysis (WGCNA), protein–protein interaction (PPI) network, key gene screening, correlation of sepsis molecular subtypes/immune infiltration with key gene expression, the diagnostic capabilities of key genes, and networks describing the interaction of key genes with transcription factors and small-molecule compounds. Finally, real-time quantitative PCR (RT–qPCR) was performed to verify the expression of key genes. Results A total of 236 immune-related DEGs, most of which were enriched in immune-related biological functions, were found. Further analysis of immune cell infiltration showed that M0 macrophages and neutrophils infiltrated more in the sepsis group, while fewer activated memory CD4+ T cells, resting memory CD4+ T cells, and CD8+ T cells did. The interaction network of ceRNA was successfully constructed. Six key genes (FYN, FBL, ATM, WDR75, FOXO1 and ITK) were identified by WGCNA and PPI analysis. We found strong associations between key genes and constructed septic molecular subtypes or immune cell infiltration. Receiver operating characteristic analysis showed that the area under the curve values of the key genes for diagnosis were all greater than 0.84. Subsequently, we successfully constructed an interaction network of key genes and transcription factors/small-molecule compounds. Finally, the key genes in the samples were verified by RT–qPCR. Conclusion Our results offer new insights into the pathogenesis of sepsis in children and provide new potential diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Huabin Wang
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Wenfang Yi
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Jiahong Li
- Department of Neonatal Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Nannan He
- Department of Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Liangliang Kang
- Department of Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Zhijie He
- Department of Intensive Care Unit, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510000, People’s Republic of China
- Correspondence: Zhijie He; Chun Chen, Email ;
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
6
|
Yin Z, Zou Y, Wang D, Huang X, Xiong S, Cao L, Zhang Y, Sun Y, Zhang N. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discov 2022; 8:119. [PMID: 35296647 PMCID: PMC8927484 DOI: 10.1038/s41420-022-00927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Tyrosine phosphorylation by protein tyrosine kinases (PTKs) is a type of post-translational modification. Tec kinases, which are a subfamily of non-receptor PTKs, were originally discovered in the hematopoietic system and include five members: Tec, Btk, Itk/Emt/Tsk, Etk/Bmx, and Txk/Rlk. With the progression of modern research, certain members of the Tec family of kinases have been found to be expressed outside the hematopoietic system and are involved in the development and progression of a variety of diseases. The role of Tec family kinases in cardiovascular disease is receiving increasing attention. Tec kinases are involved in the occurrence and progression of ischemic heart disease, atherosclerosis, cardiac dysfunction associated with sepsis, atrial fibrillation, myocardial hypertrophy, coronary atherosclerotic heart disease, and myocardial infarction and post-myocardial. However, no reviews have comprehensively clarified the role of Tec kinases in the cardiovascular system. Therefore, this review summarizes research on the role of Tec kinases in cardiovascular disease, providing new insights into the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zeyu Yin
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Huang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengjun Xiong
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Analysis of Sepsis Markers and Pathogenesis Based on Gene Differential Expression and Protein Interaction Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6878495. [PMID: 35190763 PMCID: PMC8858053 DOI: 10.1155/2022/6878495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
Objective The purpose of the present study is to screen the hub genes associated with sepsis, comprehensively understand the occurrence and progress mechanism of sepsis, and provide new targets for clinical diagnosis and treatment of sepsis. Methods The microarray data of GSE9692 and GSE95233 were downloaded from the Gene Expression Omnibus (GEO) database. The dataset GSE9692 contained 29 children with sepsis and 16 healthy children, while the dataset GSE95233 included 102 septic subjects and 22 healthy volunteers. Differentially expressed genes (DEGs) were screened by GEO2R online analysis. The DAVID database was applied to conduct functional enrichment analysis of the DEGs. The STRING database was adopted to acquire protein-protein interaction (PPI) networks. Results We identified 286 DEGs (217 upregulated DEGs and 69 downregulated DEGs) in the dataset GSE9692 and 357 DEGs (236 upregulated DEGs and 121 downregulated DEGs) in the dataset GSE95233. After the intersection of DEGs of the two datasets, a total of 98 co-DEGs were obtained. DEGs associated with sepsis were involved in inflammatory responses such as T cell activation, leukocyte cell-cell adhesion, leukocyte-mediated immunity, cytokine production, immune effector process, lymphocyte-mediated immunity, defense response to fungus, and lymphocyte-mediated immunity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that sepsis was connected to bacterial and viral infections. Through PPI network analysis, we screened the most important hub genes, including ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK. Conclusions In conclusion, the present study revealed an unbalanced immune response at the transcriptome level of sepsis and identified genes for potential biomarkers of sepsis, such as ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK.
Collapse
|
8
|
Dilimulati D, Zhang L, Duan Y, Jia F. Effects of Injury Severity and Brain Temperature on KAT6A Expression after Traumatic Brain Injury in Rats. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Traumatic brain injury (TBI) is associated with a range of neural changes. A comprehensive understanding of the injury-induced lysine acetyltransferase 6A (KAT6A) response, particularly the temporal profile of biochemical alterations, is crucial to design effective therapeutic interventions.Methods: Experiments were performed in male Sprague-Dawley rats. The influence of post-traumatic hypothermia (32°C) or hyperthermia (39°C) on the temporal and regional expression profiles of KAT6A was assessed after moderate or severe TBI. qPCR and western blotting were used to determine the expression of KAT6A in different groups.Results: In the ipsilateral and contralateral hemispheres, significantly lower protein and mRNA expression of KAT6A was found after TBI than sham injury. Moreover, two expression minima of KAT6A were observed in the cortex and hippocampus of the ipsilateral hemisphere. A decrease in injury severity was associated with lower levels of KAT6A mRNA at 12 h and protein at 24 h, but KAT6A mRNA at 48 h and protein at 72 h had alterations. Compared with normothermia and hyperthermia, post-traumatic hypothermia intensified the decrease in KAT6A at both the mRNA and protein levels. In contrast, hyperthermia, as compared with normothermia, did not significantly affect the levels of KAT6A mRNA at 12 h and protein at 24 h, but triggered a significant increase in levels of KAT6A mRNA at 24 h and protein at 72 h. Furthermore, an overall upregulation of KAT6A after TBI was associated with greater injury severity in a time-dependent manner.Conclusions: Post-traumatic hypothermia plays a key role in the regulation of KAT6A expression and thus may at least partially explain the phenotype of post-traumatic temperature in secondary injury after TBI.
Collapse
Affiliation(s)
- Dilirebati Dilimulati
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai 200127, People’s Republic of China
| | - Lin Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai 200127, People’s Republic of China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute, Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People’s Republic of China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai 200127, People’s Republic of China
| |
Collapse
|
9
|
Qiu J, Fu Y, Chen Z, Zhang L, Li L, Liang D, Wei F, Wen Z, Wang Y, Liang S. BTK Promotes Atherosclerosis by Regulating Oxidative Stress, Mitochondrial Injury, and ER Stress of Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9972413. [PMID: 34136067 PMCID: PMC8175170 DOI: 10.1155/2021/9972413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic metabolic disease in arterial walls, characterized by lipid deposition and persistent aseptic inflammation. AS is regarded as the basis of a variety of cardiovascular and cerebrovascular diseases. It is widely acknowledged that macrophages would become foam cells after internalizing lipoprotein particles, which is an initial factor in atherogenesis. Here, we showed the influences of Bruton's tyrosine kinase (BTK) in macrophage-mediated AS and how BTK regulates the inflammatory responses of macrophages in AS. Our bioinformatic results suggested that BTK was a potential hub gene, which is closely related to oxidative stress, ER stress, and inflammation in macrophage-induced AS. Moreover, we found that BTK knockdown could restrain ox-LDL-induced NK-κB signaling activation in macrophages and repressed M1 polarization. The mechanistic studies revealed that oxidative stress, mitochondrial injury, and ER stress in macrophages were also suppressed by BTK knockdown. Furthermore, we found that sh-BTK adenovirus injection could alleviate the severity of AS in ApoE-/- mice induced by a high-fat diet in vivo. Our study suggested that BTK promoted ox-LDL-induced ER stress, oxidative stress, and inflammatory responses in macrophages, and it may be a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Lisui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Ling Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhuzhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yajing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| |
Collapse
|
10
|
Screening of key genes related to the prognosis of mouse sepsis. Biosci Rep 2021; 40:226579. [PMID: 33015708 PMCID: PMC7601352 DOI: 10.1042/bsr20202649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a common clinical disease with high mortality, and patients with sepsis have varied prognoses. Researchers need to explore the underlying mechanisms that determine the prognosis of sepsis. Hence, a mouse model was used to evaluate new potential prognostic markers of sepsis. Mice were randomly divided into low-dose group (n=3, lipopolysaccharides [LPS], 20 mg/kg) and high-dose group (n=3; LPS, 40 mg/kg). Total RNA was extracted from the peripheral blood of mice, and samples were then subjected to RNA sequencing. When complete data were normalized, the high-dose group and low-dose group were screened for differentially expressed genes (DEGs, log2FC ≥ 1 and q value ≤ 0.05). DEGs were analyzed by gene ontology enrichment, and potential core genes were screened using protein–protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA). Moreover, the survival data in GSE65682 were used to observe the correlation between core genes and prognosis. A total of 967 DEGs were identified in the low-dose group, of which 390 were up-regulated and 577 were down-regulated. These genes were mainly enriched in white blood cell activation, lymphocyte activation, immune system response etc. LCK, ZAP70, ITK, CD247, and DOCK2 were found at the core of PPI network, while WGCNA found that interferon-inducible protein 35 (IFI35), ITGB3, and mediator complex subunit 25 (MED25) may be potential core genes. It was demonstrated that CD247, DOCK2, IFI35, ITK, and LCK core genes were positively correlated with prognosis based on GSE65682. CD247, DOCK2, IFI35, ITK, LCK, and MED25 might be important targets affecting the prognosis of sepsis.
Collapse
|
11
|
Zeng X, Feng J, Yang Y, Zhao R, Yu Q, Qin H, Wei L, Ji P, Li H, Wu Z, Zhang J. Screening of Key Genes of Sepsis and Septic Shock Using Bioinformatics Analysis. J Inflamm Res 2021; 14:829-841. [PMID: 33737824 PMCID: PMC7962593 DOI: 10.2147/jir.s301663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Sepsis is a disease associated with high mortality. We performed bioinformatic analysis to identify key biomarkers associated with sepsis and septic shock. Methods The top 20% of genes showing the greatest variance between sepsis and controls in the GSE13904 dataset (children) were screened by co-expression network analysis. The differentially expressed genes (DEGs) were identified through analyzing differential gene expression between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree of connectivity, and the top 100 sepsis-associated genes were identified based on the area under the receiver operating characteristic curve (AUC). In addition, we evaluated differences in immune cell infiltration between sepsis patients and controls in children (GSE13904, GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA methylation levels between sepsis patients and controls in GSE138074 (adults). Results The common genes were associated mainly with up-regulated inflammatory and metabolic responses, as well as down-regulated immune responses. Sepsis patients showed lower infiltration by most types of immune cells. Genes in the PPI network with AUC values greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively dysregulated across controls, sepsis patients and patients with septic shock. In addition, the expression of MAPK14, FGR, and CD247 was modified by methylation. Conclusion This study identified several potential diagnostic genes and inflammatory and metabolic responses mechanisms associated with the development of sepsis.
Collapse
Affiliation(s)
- Xiaoliang Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Han Qin
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Lile Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Hongyuan Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|
12
|
Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020; 9:E2411. [PMID: 33158024 PMCID: PMC7693401 DOI: 10.3390/cells9112411] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Gonzalez-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Mexico City 14330, Mexico; (Z.P.E.-R.); (D.S.-V.); (I.G.R.-M.); (M.J.P.R.); (M.L.)
| |
Collapse
|
13
|
Nelwan SC, Nugraha RA, Endaryanto A, Dewi F, Nuraini P, Tedjosasongko U, Utomo DH. Effect of scaling and root planing on level of immunoglobulin E and immunoglobulin G 4 in children with gingivitis and house-dust mite allergy: A pilot randomised controlled trial. ACTA ACUST UNITED AC 2020; 39:21-31. [PMID: 32054426 DOI: 10.1142/s2214607519500020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and Objective: There is a pressing need for developing innovative strategies to prevent allergic diseases among children. As house-dust mite (HDM) allergy is often seen in children with gingivitis, strategies should be derived from a conceptual framework of allergen elimination and pathogen eradication; one such strategy is dental scaling and root planing (SRP) to remove dental plaque and periodontal pathogens. The study aimed to evaluate the beneficial effects of comprehensive 6-months dental SRP to reduce the level of immunoglobulin E (IgE) and immunoglobulin G4 (IgG4) in children with gingivitis and HDM allergy. IgE and IgG4, whose production is controlled mainly by Th-2 cells and B cells, are proven biomarkers for atopic inflammatory responses. Methods: The present study conducted a non-blinded randomised controlled trial with superiority design. A total of 10 subjects (age range 6-16 years) with gingivitis and positive skin-prick test to HDM from Pediatric Allergy Outpatient Clinic, Dr. Soetomo General Hospital were enrolled in the present study. Of the 10 subjects, only five received dental SRP. We further evaluated total serum IgE and IgG4 level before and 6 months after treatment. Results and Discussion: Subjects in the standard treatment group showed a slight decrease in the IgE level ([Formula: see text]) but no change in the IgG4 level ([Formula: see text]), while subjects in the intervention group showed a significant decrease in IgE ([Formula: see text]) and IgG4 levels ([Formula: see text]). Conclusion: The study results suggest that 6-month comprehensive dental scaling combined with root planing may help to reduce IgE and IgG4 levels in children with gingivitis and HDM allergy. Furthermore, untreated or undertreated gingivitis is often associated with worsening allergic manifestation and thus should be avoided. Trial Registration: ISRCTN31416107, retrospectively registered on 17 April 2018.
Collapse
Affiliation(s)
- Sindy Cornelia Nelwan
- Department of Pediatric Dentistry, Universitas Airlangga, Surabaya, 60135, Indonesia
| | | | - Anang Endaryanto
- Department of Child Health, Universitas Airlangga, Surabaya, 60135, Indonesia
| | - Frisma Dewi
- Department of Pediatric Dentistry, Universitas Airlangga, Surabaya, 60135, Indonesia
| | - Prawati Nuraini
- Department of Pediatric Dentistry, Universitas Airlangga, Surabaya, 60135, Indonesia
| | | | | |
Collapse
|
14
|
Huang L, Ye K, McGee MC, Nidetz NF, Elmore JP, Limper CB, Southard TL, Russell DG, August A, Huang W. Interleukin-2-Inducible T-Cell Kinase Deficiency Impairs Early Pulmonary Protection Against Mycobacterium tuberculosis Infection. Front Immunol 2020; 10:3103. [PMID: 32038633 PMCID: PMC6993117 DOI: 10.3389/fimmu.2019.03103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Interleukin-2 (IL-2) inducible T-cell kinase (ITK) is a non-receptor tyrosine kinase highly expressed in T-cell lineages and regulates multiple aspects of T-cell development and function, mainly through its function downstream of the T-cell receptor. Itk deficiency can lead to CD4 lymphopenia and Epstein-Bar virus (EBV)-associated lymphoproliferation and recurrent pulmonary infections in humans. However, the role of the ITK signaling pathway in pulmonary responses in active tuberculosis due to Mtb infection is not known. We show here that human lungs with active tuberculosis exhibit altered T-cell receptor/ITK signaling and that Itk deficiency impaired early protection against Mtb in mice, accompanied by defective development of IL-17A-producing γδ T cells in the lungs. These findings have important implications of human genetics associated with susceptibility to Mtb due to altered immune responses and molecular signals modulating host immunity that controls Mtb activity. Enhancing ITK signaling pathways may be an alternative strategy to target Mtb infection, especially in cases with highly virulent strains in which IL-17A plays an essential protective role.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, United States.,Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Candice B Limper
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
15
|
Sun B, Liu X, Zheng X, Wang C, Meng Q, Sun H, Shu X, Liu K, Sun X, Li Y, Ma X. Novel Pyrimidines as Multitarget Protein Tyrosine Kinase Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). ChemMedChem 2019; 15:182-187. [PMID: 31755225 DOI: 10.1002/cmdc.201900606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/17/2019] [Indexed: 12/11/2022]
Abstract
A new class of pyrimidine derivatives were identified as potent protein tyrosine kinase (PTK) inhibitors for the treatment of idiopathic pulmonary fibrosis (IPF). Most of these small-molecule inhibitors displayed strong enzymatic activity against BTK and JAK3 kinases at concentrations lower than 10 nM. The representative compound N-(3-((5-chloro-2-(4-((1-morpholino)acetylamino)phenylamino)-4-pyrimidinyl)amino)phenyl)acrylamide (6 a) also exhibited high inhibitory potency toward both BTK and JAK kinase families, as well as ErbB4, at a concentration of 10 nM, achieving rates of inhibition higher than 57 %. Additionally, in vivo biological evaluations showed that 6 a can remarkably decrease the severity of IPF disease. All these investigations suggested that the multi-PTK inhibitor 6 a may serve as a promising agent for the treatment of IPF.
Collapse
Affiliation(s)
- Bo Sun
- Department Institute of Respiratory Diseases, Department of Hematology, No. 222 Zhongshan Road, Dalian, 116022, China
| | - Xiaowen Liu
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Xu Zheng
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Qiang Meng
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Huijun Sun
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Xiaohong Shu
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Kexin Liu
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| | - Xiuli Sun
- Department Institute of Respiratory Diseases, Department of Hematology, No. 222 Zhongshan Road, Dalian, 116022, China
| | - Yanxia Li
- Department Institute of Respiratory Diseases, Department of Hematology, No. 222 Zhongshan Road, Dalian, 116022, China
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Science, No. 9, West section of Lvshun South Road, Dalian, Liaoning Provence, 116044, China
| |
Collapse
|
16
|
Strattan E, Palaniyandi S, Kumari R, Du J, Hakim N, Huang T, Kesler MV, Jennings CD, Sturgill JL, Hildebrandt GC. Mast Cells Are Mediators of Fibrosis and Effector Cell Recruitment in Dermal Chronic Graft-vs.-Host Disease. Front Immunol 2019; 10:2470. [PMID: 31681336 PMCID: PMC6813249 DOI: 10.3389/fimmu.2019.02470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (allo-HSCT) is often used to treat acute leukemia or defects of hematopoiesis. Its widespread use is hampered by graft-vs.-host disease (GVHD), which has high morbidity and mortality in both acute and chronic subtypes. Chronic GVHD (cGVHD) occurs most frequently in skin and often is characterized by pathogenic fibrosis. Mast cells (MCs) are known to be involved in the pathogenesis of other fibrotic diseases. In a murine model of cGVHD after allo-HSCT, C57BL/6J recipients of allogeneic LP/J donor cells develop sclerodermatous dermal cGVHD which is significantly decreased in mast cell-deficient B6.Cg-KitW-sh/HNihrJaeBsmGlliJ recipients. The presence of MCs is associated with fibrosis, chemokine production, and recruitment of GVHD effector cells to the skin. Chemokine production by MCs is blocked by drugs used to treat cGVHD. The importance of MCs in skin cGVHD is mirrored by increased MCs in the skin of patients with dermal cGVHD. We show for the first time a role for MCs in skin cGVHD that may be targetable for preventive and therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Ethan Strattan
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Senthilnathan Palaniyandi
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Reena Kumari
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Jing Du
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Natalya Hakim
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Timothy Huang
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Melissa V Kesler
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - C Darrell Jennings
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Jamie L Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.,Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY, United States
| | - Gerhard C Hildebrandt
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Obeticholic acid alleviate lipopolysaccharide-induced acute lung injury via its anti-inflammatory effects in mice. Int Immunopharmacol 2018; 66:177-184. [PMID: 30468885 DOI: 10.1016/j.intimp.2018.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) is a common disease that may result in acute respiratory failure and death. However, there are still no effective treatments for ALI. Several studies have shown that farnesoid X receptor (FXR) has an anti-inflammatory effect. We investigated the effects of obeticholic acid (OCA), an agonist of FXR, on Lipopolysaccharide (LPS)-induced ALI in mice. Sixty male mice were randomly divided into six groups, and orally administered with or without OCA once daily for 3 consecutive days before LPS (1.0 mg/kg). Animals were sacrificed at 0 h, 2 h or 6 h after LPS. As expected, OCA enhanced pulmonary FXR activity. OCA prevented LPS-induced ALI. Additional experiment showed that OCA alleviated LPS-induced up-regulation of pulmonary pro-inflammatory and chemokine genes. Moreover, OCA also repressed LPS-induced the release of TNF-α and KC in serum and bronchoalveolar lavage fluid. In contrast, OCA further up-regulated LPS-induced the expression of Il-10, an anti-inflammatory cytokine. Further study showed that OCA inhibited LPS-evoked NF-κB signaling in the lungs. OCA attenuated LPS-induced ERK1/2, JNK, p38 and Akt phosphorylation in the lungs. Overall, these results suggest that OCA prevent LPS-induced ALI may be through enhancing pulmonary FXR activity and then blockading several inflammatory signaling pathways.
Collapse
|
18
|
Systems-Based Interactome Analysis for Hematopoiesis Effect of Angelicae sinensis Radix: Regulated Network of Cell Proliferation towards Hemopoiesis. Chin J Integr Med 2018; 25:939-947. [DOI: 10.1007/s11655-018-3003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 10/28/2022]
|
19
|
Rothenberg ME, Saito H, Peebles RS. Advances in mechanisms of allergic disease in 2016. J Allergy Clin Immunol 2017; 140:1622-1631. [PMID: 29038009 DOI: 10.1016/j.jaci.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
This review highlights advances in mechanisms of allergic disease, particularly type 2 innate lymphoid cells; TH2 lymphocytes; eicosanoid regulation of inflammation; extracellular vesicles in allergic responses; IL-33; microbiome properties, especially as they relate to mucosal barrier function; and a series of findings concerning the allergic inflammatory cells eosinophils, basophils, and mast cells. During the last year, mechanistic advances occurred in understanding type 2 innate lymphoid cells, particularly related to their response to ozone, involvement with experimental food allergy responses, and regulation by IL-33. Novel ways of regulating TH2 cells through epigenetic regulation of GATA-3 through sirtuin-1, a class III histone deacetylase, were published. The understanding of eicosanoid regulation of inflammation increased and focused on additional properties of phospholipase A2 and the role of prostaglandin D2 and its receptors and inhibitory prostaglandin E2 pathways. Mechanisms through which extracellular vesicles are released and contribute to allergic responses were reported. There was a deeper appreciation of mucosal barrier function, the epithelial alarmin IL-33, and the microbiome. Finally, there were advances concerning allergic inflammatory cells (mast cells, basophils, and eosinophils) that will undoubtedly have an effect on disease understanding and new therapeutic strategies.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Hirohisa Saito
- National Research Institute for Child Health & Development, Tokyo, Japan
| | - R Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
20
|
Bailin N, Nan C, Peizhi L, Kun H, Xiwen Z, Guosheng R, Jianping G, Wenfeng Z. Changes of Foxo3a in PBMCs and its associations with stress hyperglycemia in acute obstructive suppurative cholangitis patients. Oncotarget 2017; 8:76783-76796. [PMID: 29100348 PMCID: PMC5652742 DOI: 10.18632/oncotarget.20011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Objective The levels of Foxo3a in the peripheral blood mononuclears cells (PBMCs) before and after treatment were detected in acute obstructive suppurative cholangitis (AOSC) patients to evaluate the associations between Foxo3a and stress hyperglycemia (SHG). Methods PBMCs were obtained from AOSC patients (n=28) on admission (AP), from patients at 1 week after cure (RP) and from healthy volunteers (HV) (n=14) to evaluate the relationship between the protein levels of Foxo3a and the serum levels of glucose. Signaling pathways, which link inflammation and glycometabolism, simultaneously affecting the expression of Foxo3a, were detected. In addition, cytokines were detected in PBMCs and AOSC mouse models, which were pre-treated with Foxo3a agonist. Results The levels of glucose and p-Foxo3a in the AP were significantly higher than those in the RP and HV, where as the levels of Foxo3a in the AP were lower than those in the RP and HV. Foxo3a levels in the AP normalized against RP were strongly negatively correlated with the glucose levels in the AP normalized against RP. The levels of sphingosine-1-phosphate receptor 2 (S1PR2) in the AP were higher than those in the RP and HV. In addition, inhibition of Foxo3a phosphorylation, coupled with the down-regulation of S1PR2, attenuated the LPS-induced inflammatory response in the PBMCs and AOSC mouse models. Conclusions Foxo3a is correlated with the dysregulation of glucose homeostasis in the pathogenesis of AOSC-induced sepsis by inhibiting the activation of PI3K/Akt-S1PR2 and NF-κB pathways, hinting at a switched role and therapeutic potentialities in the early stage of sepsis.
Collapse
Affiliation(s)
- Niu Bailin
- Department of Emergency and Department of Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chen Nan
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China.,Department of Anesthesia, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Li Peizhi
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - He Kun
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhu Xiwen
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ren Guosheng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Gong Jianping
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhang Wenfeng
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
21
|
Huang W, Solouki S, Koylass N, Zheng SG, August A. ITK signalling via the Ras/IRF4 pathway regulates the development and function of Tr1 cells. Nat Commun 2017; 8:15871. [PMID: 28635957 PMCID: PMC5482062 DOI: 10.1038/ncomms15871] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
Type 1 regulatory T (Tr1) cells differentiate in response to signals engaging the T cell receptor (TCR), express high levels of the immunosuppressive cytokine IL-10, but not Foxp3, and can suppress inflammation and promote immune tolerance. Here we show that ITK, an important modulator of TCR signalling, is required for the TCR-induced development of Tr1 cells in various organs, and in the mucosal system during parasitic and viral infections. ITK kinase activity is required for mouse and human Tr1 cell differentiation. Tr1 cell development and suppressive function of Itk deficient cells can be restored by the expression of the transcription factor interferon regulatory factor 4 (IRF4). Downstream of ITK, Ras activity is responsible for Tr1 cell induction, as expression of constitutively active HRas rescues IRF4 expression and Tr1 cell differentiation in Itk-/- cells. We conclude that TCR/ITK signalling through the Ras/IRF4 pathway is required for functional development of Tr1 cells.
Collapse
Affiliation(s)
- Weishan Huang
- Center for Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | - Sabrina Solouki
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | - Nicholas Koylass
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | - Song-Guo Zheng
- Center for Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
Huang W, August A. Role(s) of IL-2 inducible T cell kinase and Bruton's tyrosine kinase in mast cell response to lipopolysaccharide. GENOMICS DATA 2016; 8:18-20. [PMID: 27081634 PMCID: PMC4818347 DOI: 10.1016/j.gdata.2016.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/03/2022]
Abstract
Mast cells play critical roles during immune responses to the bacterial endotoxin lipopolysaccharide (LPS) that can lead to fatal septic hypothermia [1], [2], [3]. IL-2 inducible T cell kinase (ITK) and Bruton's tyrosine kinase (BTK) are non-receptor tyrosine kinases that act downstream of numerous receptors, and have been shown to modulate mast cell responses downstream of FcεRIα [4], however, their roles in regulating mast cell responses to endotoxic stimuli were unclear. We found that the absence of ITK and BTK alters the mast cell response to LPS, and leads to enhanced pro-inflammatory cytokine production by mast cells and more severe LPS-induced hypothermia in mice [5]. Here, we detail our investigation using microarray analysis to study the transcriptomic profiles of mast cell responses to LPS, and the roles of ITK and/or BTK expression in this process. Mouse whole genome array data of WT, Itk (-/-) , Btk (-/-) , and Itk (-/-) Btk (-/-) bone marrow-derived mast cells (BMMCs) stimulated by PBS (control) or LPS for 1 h were used in our latest research article [5] and is available in the Gene Expression Omnibus under accession number GSE64287.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|