1
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
2
|
Taherian MR, Azarbar P, Barkhordar M, Toufani S, Aliabadi LS, Bahri T, Ahmadvand M, Yaghmaie M, Daneshvar A, Vaezi M. Efficacy and safety of adoptive T-cell therapy in treating cytomegalovirus infections post-haematopoietic stem cell transplantation: A systematic review and meta-analysis. Rev Med Virol 2024; 34:e2558. [PMID: 38878003 DOI: 10.1002/rmv.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Cytomegalovirus (CMV) infection poses significant risks in allogeneic haematopoietic stem cell transplant (allo-HSCT) recipients. Despite advances in antiviral therapies, issues such as drug resistance, side effects, and inadequate immune reconstitution remain. This systematic review and meta-analysis aim to evaluate the efficacy and safety of adoptive cell therapy (ATC) in managing CMV infections in allo-HSCT recipients. Adhering to preferred reporting items for systematic reviews and meta-analyses guidelines, we conducted a comprehensive database search through July 2023. A systematic review and meta-analysis were conducted on studies involving HSCT patients with CMV infections treated with ATC. The primary outcome was the response rate to ATC, and secondary outcomes included adverse events associated with ATC. The Freeman-Tukey transformation was applied for analysis. In the meta-analysis of 40 studies involving 953 participants, ATC achieved an overall integrated response rate of 90.16%, with a complete response of 82.59% and a partial response of 22.95%. ATC source, HLA matching, steroid intake, and age group markedly influenced response rates. Donor-derived T-cell treatments exhibited a higher response rate (93.66%) compared to third-party sources (88.94%). HLA-matched patients demonstrated a response rate of 92.90%, while mismatched patients had a lower rate. Children showed a response rate of 83.40%, while adults had a notably higher rate of 98.46%. Adverse events were minimal, with graft-versus-host disease occurring in 24.32% of patients. ATC shows promising response rates in treating CMV infections post-HSCT, with an acceptable safety profile. However, to establish its efficacy conclusively and compare it with other antiviral treatments, randomised controlled trials are essential. Further research should prioritise such trials over observational and one-arm studies to provide robust evidence for clinical decision-making.
Collapse
Affiliation(s)
- Mohammad Reza Taherian
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouya Azarbar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Toufani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marjan Yaghmaie
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Daneshvar
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Keller MD, Hanley PJ, Chi YY, Aguayo-Hiraldo P, Dvorak CC, Verneris MR, Kohn DB, Pai SY, Dávila Saldaña BJ, Hanisch B, Quigg TC, Adams RH, Dahlberg A, Chandrakasan S, Hasan H, Malvar J, Jensen-Wachspress MA, Lazarski CA, Sani G, Idso JM, Lang H, Chansky P, McCann CD, Tanna J, Abraham AA, Webb JL, Shibli A, Keating AK, Satwani P, Muranski P, Hall E, Eckrich MJ, Shereck E, Miller H, Mamcarz E, Agarwal R, De Oliveira SN, Vander Lugt MT, Ebens CL, Aquino VM, Bednarski JJ, Chu J, Parikh S, Whangbo J, Lionakis M, Zambidis ET, Gourdine E, Bollard CM, Pulsipher MA. Antiviral cellular therapy for enhancing T-cell reconstitution before or after hematopoietic stem cell transplantation (ACES): a two-arm, open label phase II interventional trial of pediatric patients with risk factor assessment. Nat Commun 2024; 15:3258. [PMID: 38637498 PMCID: PMC11026387 DOI: 10.1038/s41467-024-47057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Yueh-Yun Chi
- Department of Pediatrics and Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paibel Aguayo-Hiraldo
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and BMT, University of California San Francisco, San Francisco, CA, USA
| | - Michael R Verneris
- Department of Pediatrics and Division of Child's Cancer and Blood Disorders, Children's Hospital Colorado and University of Colorado, Denver, CO, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics and Department of Pediatrics David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Blachy J Dávila Saldaña
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Benjamin Hanisch
- Division of Pediatric Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Troy C Quigg
- Pediatric Blood & Bone Marrow Transplant and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Roberta H Adams
- Center for Cancer and Blood Disorders, Phoenix Children's/Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Ann Dahlberg
- Clinical Research Division, Fred Hutch Cancer Center/Seattle Children's Hospital/University of Washington, Seattle, WA, USA
| | | | - Hasibul Hasan
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Jemily Malvar
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | - Christopher A Lazarski
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Gelina Sani
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - John M Idso
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Haili Lang
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Pamela Chansky
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Jay Tanna
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Allistair A Abraham
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Jennifer L Webb
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - Abeer Shibli
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Amy K Keating
- Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Prakash Satwani
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center, New York, NY, USA
| | - Pawel Muranski
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Erin Hall
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Michael J Eckrich
- Pediatric Transplant and Cellular Therapy, Levine Children's Hospital, Wake Forest School of Medicine, Charlotte, NC, USA
| | - Evan Shereck
- Division of Hematology and Oncology, Oregon Health & Science Univ, Portland, OR, USA
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's/Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajni Agarwal
- Division of Pediatric Hematology/Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, CA, USA
| | - Satiro N De Oliveira
- Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mark T Vander Lugt
- Division of Pediatric Hematology/Oncology/BMT, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, University of Minnesota MHealth Fairview Masonic Children's Hospital, Minneapolis, MI, USA
| | - Victor M Aquino
- Division of Pediatric Hematology/Oncology, University of Texas, Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Jeffrey J Bednarski
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Julia Chu
- Division of Pediatric Allergy, Immunology, and BMT, University of California San Francisco, San Francisco, CA, USA
| | - Suhag Parikh
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer Whangbo
- Cancer and Blood Disorders Center, Dana Farber Institute and Boston Children's Hospital, Boston, MA, USA
| | - Michail Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elias T Zambidis
- Pediatric Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Gourdine
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Catherine M Bollard
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Michael A Pulsipher
- Division of Pediatric Hematology/Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Wistinghausen B, Toner K, Barkauskas DA, Jerkins LP, Kinoshita H, Chansky P, Pezzella G, Saguilig L, Hayashi RJ, Abhyankar H, Scull B, Karri V, Tanna J, Hanley P, Hermiston ML, Allen CE, Bollard CM. Durable immunity to EBV after rituximab and third-party LMP-specific T cells: a Children's Oncology Group study. Blood Adv 2024; 8:1116-1127. [PMID: 38163318 PMCID: PMC10909726 DOI: 10.1182/bloodadvances.2023010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Posttransplant lymphoproliferative disease (PTLD) in pediatric solid organ transplant (SOT) recipients is characterized by uncontrolled proliferation of Epstein-Barr virus-infected (EBV+) B cells due to decreased immune function. This study evaluated the feasibility, safety, clinical and immunobiological outcomes in pediatric SOT recipients with PTLD treated with rituximab and third-party latent membrane protein-specific T cells (LMP-TCs). Newly diagnosed (ND) patients without complete response to rituximab and all patients with relapsed/refractory (R/R) disease received LMP-TCs. Suitable LMP-TC products were available for all eligible subjects. Thirteen of 15 patients who received LMP-TCs were treated within the prescribed 14-day time frame. LMP-TC therapy was generally well tolerated. Notable adverse events included 3 episodes of rejection in cardiac transplant recipients during LMP-TC therapy attributed to subtherapeutic immunosuppression and 1 episode of grade 3 cytokine release syndrome. Clinical outcomes were associated with disease severity. Overall response rate (ORR) after LMP-TC cycle 1 was 70% (7/10) for the ND cohort and 20% (1/5) for the R/R cohort. For all cohorts combined, the best ORR for LMP-TC cycles 1 and 2 was 53% and the 2-year overall survival was 70.7%. vβT-cell receptor sequencing showed persistence of adoptively transferred third-party LMP-TCs for up to 8 months in the ND cohort. This study establishes the feasibility of administering novel T-cell therapies in a cooperative group clinical trial and demonstrates the potential for positive outcomes without chemotherapy for ND patients with PTLD. This trial was registered at www.clinicaltrials.gov as #NCT02900976 and at the Children's Oncology Group as ANHL1522.
Collapse
Affiliation(s)
- Birte Wistinghausen
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Keri Toner
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Lauren P Jerkins
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hannah Kinoshita
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Pamela Chansky
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Gloria Pezzella
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Lauren Saguilig
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Robert J. Hayashi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Harshal Abhyankar
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Brooks Scull
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | | | - Jay Tanna
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Patrick Hanley
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Michelle L. Hermiston
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Carl E. Allen
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Catherine M. Bollard
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
5
|
O’Reilly RJ, Prockop S, Oved JH. Virus-specific T-cells from third party or transplant donors for treatment of EBV lymphoproliferative diseases arising post hematopoietic cell or solid organ transplantation. Front Immunol 2024; 14:1290059. [PMID: 38274824 PMCID: PMC10808771 DOI: 10.3389/fimmu.2023.1290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
EBV+ lymphomas constitute a significant cause of morbidity and mortality in recipients of allogeneic hematopoietic cell (HCT) and solid organ transplants (SOT). Phase I and II trials have shown that in HCT recipients, adoptive transfer of EBV-specific T-cells from the HCT donor can safely induce durable remissions of EBV+ lymphomas including 70->90% of patients who have failed to respond to treatment with Rituximab. More recently, EBV-specific T-cells generated from allogeneic 3rd party donors have also been shown to induce durable remission of EBV+ lymphomas in Rituximab refractory HCT and SOT recipients. In this review, we compare results of phase I and II trials of 3rd party and donor derived EBV-specific T-cells. We focus on the attributes and limitations of each product in terms of access, safety, responses achieved and durability. The limited data available regarding donor and host factors contributing to T cell persistence is also described. We examine factors contributing to treatment failures and approaches to prevent or salvage relapse. Lastly, we summarize strategies to further improve results for virus-specific immunotherapies for post-transplant EBV lymphomas.
Collapse
Affiliation(s)
- Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Susan Prockop
- Pediatric Stem Cell Transplantation, Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph H. Oved
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
6
|
Paris K, Wall LA. The Treatment of Primary Immune Deficiencies: Lessons Learned and Future Opportunities. Clin Rev Allergy Immunol 2023; 65:19-30. [PMID: 35776401 PMCID: PMC9247903 DOI: 10.1007/s12016-022-08950-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Primary immunodeficiency is a group of disorders associated with susceptibility to infectious agents and the development of various comorbidities. Many primary immunodeficiencies are complicated by immune dysregulation, autoinflammation, or autoimmunity which impacts multiple organ systems. Major advances in the treatment of these disorders have occurred over the last half-century, and deeper molecular understanding of many disorders combined with clinically available genetic testing is allowing for use of precision therapy for several primary immunodeficiencies. Patients with antibody deficiencies who rely on immunoglobulin replacement therapy now have many treatment options with products that are much safer and better tolerated compared to the past. Newborn screening for severe combined immunodeficiency, now implemented throughout the USA and in many countries worldwide, has lowered the age at which many patients are diagnosed with these diseases. Early diagnosis of severe combined immunodeficiency allows infants to proceed to definitive therapy such as stem cell transplantation or gene therapy prior to facing potentially life-threatening infections. While stem cell transplantation continues to carry significant risks, knowledge gained over recent decades is allowing for improved survival with less toxicity and less graft versus host disease.
Collapse
Affiliation(s)
- Kenneth Paris
- Department of Pediatrics, Division of Allergy and Immunology, Louisiana State University Health Sciences Center New Orleans and Children’s Hospital New Orleans, New Orleans, LA USA
| | - Luke A. Wall
- Department of Pediatrics, Division of Allergy and Immunology, Louisiana State University Health Sciences Center New Orleans and Children’s Hospital New Orleans, New Orleans, LA USA
| |
Collapse
|
7
|
Grasa C, Monteagudo-Vilavedra E, Pérez-Arenas E, Falces-Romero I, Mozo Del Castillo Y, Schüffelmann-Gutiérrez C, Del Rosal T, Méndez-Echevarría A, Baquero-Artigao F, Zarauza Santoveña A, Serrano Fernández P, Sainz T, Calvo C. Adenovirus Infection in Hematopoietic and Solid Organ Paediatric Transplant Recipients: Treatment, Outcomes, and Use of Cidofovir. Microorganisms 2023; 11:1750. [PMID: 37512922 PMCID: PMC10386416 DOI: 10.3390/microorganisms11071750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND human adenovirus (hAdV) infection constitutes an important cause of morbidity and mortality in transplant recipients, due to their immune status. Among drugs currently available, cidofovir (CDF) is the most prescribed. METHODS Retrospective study of hAdV infection in paediatric transplant recipients from a tertiary paediatric centre, describing characteristics, management, and outcomes, and focused on the role of CDF. RESULTS 49 episodes of infection by hAdV were detected during a four-year period: 38 episodes in patients that received allogeneic hematopoietic stem cell transplantation (77.6%) and 11 in solid organ transplant recipients (22.4%). Twenty-five patients (52.1%) were symptomatic, presenting mainly fever and/or diarrhoea. CDF was prescribed in 24 patients (49%), with modest results. CDF use was associated with the presence of symptoms resulting in lower lymphocyte count, paediatric intensive care unit admission, and high viral load. Other therapeutic measures included administration of intravenous immunoglobulin, reducing immunosuppression, and T-lymphocyte infusion. Despite treatment, 22.9% of patients did not resolve the infection and there were three deaths related to hAdV infection. All-cause mortality was 16.7% (8 episodes) by 30 days, and 32.7% (16 episodes) by 90 days, of which, 3 episodes (3/16, 18.8%) were attributed to hAdV directly. CONCLUSIONS hAdV infection had high morbidity and mortality in our series. CDF use is controversial, and available therapeutic options are limited. Transplant patients with low lymphocyte count are at higher risk of persistent positive viremias, and short-term survival of these patients was influenced by the resolution of hAdV infection.
Collapse
Affiliation(s)
- Carlos Grasa
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
| | | | - Elena Pérez-Arenas
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Iker Falces-Romero
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Microbiology Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28041 Madrid, Spain
| | - Yasmina Mozo Del Castillo
- Pediatric Hematology and Oncology Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Cristina Schüffelmann-Gutiérrez
- Pediatric Intensive Care Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Teresa Del Rosal
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
| | - Ana Méndez-Echevarría
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Fernando Baquero-Artigao
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
| | | | | | - Talía Sainz
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Calvo
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Slatter MA, Maschan MA, Gennery AR. T-lymphocyte depleted transplants for inborn errors of immunity. Expert Rev Clin Immunol 2023; 19:1315-1324. [PMID: 37554030 DOI: 10.1080/1744666x.2023.2245146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation is a curative treatment for many inborn errors of immunity (IEI). Incremental improvements and advances in care have led to high rates of >85% survival and cure in many of these diseases. Improvements in HLA-classification and matching have led to increased survival using HLA-matched donors, but survival using T-lymphocyte-depleted mismatched grafts remained significantly worse until fairly recently. Advances in T-lymphocyte depletion methods and graft engineering, although not specific to IEI, have been widely adopted and instrumental in changing the landscape of donor selection, such that a donor should now be possible for every patient. AREAS COVERED A literature review focusing on T-lymphocyte depletion methodologies and treatment results was performed. The importance of early T-lymphocyte immunoreconstitution to protect against viral infection is reviewed. Two main platforms now dominate the field - immune-magnetic selection of specific cell types and post-transplant chemotherapeutic targeting of rapidly proliferating allo-reactive T-lymphocytes - the emerging literature on these reports, focusing on IEI, is explored, as well as the impact of serotherapy on early immunoreconstitution. EXPERT OPINION Pharmacokinetic monitoring of serotherapy agents, and use of co-stimulatory molecule blockade are likely to become more widespread. Post-transplant cyclophosphamide or TCR depletion strategies are likely to become the dominant methods of transplantation for nonmalignant diseases.
Collapse
Affiliation(s)
- M A Slatter
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - M A Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Hematology, Oncology and Radiation Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
9
|
Israeli S, Krakow EF, Maiers M, Summers C, Louzoun Y. Trans-population graph-based coverage optimization of allogeneic cellular therapy. Front Immunol 2023; 14:1069749. [PMID: 37261360 PMCID: PMC10227669 DOI: 10.3389/fimmu.2023.1069749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/28/2023] [Indexed: 06/02/2023] Open
Abstract
Background Pre-clinical development and in-human trials of 'off-the-shelf' immune effector cell therapy (IECT) are burgeoning. IECT offers many potential advantages over autologous products. The relevant HLA matching criteria vary from product to product and depend on the strategies employed to reduce the risk of GvHD or to improve allo-IEC persistence, as warranted by different clinical indications, disease kinetics, on-target/off-tumor effects, and therapeutic cell type (T cell subtype, NK, etc.). Objective The optimal choice of candidate donors to maximize target patient population coverage and minimize cost and redundant effort in creating off-the-shelf IECT product banks is still an open problem. We propose here a solution to this problem, and test whether it would be more expensive to recruit additional donors or to prevent class I or class II HLA expression through gene editing. Study design We developed an optimal coverage problem, combined with a graph-based algorithm to solve the donor selection problem under different, clinically plausible scenarios (having different HLA matching priorities). We then compared the efficiency of different optimization algorithms - a greedy solution, a linear programming (LP) solution, and integer linear programming (ILP) -- as well as random donor selection (average of 5 random trials) to show that an optimization can be performed at the entire population level. Results The average additional population coverage per donor decrease with the number of donors, and varies with the scenario. The Greedy, LP and ILP algorithms consistently achieve the optimal coverage with far fewer donors than the random choice. In all cases, the number of randomly-selected donors required to achieve a desired coverage increases with increasing population. However, when optimal donors are selected, the number of donors required may counter-intuitively decrease with increasing population size. When comparing recruiting more donors vs gene editing, the latter was generally more expensive. When choosing donors and patients from different populations, the number of random donors required drastically increases, while the number of optimal donors does not change. Random donors fail to cover populations different from their original populations, while a small number of optimal donors from one population can cover a different population. Discussion Graph-based coverage optimization algorithms can flexibly handle various HLA matching criteria and accommodate additional information such as KIR genotype, when such information becomes routinely available. These algorithms offer a more efficient way to develop off-the-shelf IECT product banks compared to random donor selection and offer some possibility of improved transparency and standardization in product design.
Collapse
Affiliation(s)
- Sapir Israeli
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Elizabeth F. Krakow
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medical Oncology, University of Washington, Seattle, WA, United States
| | - Martin Maiers
- Department of Bioinformatics, Center for Blood and Marrow Transplant Research, Minneapolis, MN, United States
- Department of Bioinformatics, National Marrow Donor Program/Be The Match, Minneapolis, MN, United States
| | - Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medical Oncology, University of Washington, Seattle, WA, United States
- Pediatric Hematology/Oncology Department, Seattle Children’s Hospital, Seattle, WA, United States
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Slatter M, Lum SH. Personalized hematopoietic stem cell transplantation for inborn errors of immunity. Front Immunol 2023; 14:1162605. [PMID: 37090739 PMCID: PMC10113466 DOI: 10.3389/fimmu.2023.1162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Patients with inborn errors of immunity (IEI) have been transplanted for more than 50 years. Many long-term survivors have ongoing medical issues showing the need for further improvements in how hematopoietic stem cell transplantation (HSCT) is performed if patients in the future are to have a normal quality of life. Precise genetic diagnosis enables early treatment before recurrent infection, autoimmunity and organ impairment occur. Newborn screening for severe combined immunodeficiency (SCID) is established in many countries. For newly described disorders the decision to transplant is not straight-forward. Specific biologic therapies are effective for some diseases and can be used as a bridge to HSCT to improve outcome. Developments in reduced toxicity conditioning and methods of T-cell depletion for mismatched donors have made transplant an option for all eligible patients. Further refinements in conditioning plus precise graft composition and additional cellular therapy are emerging as techniques to personalize the approach to HSCT for each patient.
Collapse
Affiliation(s)
- Mary Slatter
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Su Han Lum
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Sacco KA, Notarangelo LD, Delmonte OM. When to suspect inborn errors of immunity in Epstein-Barr virus-related lymphoproliferative disorders. Clin Microbiol Infect 2023; 29:457-462. [PMID: 36209991 PMCID: PMC10066820 DOI: 10.1016/j.cmi.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND More than 95% of humans have been infected with Epstein-Barr virus (EBV) and develop anti-EBV IgG antibodies, conferring immunity. However, among specific populations, EBV may induce a range of B-cell lymphoproliferative disorders (LPDs). EBV may also contribute to T-cell and natural killer (NK)-cell lymphoproliferation. The immune system is essential to prevent infection and development of cancer. Inborn errors of immunity (IEIs) are a heterogenous group of more than 450 genetic disorders predisposing to severe and/or recurrent infection, autoimmunity, autoinflammation, or early-onset/severe neoplasia or lymphoproliferation. Monogenic disorders of T-cell and B-cell signalling are classic IEIs that predispose to EBV-associated LPDs. OBJECTIVES We aimed to outline the various clinical manifestations of EBV-associated LPDs and the underlying IEIs associated with such presentations and discuss the recommended management and therapeutic options pertaining to these disorders. SOURCES We searched PubMed, Embase, and Web of Science Core Collection on 30 September 2021. Clinical studies, systematic reviews, narrative reviews, and case reports were identified through search strategy and cross reference from primary literature. CONTENT Effective T-cell and NK-cell cytotoxicity towards EBV-infected B cells relies on intact MAGT1-dependent NKG2D pathways and signalling lymphocyte activation molecular-associated protein-dependent signalling lymphocyte activation molecular receptors. The interaction between CD27 and CD70 is also critical to drive the expansion of EBV-specific T cells. IEIs due to T-cell and B-cell signalling defects and/or impaired T-cell and NK-cell cytotoxicity predispose to EBV-related lymphoproliferation. This includes classic disorders such as X-linked lymphoproliferative disease 1 (due to SH2D1A mutations), X-linked lymphoproliferative disease 2 (XIAP), and other genetic diseases, such as ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. EBV-driven lymphoproliferation may manifest to a lesser degree in MST1/STK4, DOCK8, STIM1, CORO1A, IL21R, PIK3CD gain-of-function, and PI3KR1 deficiencies. IMPLICATIONS Early screening for IEIs is indicated in cases of EBV-related lymphoproliferation because different forms of IEIs have specific prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Klein OR, Bonfim C, Abraham A, Ruggeri A, Purtill D, Cohen S, Wynn R, Russell A, Sharma A, Ciccocioppo R, Prockop S, Boelens JJ, Bertaina A. Transplant for non-malignant disorders: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the role of alternative donors, stem cell sources and graft engineering. Cytotherapy 2023; 25:463-471. [PMID: 36710227 DOI: 10.1016/j.jcyt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and supportive care technologies improve, this life-saving treatment may be offered to more and more patients. With the development of new preparative regimens, expanded alternative donor availability, and graft manipulation techniques, there are many options when choosing the best regimen for patients. Herein the authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft manipulation strategies for patients with non-malignant disorders undergoing HSCT.
Collapse
Affiliation(s)
- Orly R Klein
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA.
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Allistair Abraham
- Center for Cancer and Immunology Research, Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC, USA
| | - Annalisa Ruggeri
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Duncan Purtill
- Department of Hematology, Fiona Stanley Hospital, Perth, Australia
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico G.B. Rossi and University of Verona, Verona, Italy
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review provides readers with examples of refractory infections due to inborn errors of immunity, highlighting how they may be successfully treated by deducing and targeting the underlying immunodeficiency. RECENT FINDINGS The use of host-directed immunotherapy to treat infectious disease in inborn errors of immunity is currently limited but growing. Different strategies include depleting the cellular reservoir for pathogens with restricted cell-tropism; augmenting the diminished effector response; and restoring molecular equipoise. The immunotherapies illustrated are existing drugs that have been re-purposed and rationally used, depending on the molecular or cellular impact of the mutation. As more biologic response modifiers and molecular targeted therapies are developed for other indications, they open the avenues for their use in inborn errors of immunity. Conversely, as more molecular pathways underlying defective immune responses and refractory infections are elucidated, they lend themselves to tractability with these emerging therapies. SUMMARY Infections that fail appropriate antimicrobial therapy are a harbinger of underlying inborn errors of immunity. Dissecting the mechanism by which the immune system fails provides opportunities to target the host response and make it succeed.
Collapse
|
14
|
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. Int J Mol Sci 2022; 23:ijms232315122. [PMID: 36499448 PMCID: PMC9737069 DOI: 10.3390/ijms232315122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
Collapse
|
15
|
Ouellette CP. Adoptive Immunotherapy for Prophylaxis and Treatment of Cytomegalovirus Infection. Viruses 2022; 14:v14112370. [PMID: 36366468 PMCID: PMC9694397 DOI: 10.3390/v14112370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, is frequent among hematopoietic cell transplant (HCT) and solid organ transplant (SOT) recipients in absence of antiviral prophylaxis, and is a major cause of morbidity and mortality in these vulnerable populations. Antivirals such ganciclovir, valganciclovir, and foscarnet are the backbone therapies, however drug toxicity and antiviral resistance may render these agents suboptimal in treatment. Newer therapies such as letermovir and maribavir have offered additional approaches for antiviral prophylaxis as well as treatment of drug resistant CMV infection, though may be limited by cost, drug intolerance, or toxicity. Adoptive immunotherapy, the transfer of viral specific T-cells (VSTs), offers a new approach in treatment of drug-resistant or refractory viral infections, with early clinical trials showing promise with respect to efficacy and safety. In this review, we will discuss some of the encouraging results and challenges of widespread adoption of VSTs in care of immunocompromised patients, with an emphasis on the clinical outcomes for treatment and prophylaxis of CMV infection among high-risk patient populations.
Collapse
Affiliation(s)
- Christopher P Ouellette
- Division of Pediatric Infectious Diseases and Host Defense Program, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
16
|
Weißert K, Ammann S, Kögl T, Dettmer‐Monaco V, Schell C, Cathomen T, Ehl S, Aichele P. Adoptive T cell therapy cures mice from active hemophagocytic lymphohistiocytosis (HLH). EMBO Mol Med 2022; 14:e16085. [PMID: 36278424 PMCID: PMC9728053 DOI: 10.15252/emmm.202216085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022] Open
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome caused by impaired lymphocyte cytotoxicity. First-line therapeutic regimens directed against activated immune cells or secreted cytokines show limited efficacy since they do not target the underlying immunological problem: defective lymphocyte cytotoxicity causing prolonged immune stimulation. A potential rescue strategy would be the adoptive transfer of ex vivo gene-corrected autologous T cells. However, transfusion of cytotoxicity-competent T cells under conditions of hyperinflammation may cause more harm than benefit. As a proof-of-concept for adoptive T cell therapy (ATCT) under hyperinflammatory conditions, we transferred syngeneic, cytotoxicity-competent T cells into mice with virally triggered active primary HLH. ATCT with functional syngeneic trigger-specific T cells cured Jinx mice from active HLH without life-threatening side effects and protected Perforin-deficient mice from lethal HLH progression by reconstituting cytotoxicity. Cured mice were protected long-term from HLH relapses. A threshold frequency of transferred T cells with functional differentiation was identified as a predictive biomarker for long-term survival. This study is the first proof-of-concept for ATCT in active HLH.
Collapse
Affiliation(s)
- Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Tamara Kögl
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Immunology, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Viviane Dettmer‐Monaco
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Integrative Biological Signalling StudiesAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
17
|
Slatter MA, Gennery AR. Advances in the treatment of severe combined immunodeficiency. Clin Immunol 2022; 242:109084. [DOI: 10.1016/j.clim.2022.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
18
|
Immunocompromised host section: Adoptive T-cell therapy for dsDNA viruses in allogeneic hematopoietic cell transplant recipients. Curr Opin Infect Dis 2022; 35:302-311. [PMID: 35849520 DOI: 10.1097/qco.0000000000000838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Double-stranded DNA (dsDNA) viruses remain important causes of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). As treatment options are limited, adoptive therapy with virus-specific T cells (VST) is promising in restoring immunity and thereby preventing and treating virus infections. Here we review current evidence and recent advances in the field of VST for dsDNA viruses in allogeneic HCT recipients. RECENT FINDINGS Four different protocols for VST generation are currently used in clinical trials, and various products including multivirus-specific and off-the-shelf products are under investigation for prophylaxis, preemptive therapy or treatment. Data from nearly 1400 dsDNA-VST applications in allogeneic HCT patients have been published and demonstrated its safety. Although Epstein-Barr virus, cytomegalovirus, and adenovirus-specific T-cell therapy studies have predominated over the past 25 years, additional human herpes viruses were added to multivirus-specific T cells over the last decade and clinical evidence for polyomavirus-specific VST has just recently emerged. Response rates of around 70-80% have been reported, but cautious interpretation is warranted as data are predominantly from phase 1/2 studies and clinical efficacy needs to be confirmed in phase 3 studies. SUMMARY Investigation on the 'ideal' composition of VST is ongoing. Several products recently entered phase 3 trials and may allow widespread clinical use in the near future.
Collapse
|
19
|
Viral infection in hematopoietic stem cell transplantation: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee review on the role of cellular therapy in prevention and treatment. Cytotherapy 2022; 24:884-891. [PMID: 35705447 DOI: 10.1016/j.jcyt.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/13/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Despite recent advances in the field of HSCT, viral infections remain a frequent causeof morbidity and mortality among HSCT recipients. Adoptive transfer of viral specific T cells has been successfully used both as prophylaxis and treatment of viral infections in immunocompromised HSCT recipients. Increasingly, precise risk stratification of HSCT recipients with infectious complications should incorporate not only pretransplant clinical criteria, but milestones of immune reconstitution as well. These factors can better identify those at highest risk of morbidity and mortality and identify a population of HSCT recipients in whom adoptive therapy with viral specific T cells should be considered for either prophylaxis or second line treatment early after inadequate response to first line antiviral therapy. Broadening these approaches to improve outcomes for transplant recipients in countries with limited resources is a major challenge. While the principles of risk stratification can be applied, early detection of viral reactivation as well as treatment is challenging in regions where commercial PCR assays and antiviral agents are not readily available.
Collapse
|
20
|
Quinn J, Modell V, Orange JS, Modell F. Growth in diagnosis and treatment of primary immunodeficiency within the global Jeffrey Modell Centers Network. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:19. [PMID: 35246253 PMCID: PMC8896271 DOI: 10.1186/s13223-022-00662-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Primary immunodeficiencies (PI), which include more than 450 single-gene inborn errors of immunity and may affect up to 1% of the population, are genetic disorders that impair the immune system. If not properly identified and treated, individuals with PI are subject to serious, prolonged, and sometimes life-threatening infections or autoimmunity. Despite advancements, awareness of PI remains a critical issue for physicians and the public alike, as this leads to the enhanced and expedited management of these conditions. To address this critical issue, the Jeffrey Modell Foundation (JMF) formed a global network of specialized centers. The goal of this endeavor was to raise awareness of PI to better identify, diagnose, and treat patients, reducing associated mortality and morbidity and improving quality of life (QOL). For more than two decades, the Jeffrey Modell Centers Network (JMCN) has served as the foundation upon which these goals have been pursued. The JMCN currently includes 909 Expert Physicians at 400 institutions, in 316 cities, and 86 countries spanning six continents. METHODS A survey was developed by JMF for members of the JMCN, following the most recent Classification of PI from the IUIS Expert Committee, to periodically describe the patient population, including treatment modalities and demographics. Physician-reported data from 2021 was compared to that from 2018 and 2013. Physicians in the JMCN also reported on select outcomes of their PI patients one year prior to and one year following diagnosis. RESULTS A total of 300 JMF Physician Surveys from 681 physicians were included in this analysis. This is a 75% physician response rate. From 2013 to 2021, there was a 96.3% increase in patients followed in the US and an 86.1% increase globally. During the same period, patients identified with a specific PI defect increased by 46.6% in the US and 47.9% globally. Patients receiving IgG and HSCT increased by 110% and 201% respectfully since 2013. Early diagnosis led to reported decreased morbidity and mortality and reduced calculated healthcare costs. CONCLUSIONS This global analysis of physician-reported data on patients with PI demonstrates an increase in both diagnosed and treated patients. This substantial increase from within the JMCN is a testament to its impact. In addition to building an extensive global patient database, the expanding JMCN serves as a unique and critical resource, providing the infrastructure for earliest diagnosis, optimized treatments, and implementation of standard-of-care and best practices. The JMCN provides a critical platform that facilitates the education of physicians and patients, awareness initiatives, and research advances, through collaboration and connectivity, ultimately resulting in improved outcomes and QOL for patients with PI. The JMCN has steadily and substantially grown for more than two decades and continues to substantively impact the field of Immunology globally.
Collapse
Affiliation(s)
- Jessica Quinn
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA
| | - Vicki Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA
| | - Jordan S Orange
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA
| | - Fred Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York, NY, 10017, USA.
| |
Collapse
|
21
|
Holland EM, Gonzalez C, Levy E, Valera VA, Chalfin H, Klicka-Skeels J, Yates B, Kleiner DE, Hadigan C, Dave H, Shalabi H, Hickstein DD, Su HC, Grimley M, Freeman AF, Shah NN. Case Report: Fatal Complications of BK Virus-Hemorrhagic Cystitis and Severe Cytokine Release Syndrome Following BK Virus-Specific T-Cells. Front Immunol 2021; 12:801281. [PMID: 34975916 PMCID: PMC8718506 DOI: 10.3389/fimmu.2021.801281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
BK virus (BKV)-hemorrhagic cystitis (HC) is a well-known and rarely fatal complication of hematopoietic stem cell transplantation (HSCT). Treatment for BKV-HC is limited, but virus-specific T-cells (VST) represent a promising therapeutic option feasible for use posttransplant. We report on the case of a 16-year-old male with dedicator of cytokinesis 8 (DOCK8) deficiency who underwent haploidentical HSCT complicated by severe BKV-HC, catastrophic renal hemorrhage, and VST-associated cytokine release syndrome (CRS). Gross hematuria refractory to multiple interventions began with initiation of posttransplant cyclophosphamide (PT/Cy). Complete left renal arterial embolization (day +43) was ultimately indicated to control intractable renal hemorrhage. Subsequent infusion of anti-BK VSTs was complicated by CRS and progressive multiorgan failure, with postmortem analysis confirming diagnosis of hepatic sinusoidal obstruction syndrome (SOS). This case illustrates opportunities for improvement in the management of severe BKV-HC posttransplant while highlighting rare and potentially life-threatening complications of BKV-HC and VST therapy.
Collapse
Affiliation(s)
- Elizabeth M. Holland
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Corina Gonzalez
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
- Immune Deficiency- Cellular Therapy Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elliot Levy
- Radiology and Imaging Sciences, NIH Clinical Center (CC), Bethesda, MD, United States
| | - Vladimir A. Valera
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Heather Chalfin
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Colleen Hadigan
- Pediatric Gastroenterology, NIH Clinical Center (CC), Bethesda, MD, United States
| | - Hema Dave
- Pediatric Oncology, Children’s National Medical Center, Washington, DC, United States
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dennis D. Hickstein
- Immune Deficiency- Cellular Therapy Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Disease, NIH Clinical Center (CC), Bethesda, MD, United States
| | - Michael Grimley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Disease, NIH Clinical Center (CC), Bethesda, MD, United States
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
22
|
Godsell J, Chan S, Slade C, Bryant V, Douglass JA, Sasadeusz J, Yong MK. Cytomegalovirus in primary immunodeficiency. Curr Opin Infect Dis 2021; 34:663-671. [PMID: 34608876 DOI: 10.1097/qco.0000000000000797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Cytomegalovirus (CMV) infection and disease are well described in the setting of secondary immunodeficiency. Less is known about CMV in the context of primary immunodeficiencies (PIDs), where inborn errors in one or more arms of the immune system result in variable degrees of CMV susceptibility. RECENT FINDINGS PID presents unique challenges in the diagnosis and management of CMV disease. The clinical presentation of CMV in PID is often severe, accelerated by underlying immune dysregulation and iatrogenic immunosuppression. Here we describe the clinical significance of CMV infection in PID, the key components of immune defence against CMV and how these are affected in specific PIDs. CMV disease is under-recognized as a complication of common variable immunodeficiency (CVID). High rates of CMV end-organ disease, mortality, development of CMV resistance and prolonged antiviral use have been observed in individuals with CVID. SUMMARY We recommend that clinicians tailor their approach to the individual based on their underlying immune deficit and maintain a high index of suspicion and low threshold for treatment. More research is required to improve stratification of CMV risk in PID, develop new diagnostic tools and manage end-organ disease in this cohort.
Collapse
Affiliation(s)
- Jack Godsell
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
| | - Samantha Chan
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Immunology Division, Walter & Eliza Hall Institute of Medical Research
- Department of Medicine, University of Melbourne
| | - Charlotte Slade
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Immunology Division, Walter & Eliza Hall Institute of Medical Research
| | - Vanessa Bryant
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Immunology Division, Walter & Eliza Hall Institute of Medical Research
| | - Jo Anne Douglass
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital
- Department of Medicine, University of Melbourne
| | - Joe Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne
| | - Michelle K Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
High risk of relapsed disease in patients with NK/T cell chronic active Epstein-Barr virus disease outside of Asia. Blood Adv 2021; 6:452-459. [PMID: 34670275 PMCID: PMC8791566 DOI: 10.1182/bloodadvances.2021005291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022] Open
Abstract
Stem cell transplant improves long-term survival in T/NK CAEBV, though mortality remains high. Development of T/NK lymphoma showed a trend with increased mortality.
Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is characterized by high levels of EBV predominantly in T and/or natural killer cells with lymphoproliferation, organ failure due to infiltration of tissues with virus-infected cells, hemophagocytic lymphohistiocytosis, and/or lymphoma. The disease is more common in Asia than in the United States and Europe. Although allogeneic hematopoietic stem cell transplantation (HSCT) is considered the only curative therapy for CAEBV, its efficacy and the best treatment modality to reduce disease severity prior to HSCT is unknown. Here, we retrospectively assessed an international cohort of 57 patients outside of Asia. Treatment of the disease varied widely, although most patients ultimately proceeded to HSCT. Though patients undergoing HSCT had better survival than those who did not (55% vs 25%, P < .01), there was still a high rate of death in both groups. Mortality was largely not affected by age, ethnicity, cell-type involvement, or disease complications, but development of lymphoma showed a trend with increased mortality (56% vs 35%, P = .1). The overwhelming majority (75%) of patients who died after HSCT succumbed to relapsed disease. CAEBV remains challenging to treat when advanced disease is present. Outcomes would likely improve with better disease control strategies, earlier referral for HSCT, and close follow-up after HSCT including aggressive management of rising EBV DNA levels in the blood.
Collapse
|
24
|
BK virus-specific T cells for immunotherapy of progressive multifocal leukoencephalopathy: an open-label, single-cohort pilot study. Lancet Neurol 2021; 20:639-652. [PMID: 34302788 DOI: 10.1016/s1474-4422(21)00174-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe. METHODS We did an open-label, single-cohort pilot study in patients (aged 18 years or older) with clinically definite progressive multifocal leukoencephalopathy and disease progression in the previous month at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Overlapping peptide libraries derived from large T antigen and major capsid protein VP1 of BK virus with high sequence homology to JC virus counterparts were used to generate polyomavirus-specific T cells cross-recognising JC virus antigens. Polyomavirus-specific T cells were manufactured from peripheral blood mononuclear cells of first-degree relative donors aged 18 years or older. These cells were administered to patients by intravenous infusion at 1 × 106 polyomavirus-specific T cells per kg, followed by up to two additional infusions at 2 × 106 polyomavirus-specific T cells per kg. The primary endpoints were feasibility (no manufacturing failure based on meeting release criteria, achieving adequate numbers of cell product for clinical use, and showing measurable antiviral activity) and safety in all patients. The safety monitoring period was 28 days after each infusion. Patients were followed up with serial MRI for up to 12 months after the final infusion. This trial is registered at ClinicalTrials.gov, NCT02694783. FINDINGS Between April 7, 2016, and Oct 19, 2018, 26 patients were screened, of whom 12 were confirmed eligible and received treatment derived from 14 matched donors. All administered polyomavirus-specific T cells met the release criteria and recognised cognate antigens in vitro. 12 patients received at least one infusion, ten received at least two, and seven received a total of three infusions. The median on-study follow-up was 109·5 days (range 23-699). All infusions were tolerated well, and no serious treatment-related adverse events were observed. Seven patients survived progressive multifocal leukoencephalopathy for longer than 1 year after the first infusion, whereas five died of progressive multifocal leukoencephalopathy within 3 months. INTERPRETATION We showed that generation of polyomavirus-specific T cells from healthy related donors is feasible, and these cells can be safely used as an infusion for adoptive immunotherapy of progressive multifocal leukoencephalopathy. Although not powered to assess efficacy, our data provide additional support for this strategy as a potential life-saving therapy for some patients. FUNDING Intramural Research Program of the National Institute of Neurological Disorders and Stroke of the NIH.
Collapse
|
25
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Alonso L, Méndez-Echevarría A, Rudilla F, Mozo Y, Soler-Palacin P, Sisinni L, Bueno D, Riviere J, de Paz R, Sánchez-Zapardiel E, Querol S, Rodriguez-Pena R, López-Granados E, Gimeno R, Díaz de Heredia C, Pérez-Martínez A. Failure of Viral-Specific T Cells Administered in Pre-transplant Settings in Children with Inborn Errors of Immunity. J Clin Immunol 2021; 41:748-755. [PMID: 33462728 DOI: 10.1007/s10875-020-00961-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Use of adoptive immunotherapy with virus-specific T cells (VST) in patients with inborn errors of immunity prior to hematopoietic stem cell transplantation (HSCT) has been reported in few patients. We report our experience, reviewing all the cases previously reported. METHODS We report four children with inborn errors of immunity who received VST infusion in a pre-HSCT setting in two reference centers in Spain and review all inborn errors of immunity cases previously reported. RESULTS Taking into account our four cases, nine children have been reported to receive VST prior to HSCT to date: 3 severe combined immunodeficiency, 2 CTPS1 deficiency, 1 dyskeratosis congenital, 1 ORAI1 deficiency, 1 Rothmund-Thomson syndrome, and 1 combined immunodeficiency without confirmed genetic defect. In four patients, immunotherapy resulted in clinical improvement, allowing to proceed to HSCT. In these cases, the infusion was started closely to viral diagnosis [mean time 28 days (IQR; 17-52 days)], and the VST was followed shortly thereafter by HSCT [mean time 28 days (IQR; 10-99 days)]. Viremia was controlled after HSCT in two cases (performed 7 and 36 days after the infusion). Multiple infusions were required in many cases. Five out of nine patients died before receiving HSCT. These patients presented with a prolonged and uncontrolled infection before VST administration [mean time from viral diagnosis to VST infusion was 176 days (IQR; 54-1687)]. CONCLUSIONS In patients with inborn errors of immunity, the efficacy of VST for treating disseminated viral infections in pre-transplant settings seems to have a limited efficacy. However, this therapy could be used in a pre-emptive setting before severe viral disease occurs or closely to HSCT.
Collapse
Affiliation(s)
- Laura Alonso
- HSCT Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Ana Méndez-Echevarría
- Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain. .,Translational Research Network in Pediatric Infectious Diseases (RITIP), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Francesc Rudilla
- Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | - Yasmina Mozo
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Luisa Sisinni
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - David Bueno
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Jacques Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Raquel de Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Elena Sánchez-Zapardiel
- Immunology Department, La Paz University Hospital, Madrid, Spain.,IdiPAZ Institute for Health Research, Madrid, Spain
| | - Sergi Querol
- Cellular Therapy Unit, Cord Blood Bank, Centre Frederic Duran i Jordà, Barcelona, Spain
| | - Rebeca Rodriguez-Pena
- Immunology Department, La Paz University Hospital, Madrid, Spain.,IdiPAZ Institute for Health Research, Madrid, Spain
| | - Eduardo López-Granados
- Immunology Department, La Paz University Hospital, Madrid, Spain.,IdiPAZ Institute for Health Research, Madrid, Spain
| | - Ramón Gimeno
- Laboratory of Immunology, Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | | - Antonio Pérez-Martínez
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
27
|
Heslop HE, Sharma S, Rooney CM. Adoptive T-Cell Therapy for Epstein-Barr Virus-Related Lymphomas. J Clin Oncol 2021; 39:514-524. [PMID: 33434061 DOI: 10.1200/jco.20.01709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| |
Collapse
|
28
|
Ciccocioppo R, Comoli P, Astori G, Del Bufalo F, Prapa M, Dominici M, Locatelli F. Developing cell therapies as drug products. Br J Pharmacol 2020; 178:262-279. [PMID: 33140850 DOI: 10.1111/bph.15305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Patrizia Comoli
- Cell Factory and Paediatric Haematology/Oncology Unit, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Haematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Kunz HE, Agha NH, Hussain M, LaVoy EC, Smith KA, Mylabathula P, Diak D, Baker FL, O'Connor DP, Bond RA, Katsanis E, Bollard CM, Simpson RJ. The effects of β 1 and β 1+2 adrenergic receptor blockade on the exercise-induced mobilization and ex vivo expansion of virus-specific T cells: implications for cellular therapy and the anti-viral immune effects of exercise. Cell Stress Chaperones 2020; 25:993-1012. [PMID: 32779001 PMCID: PMC7591642 DOI: 10.1007/s12192-020-01136-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
The adoptive transfer of donor-derived virus-specific T cells (VSTs) is an effective treatment for infections following allogeneic hematopoietic cell transplantation. Acute exercise mobilizes effector lymphocytes and VSTs to the circulation and augments the ex vivo manufacture of VSTs. This study determined if β2 adrenergic receptor (AR) signaling precipitated the VST response to acute exercise. Healthy participants (n = 12) completed 30 min of steady-state cycling exercise after ingesting a placebo, a β1 + 2 AR antagonist (nadolol) or a β1 AR antagonist (bisoprolol). Circulating VSTs to cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (AdV) antigens were enumerated before and after exercise, and peripheral blood mononuclear cells were cultured with viral peptides for 8 days to expand multi-VSTs. Compared with placebo, nadolol blunted the exercise-induced mobilization of CMV-VSTs (Δ VSTs/100,000 CD3+ T cells = 93 ± 104 vs. 22 ± 91 for placebo and nadolol, respectively; p = 0.036), while bisoprolol did not, despite both drugs evoking similar reductions in exercising heart rate and blood pressure. Circulating AdV and EBV VSTs (VSTs/mL blood) only increased after exercise with placebo. Although not significant, nadolol partially mitigated exercise-induced increases in multi-VST expansion, particularly in participants that demonstrated an exercise-induced increase in VST expansion. We conclude that exercise-induced enhancements in VST mobilization and expansion are at least partially β2 AR mediated, thus highlighting a role for the β2 AR in targeted therapy for the augmentation of VST immune cell therapeutics in the allogeneic adoptive transfer setting. Moreover, long-term regular exercise may provide additional viral protection in the host through frequent β2 AR-dependent mobilization and redistribution of VSTs cumulated with each bout of exercise.
Collapse
Affiliation(s)
- Hawley E Kunz
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nadia H Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Maryam Hussain
- Merced Experimental Social and Health Psychology Laboratory, Stress and Health Laboratory, Department of Psychological Sciences, University of California Merced, Merced, CA, USA
| | - Emily C LaVoy
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Douglass Diak
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Forrest L Baker
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Daniel P O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Richard A Bond
- College of Pharmacy, Science and Engineering Research Center, The University of Houston, Houston, TX, USA
| | | | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System and The George Washington University, Washington, D.C., USA
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
30
|
Basso S, Compagno F, Zelini P, Giorgiani G, Boghen S, Bergami E, Bagnarino J, Siciliano M, Del Fante C, Luppi M, Zecca M, Comoli P. Harnessing T Cells to Control Infections After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:567531. [PMID: 33178192 PMCID: PMC7593558 DOI: 10.3389/fimmu.2020.567531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Dramatic progress in the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) from alternative sources in pediatric patients has been registered over the past decade, providing a chance to cure children and adolescents in need of a transplant. Despite these advances, transplant-related mortality due to infectious complications remains a major problem, principally reflecting the inability of the depressed host immune system to limit infection replication and dissemination. In addition, development of multiple infections, a common occurrence after high-risk allo-HSCT, has important implications for overall survival. Prophylactic and preemptive pharmacotherapy is limited by toxicity and, to some extent, by lack of efficacy in breakthrough infections. T-cell reconstitution is a key requirement for effective infection control after HSCT. Consequently, T-cell immunotherapeutic strategies to boost pathogen-specific immunity may complement or represent an alternative to drug treatments. Pioneering proof of principle studies demonstrated that the administration of donor-derived T cells directed to human herpesviruses, on the basis of viral DNA monitoring, could effectively restore specific immunity and confer protection against viral infections. Since then, the field has evolved with implementation of techniques able to hasten production, allow for selection of specific cell subsets, and target multiple pathogens. This review provides a brief overview of current cellular therapeutic strategies to prevent or treat pathogen-related complications after HSCT, research carried out to increase efficacy and safety, including T-cell production for treatment of infections in patients with virus-naïve donors, results from clinical trials, and future developments to widen adoptive T-cell therapy access in the HSCT setting.
Collapse
Affiliation(s)
- Sabrina Basso
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Francesca Compagno
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Giovanna Giorgiani
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Stella Boghen
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Elena Bergami
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Jessica Bagnarino
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Mariangela Siciliano
- Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Claudia Del Fante
- Immunohematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
31
|
Prockop S, Doubrovina E, Suser S, Heller G, Barker J, Dahi P, Perales MA, Papadopoulos E, Sauter C, Castro-Malaspina H, Boulad F, Curran KJ, Giralt S, Gyurkocza B, Hsu KC, Jakubowski A, Hanash AM, Kernan NA, Kobos R, Koehne G, Landau H, Ponce D, Spitzer B, Young JW, Behr G, Dunphy M, Haque S, Teruya-Feldstein J, Arcila M, Moung C, Hsu S, Hasan A, O'Reilly RJ. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020; 130:733-747. [PMID: 31689242 DOI: 10.1172/jci121127] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUNDAdoptive transfer of donor-derived EBV-specific cytotoxic T-lymphocytes (EBV-CTLs) can eradicate EBV-associated lymphomas (EBV-PTLD) after transplantation of hematopoietic cell (HCT) or solid organ (SOT) but is unavailable for most patients.METHODSWe developed a third-party, allogeneic, off-the-shelf bank of 330 GMP-grade EBV-CTL lines from specifically consented healthy HCT donors. We treated 46 recipients of HCT (n = 33) or SOT (n = 13) with established EBV-PTLD, who had failed rituximab therapy, with third-party EBV-CTLs. Treatment cycles consisted of 3 weekly infusions of EBV-CTLs and 3 weeks of observation.RESULTSEBV-CTLs did not induce significant toxicities. One patient developed grade I skin graft-versus-host disease. Complete remission (CR) or sustained partial remission (PR) was achieved in 68% of HCT recipients and 54% of SOT recipients. For patients who achieved CR/PR or stable disease after cycle 1, one year overall survival was 88.9% and 81.8%, respectively. In addition, 3 of 5 recipients with POD after a first cycle who received EBV-CTLs from a different donor achieved CR or durable PR (60%) and survived longer than 1 year. Maximal responses were achieved after a median of 2 cycles.CONCLUSIONThird-party EBV-CTLs of defined HLA restriction provide safe, immediately accessible treatment for EBV-PTLD. Secondary treatment with EBV-CTLs restricted by a different HLA allele (switch therapy) can also induce remissions if initial EBV-CTLs are ineffective. These results suggest a promising potential therapy for patients with rituximab-refractory EBV-associated lymphoma after transplantation.TRIAL REGISTRATIONPhase II protocols (NCT01498484 and NCT00002663) were approved by the Institutional Review Board at Memorial Sloan Kettering Cancer Center, the FDA, and the National Marrow Donor Program.FUNDINGThis work was supported by NIH grants CA23766 and R21CA162002, the Aubrey Fund, the Claire Tow Foundation, the Major Family Foundation, the Max Cure Foundation, the Richard "Rick" J. Eisemann Pediatric Research Fund, the Banbury Foundation, the Edith Robertson Foundation, and the Larry Smead Foundation. Atara Biotherapeutics licensed the bank of third-party EBV-CTLs from Memorial Sloan Kettering Cancer Center in June 2015.
Collapse
Affiliation(s)
- Susan Prockop
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Ekaterina Doubrovina
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Center for Immune Cellular Therapy
| | - Stephanie Suser
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Juliet Barker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Parastoo Dahi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Miguel A Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Esperanza Papadopoulos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Craig Sauter
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Hugo Castro-Malaspina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Sergio Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Boglarka Gyurkocza
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ann Jakubowski
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Alan M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nancy A Kernan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Rachel Kobos
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Jansen Pharmaceuticals, Raritan, New Jersey, USA
| | - Guenther Koehne
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Heather Landau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Doris Ponce
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - James W Young
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Gerald Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Icahn School of Medicine, Mount Sinai Health System, New York, New York, USA
| | - Maria Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christine Moung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Hsu
- American Red Cross, Philadelphia, Pennsylvania, USA
| | - Aisha Hasan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,GlaxoSmithKline, Oncology, Collegeville, Pennsylvania, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
32
|
Lazarski CA, Datar AA, Reynolds EK, Keller MD, Bollard CM, Hanley PJ. Identification of new cytokine combinations for antigen-specific T-cell therapy products via a high-throughput multi-parameter assay. Cytotherapy 2020; 23:65-76. [PMID: 32921560 DOI: 10.1016/j.jcyt.2020.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022]
Abstract
Infusion of viral-specific T cells (VSTs) is an effective treatment for viral infection after stem cell transplant. Current manufacturing approaches are rapid, but growth conditions can still be further improved. To optimize VST cell products, the authors designed a high-throughput flow cytometry-based assay using 40 cytokine combinations in a 96-well plate to fully characterize T-cell viability, function, growth and differentiation. Peripheral blood mononuclear cells (PBMCs) from six consenting donors were seeded at 100 000 cells per well with pools of cytomegalovirus peptides from IE1 and pp65 and combinations of IL-15, IL-6, IL-21, interferon alpha, IL-12, IL-18, IL-4 and IL-7. Ten-day cultures were tested by 13-color flow cytometry to evaluate viable cell count, lymphocyte phenotype, memory markers and interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) expression. Combinations of IL-15/IL-6 and IL-4/IL-7 were optimal for the expansion of viral-specific CD3+ T cells, (18-fold and 14-fold, respectively, compared with unstimulated controls). CD8+ T cells expanded 24-fold in IL-15/IL-6 and 9-fold in IL-4/IL-7 cultures (P < 0.0001). CD4+ T cells expanded 27-fold in IL-4/IL-7 and 15-fold in IL-15/IL-6 (P < 0.0001). CD45RO+ CCR7- effector memory (CD45RO+ CCR7- CD3+), central memory (CD45RO+ CCR7+ CD3+), terminal effector (CD45RO- CCR7- CD3+), and naive (CD45RO- CCR7+ CD3+). T cells were the preponderant cells (76.8% and 72.3% in IL-15/IL-6 and IL-15/IL-7 cultures, respectively). Cells cultured in both cytokine conditions were potent, with 19.4% of CD3+ cells cultured in IL-15/IL-6 producing IFNγ (7.6% producing both TNFα and IFNγ) and 18.5% of CD3+ cells grown in IL-4/IL-7 producing IFNγ (9% producing both TNFα and IFNγ). This study shows the utility of this single-plate assay to rapidly identify optimal growth conditions for VST manufacture using only 107 PBMCs.
Collapse
Affiliation(s)
- Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Anushree A Datar
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Emily K Reynolds
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA; The George Washington University Cancer Center, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA; The George Washington University Cancer Center, Washington, DC, USA.
| |
Collapse
|
33
|
Panchal N, Ghosh S, Booth C. T cell gene therapy to treat immunodeficiency. Br J Haematol 2020; 192:433-443. [PMID: 33280098 DOI: 10.1111/bjh.17070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
Abstract
The application of therapeutic T cells for a number of conditions has been developed over the past few decades with notable successes including donor lymphocyte infusions, virus-specific T cells and more recently CAR-T cell therapy. Primary immunodeficiencies are monogenetic disorders leading to abnormal development or function of the immune system. Haematopoietic stem cell transplantation and, in specific candidate diseases, haematopoietic stem cell gene therapy has been the only definitive treatment option so far. However, autologous gene-modified T cell therapy may offer a potential cure in conditions primarily affecting the lymphoid compartment. In this review we will highlight several T cell gene addition or gene-editing approaches in different target diseases with a focus on what we have learnt from clinical experience and promising preclinical studies in primary immunodeficiencies. Functional T cells are required not only for normal immune responses to infection (affected in CD40 ligand deficiency), but also for immune regulation [disrupted in IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-Linked) due to dysfunctional FOXP3 and CTLA4 deficiency] or cytotoxicity [defective in X-lymphoproliferative disease and familial haemophagocytic lymphohistiocytosis (HLH) syndromes]. In all these candidate diseases, restoration of T cell function by gene therapy could be of great value.
Collapse
Affiliation(s)
- Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
34
|
Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Adv 2020; 3:2057-2068. [PMID: 31292125 DOI: 10.1182/bloodadvances.2019000201] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Adoptive transfer of virus-specific T cells (VSTs) has been shown to be safe and effective in stem cell transplant recipients. However, the lack of virus-experienced T cells in donor cord blood (CB) has prevented the development of ex vivo expanded donor-derived VSTs for recipients of this stem cell source. Here we evaluated the feasibility and safety of ex vivo expansion of CB T cells from the 20% fraction of the CB unit in pediatric patients receiving a single CB transplant (CBT). In 2 clinical trials conducted at 2 separate sites, we manufactured CB-derived multivirus-specific T cells (CB-VSTs) targeting Epstein-Barr virus (EBV), adenovirus, and cytomegalovirus (CMV) for 18 (86%) of 21 patients demonstrating feasibility. Manufacturing for 2 CB-VSTs failed to meet lot release because of insufficient cell recovery, and there was 1 sterility breach during separation of the frozen 20% fraction. Delayed engraftment was not observed in patients who received the remaining 80% fraction for the primary CBT. There was no grade 3 to 4 acute graft-versus-host disease (GVHD) associated with the infusion of CB-VSTs. None of the 7 patients who received CB-VSTs as prophylaxis developed end-organ disease from CMV, EBV, or adenovirus. In 7 patients receiving CB-VSTs for viral reactivation or infection, only 1 patient developed end-organ viral disease, which was in an immune privileged site (CMV retinitis) and occurred after steroid therapy for GVHD. Finally, we demonstrated the long-term persistence of adoptively transferred CB-VSTs using T-cell receptor-Vβ clonotype tracking, suggesting that CB-VSTs are a feasible addition to antiviral pharmacotherapy.
Collapse
|
35
|
Adoptive T-cell therapy for pediatric cytomegalovirus-associated retinitis. Blood Adv 2020; 3:1774-1777. [PMID: 31186253 DOI: 10.1182/bloodadvances.2019000121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Key Points
TCRαβ+/CD19+-depleted haploidentical HSCT was used to restore immunity in a pediatric patient with combined immunodeficiency syndrome. Posttransplant drug-resistant CMV retinitis was successfully treated with T cells expanded from a haploidentical HSCT donor.
Collapse
|
36
|
Lum SH, Slatter MA. Malignancy post-hematopoietic stem cell transplant in patients with primary immunodeficiency. Expert Rev Clin Immunol 2020; 16:493-511. [PMID: 32441164 DOI: 10.1080/1744666x.2020.1763792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Hematopoietic cell transplantation (HCT) is a curative treatment for an expanding number of primary immunodeficiencies (PIDs). Malignancies are more common in patients with PID than in the general population, and this review will discuss whether a successful HCT is expected to abolish or alter this risk. Second malignancy post HCT for a malignant disease is well known to occur, but generally less expected in patients transplanted for PID. AREAS COVERED This article reviews recently published literature focusing on the pattern of malignancy in children with PID, incidence, and risk factors for developing malignancy post-HCT for PID and possible strategies to reduce the risks. EXPERT OPINION Survival post HCT for PID has improved dramatically in the last 20 years and the genomic revolution has led to an expanding number of indications. To improve long-term quality of life attention needs to focus on late effects, including the possibility of malignancy occurring more frequently than expected in the general population, understand the risks and improve the process of transplantation in order to minimize them. Further studies are needed.
Collapse
Affiliation(s)
- Su Han Lum
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK.,Department of Paediatrics, Leiden University Medical Centre , Leiden, The Netherlands
| | - Mary A Slatter
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK.,Translational & Clinical Research Institute, Newcastle University , Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Keller MD, Bollard CM. Virus-specific T-cell therapies for patients with primary immune deficiency. Blood 2020; 135:620-628. [PMID: 31942610 PMCID: PMC7046606 DOI: 10.1182/blood.2019000924] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Viral infections are common and are potentially life-threatening in patients with moderate to severe primary immunodeficiency disorders. Because T-cell immunity contributes to the control of many viral pathogens, adoptive immunotherapy with virus-specific T cells (VSTs) has been a logical and effective way of combating severe viral disease in immunocompromised patients in multiple phase 1 and 2 clinical trials. Common viral targets include cytomegalovirus, Epstein-Barr virus, and adenovirus, though recent published studies have successfully targeted additional pathogens, including HHV6, BK virus, and JC virus. Though most studies have used VSTs derived from allogenic stem cell donors, the use of banked VSTs derived from partially HLA-matched donors has shown efficacy in multicenter settings. Hence, this approach could shorten the time for patients to receive VST therapy thus improving accessibility. In this review, we discuss the usage of VSTs for patients with primary immunodeficiency disorders in clinical trials, as well as future potential targets and methods to broaden the applicability of virus-directed T-cell immunotherapy for this vulnerable patient population.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer and Immunology Research and
- Division of Allergy and Immunology, Children's National Health System, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC; and
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC; and
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC
| |
Collapse
|
38
|
Kohn DB. Gene therapy for blood diseases. Curr Opin Biotechnol 2019; 60:39-45. [DOI: 10.1016/j.copbio.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022]
|
39
|
Abstract
Natural killer (NK) cell deficiency (NKD) is a subset of primary immunodeficiency disorders (PID) in which an abnormality of NK cells represents a major immunological defect resulting in the patient’s clinical immunodeficiency. This is distinct from a much larger group of PIDs that include an NK cell abnormality as a minor component of the immunodeficiency. Patients with NKD most frequently have atypical consequences of herpesviral infections. There are now 6 genes that have been ascribed to causing NKD, some exclusively and others that also cause other known immunodeficiencies. This list has grown in recent years and as such the mechanistic and molecular clarity around what defines an NKD is an emerging and important field of research. Continued increased clarity will allow for more rational approaches to the patients themselves from a therapeutic standpoint. Having evaluated numerous individuals for NKD, I share my perspective on approaching the diagnosis and managing these patients.
Collapse
Affiliation(s)
- Jordan S Orange
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians and Surgeons, 622 W 168th St., New York, NY, 10032, USA.
| |
Collapse
|
40
|
Universal donor strategy for primary immunodeficiency. Blood 2019; 134:1688-1689. [PMID: 31725867 DOI: 10.1182/blood.2019003222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Schultze-Florey RE, Tischer-Zimmermann S, Heuft HG, Priesner C, Lamottke B, Heim A, Sauer M, Sykora KW, Blasczyk R, Eiz-Vesper B, Maecker-Kolhoff B. Transfer of Hexon- and Penton-selected adenovirus-specific T cells for refractory adenovirus infection after haploidentical stem cell transplantation. Transpl Infect Dis 2019; 22:e13201. [PMID: 31643129 DOI: 10.1111/tid.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022]
Abstract
Adenovirus (HAdV) infections confer a high risk of morbidity and mortality for immunocompromised patients after stem cell transplantation (SCT). Treatment with standard antiviral drugs is of limited efficacy and associated with a high rate of adverse effects. HAdV-specific T cells are crucial for sustained viral elimination and the efficacy of adoptive T-cell therapy with donor-derived HAdV-specific T cells has been reported by several investigators. Here, we report our experience with the transfer of HAdV-specific T cells specific for penton, which was recently identified as an immunodominant target of T cells, and hexon in a 14-year-old boy after T-cell-depleted haploidentical SCT for myelodysplastic syndrome (MDS). He developed severe HAdV-associated enteritis complicated by acute graft-versus-host disease (GvHD). The patient received ten infusions of allogeneic HAdV-specific T cells manufactured from the haploidentical stem cell donor using the CliniMacs Interferon-γ (IFN-γ) cytokine capture and immunomagnetic selection. Initially, T cells were generated against the immunodominant target hexon and in subsequent transfers dual antigen-specific T cells against hexon and penton were applied. T-cell transfers were scheduled individually tailored to current immunosuppressive treatment. Each transfer was followed by reduction of HAdV load in peripheral blood and clinical improvement. Importantly, T-cell responses to both penton and hexon pools emerged in patient blood after repetitive transfers. Unfortunately, the patient experienced bacterial sepsis, and in this context, severe GvHD requiring intensive immunosuppression followed by secondary progression of HAdV infection. The patient succumbed to multiorgan failure 283 days after SCT. This case demonstrates the feasibility of HAdV-specific T-cell transfer even in the presence of immunosuppressive treatment. Targeting of multiple immunodominant viral proteins may prove valuable in patients with complicated HAdV infections.
Collapse
Affiliation(s)
- Rebecca E Schultze-Florey
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Hans-Gert Heuft
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christoph Priesner
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Albert Heim
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Martin Sauer
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Karl-Walter Sykora
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Seth D, Ruehle M, Kamat D. Severe Combined Immunodeficiency: A Guide for Primary Care Givers. Clin Pediatr (Phila) 2019; 58:1124-1127. [PMID: 31282184 DOI: 10.1177/0009922819859867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Divya Seth
- 1 Wayne State University, Detroit, MI, USA
| | - Mary Ruehle
- 2 Children's Hospital of Michigan, Detroit, MI, USA
| | - Deepak Kamat
- 3 UT Health Sciences Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
43
|
Wold WSM, Tollefson AE, Ying B, Spencer JF, Toth K. Drug development against human adenoviruses and its advancement by Syrian hamster models. FEMS Microbiol Rev 2019; 43:380-388. [PMID: 30916746 DOI: 10.1093/femsre/fuz008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
The symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.
Collapse
Affiliation(s)
- William S M Wold
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Ann E Tollefson
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Baoling Ying
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Jacqueline F Spencer
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Karoly Toth
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| |
Collapse
|
44
|
Poiret T. Toward the understanding of a successful virus-specific T-cell therapy: T-cell receptor sequencing demonstrates persistence of virus-specific T cells after antiviral immunotherapy. Br J Haematol 2019; 187:139-140. [PMID: 31236914 DOI: 10.1111/bjh.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Poiret
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Modell V, Orange JS, Quinn J, Modell F. Global report on primary immunodeficiencies: 2018 update from the Jeffrey Modell Centers Network on disease classification, regional trends, treatment modalities, and physician reported outcomes. Immunol Res 2019; 66:367-380. [PMID: 29744770 DOI: 10.1007/s12026-018-8996-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary immunodeficiencies (PI) are genetic defects of the immune system that result in chronic, serious, and often life-threatening infections, if not diagnosed and treated. Many patients with PI are undiagnosed, underdiagnosed, or misdiagnosed. In fact, recent studies have shown that PI may be more common than previously estimated and that as many as 1% of the population may be affected with a PI when all types and varieties are considered. In order to raise awareness of PI with the overall goal of reducing associated morbidity and mortality, the Jeffrey Modell Foundation (JMF) established a network of specialized centers that could better identify, diagnose, treat, and follow patients with PI disorders. Over the past decade, the Jeffrey Modell Centers Network (JMCN) has provided the infrastructure to accept referrals, provide diagnosis, and offer treatments. Currently, the network consists of 792 Expert Physicians at 358 institutions, in 277 cities, and 86 countries spanning 6 continents. JMF developed an annual survey for physician experts within the JMCN, using the categories and gene defects identified by the International Union of Immunological Societies Expert Committee for the Classification of PI, to report on the number of patients identified with PI; treatment modalities, including immunoglobulins, transplantation, and gene therapy; and data on gender and age. Center Directors also provided physician-reported outcomes and differentials pre- and post-diagnosis. The current physician-reported data reflect an increase in diagnosed patients, as well as those receiving treatment. Suspected patients are being identified and referred so that they can receive early and appropriate diagnosis and treatment. The significant increase in patients identified with a PI is due, in part, to expanding education and awareness initiatives, newborn screening, and the expansion of molecular diagnosis and sequencing. To our knowledge, this is the most extensive single physician report on patients with PI around the world.
Collapse
Affiliation(s)
- Vicki Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Jordan S Orange
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Jessica Quinn
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Fred Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA.
| |
Collapse
|
46
|
Keller MD, Darko S, Lang H, Ransier A, Lazarski CA, Wang Y, Hanley PJ, Davila BJ, Heimall JR, Ambinder RF, Barrett AJ, Rooney CM, Heslop HE, Douek DC, Bollard CM. T-cell receptor sequencing demonstrates persistence of virus-specific T cells after antiviral immunotherapy. Br J Haematol 2019; 187:206-218. [PMID: 31219185 DOI: 10.1111/bjh.16053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Viral infections are a serious cause of morbidity and mortality following haematopoietic stem cell transplantation (HSCT). Adoptive cellular therapy with virus-specific T cells (VSTs) has been successful in preventing or treating targeted viruses in prior studies, but the composition of ex vivo expanded VST and the critical cell populations that mediate antiviral activity in vivo are not well defined. We utilized deep sequencing of the T-cell receptor beta chain (TCRB) in order to classify and track VST populations in 12 patients who received VSTs following HSCT to prevent or treat viral infections. TCRB sequencing was performed on sorted VST products and patient peripheral blood mononuclear cells samples. TCRB diversity was gauged using the Shannon entropy index, and repertoire similarity determined using the Morisita-Horn index. Similarity indices reflected an early change in TCRB diversity in eight patients, and TCRB clonotypes corresponding to targeted viral epitopes expanded in eight patients. TCRB repertoire diversity increased in nine patients, and correlated with cytomegalovirus (CMV) viral load following VST infusion (P = 0·0071). These findings demonstrate that allogeneic VSTs can be tracked via TCRB sequencing, and suggests that T-cell receptor repertoire diversity may be critical for the control of CMV reactivation after HSCT.
Collapse
Affiliation(s)
- Michael D Keller
- Division of Allergy & Immunology, Children's National Health System, Washington, DC, USA.,Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA
| | - Yunfei Wang
- Clinical and Translational Sciences Institute, Children's National Health System, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| | - Blachy J Davila
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| | - Jennifer R Heimall
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard F Ambinder
- Division of Blood and Marrow Transplantation, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A John Barrett
- GW Cancer Center, George Washington University, Washington, DC, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, USA.,Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| |
Collapse
|
47
|
Phenotypic and Functional Differences between Human Herpesvirus 6- and Human Cytomegalovirus-Specific T Cells. J Virol 2019; 93:JVI.02321-18. [PMID: 30996090 DOI: 10.1128/jvi.02321-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) infects >90% of the population and establishes a latent infection with asymptomatic episodes of reactivation. However, HHV-6 reactivation is associated with morbidity and sometimes mortality in immunocompromised patients. To date, control of the virus in healthy virus carriers and the failure to control it in patients with disease remain poorly understood. In particular, knowledge of HHV-6-specific T-cell responses is limited. Here, we characterized HHV-6A- and HHV-6B-specific CD4+ and CD8+ T-cell responses from peripheral blood mononuclear cells (PBMCs) of healthy donors. We studied the phenotype of effector HHV-6-specific T cells ex vivo, as well as of induced specific suppressive regulatory CD4+ T cells in vitro poststimulation, in comparison to human cytomegalovirus (HCMV) responses. Compared to that for HCMV, we show that ex vivo T-cell reactivity in peripheral blood is detectable but at very low frequency, both for HHV-6A and -6B viruses. Interestingly, the phenotype of the specific T cells also differs between the viruses. HHV-6A- and HHV-6B-specific CD4+ T lymphocytes are less differentiated than HCMV-specific T cells. Furthermore, we show a higher frequency of HHV-6-specific suppressive regulatory T cells (eTregs) than HCMV-specific eTregs in coinfected individuals. Despite the strong similarity of HHV-6 and HCMV from a virologic point of view, we observed immunological differences, particularly in relation to the frequency and phenotype of effector/memory and regulatory virus-specific T cells. This suggests that different immune factors are solicited in the control of HHV-6 infection than in that of HCMV infection.IMPORTANCE T cells are central to an effective defense against persistent viral infections that can be related to human cytomegalovirus (HCMV) or human herpesvirus 6 (HHV-6). However, knowledge of HHV-6-specific T-cell responses is limited. In order to deepen our knowledge of T-cell responses to HHV-6, we characterized HHV-6A- and HHV-6B-specific CD4+ and CD8+ T-cell responses directly ex vivo from healthy coinfected blood donors. Despite the strong similarity of HHV-6 and HCMV from a virologic point of view, we observed immunological differences, particularly in relation to the frequency and phenotype of effector/memory and regulatory virus-specific T cells. This suggests that different immune factors are solicited in the control of HHV-6 infection than in that of HCMV infection. Our findings may encourage immunomonitoring of patients with viral replication episodes to follow the emergence of effector versus regulatory T cells.
Collapse
|
48
|
Report of Resistant Varicella Zoster Infection Treated With Donor Lymphocyte Infusion in a Pediatric Oncology Patient. Pediatr Infect Dis J 2019; 38:513-515. [PMID: 30461572 DOI: 10.1097/inf.0000000000002252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an 8-year-old boy with disseminated, life-threatening, drug treatment-resistant varicella zoster infection occurring during standard treatment for neuroblastoma in whom viral clearance and cure was effected by donor Lymphocyte infusion from his HLA (Human leukocyte antigen)-identical twin sibling.
Collapse
|
49
|
Auletta JJ, Sánchez PJ, Meyer EK, O'Donnell LC, Cassady KA, Ouellette CP, Hecht S, Diaz A, Pavlek LR, Salamon DP, Gallagher CL, Bradbury H, Welfley SL, Magers J, Armbruster DL, Lamb MG, Nakkula RJ, Bosse K, Lee DA. Adjuvant haploidentical virus-specific T lymphocytes for treatment of disseminated adenovirus infection in a premature infant. J Allergy Clin Immunol 2019; 144:594-597.e4. [PMID: 31026470 DOI: 10.1016/j.jaci.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Jeffery J Auletta
- Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, Ohio; Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio; Host Defense Program, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Pablo J Sánchez
- Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio; Center for Perinatal Research and Neonatology, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio
| | - Erin K Meyer
- Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, Ohio; Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Lynn C O'Donnell
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio; Cell Therapy Laboratory, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University, Columbus, Ohio
| | - Kevin A Cassady
- Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Christopher P Ouellette
- Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio; Host Defense Program, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio
| | - Shaina Hecht
- Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio
| | - Alejandro Diaz
- Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio
| | - Leeann R Pavlek
- Center for Perinatal Research and Neonatology, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio
| | - Douglas P Salamon
- Laboratory of Microbiology/Immunoserology, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Hillary Bradbury
- Cell Therapy Laboratory, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Ohio State University, Columbus, Ohio
| | - Sarah L Welfley
- Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, Ohio
| | | | | | - Margaret G Lamb
- Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, Ohio; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio
| | - Robin J Nakkula
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Kevin Bosse
- Drug and Device Development Services, Nationwide Children's Hospital, Columbus, Ohio
| | - Dean A Lee
- Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, Ohio; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
50
|
Pellett Madan R, Hand J. Human herpesvirus 6, 7, and 8 in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13518. [PMID: 30844089 DOI: 10.1111/ctr.13518] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
Abstract
These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of HHV-6A, HHV-6B, HHV-7, and HHV-8 in the pre- and post-transplant period. The majority of HHV-6 (A and B) and HHV-7 infections in transplant recipients are asymptomatic; symptomatic disease is reported infrequently across organs. Routine screening for HHV-6 and 7 DNAemia is not recommended in asymptomatic patients, nor is prophylaxis or preemptive therapy. Detection of viral nucleic acid by quantitative PCR in blood or CSF is the preferred method for diagnosis of HHV-6 and HHV-7 infection. The possibility of chromosomally integrated HHV-6 DNA should be considered in individuals with persistently high viral loads. Antiviral therapy should be initiated for HHV-6 encephalitis and should be considered for other manifestations of disease. HHV-8 causes Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease and is also associated with hemophagocytic syndrome and bone marrow failure. HHV-8 screening and monitoring may be indicated to prevent disease. Treatment of HHV-8 related disease centers on reduction of immunosuppression and conversion to sirolimus, while chemotherapy may be needed for unresponsive disease. The role of antiviral therapy for HHV-8 infection has not yet been defined.
Collapse
Affiliation(s)
- Rebecca Pellett Madan
- Department of Pediatrics, New York University Langone School of Medicine, New York City, New York
| | - Jonathan Hand
- Department of Infectious Diseases, Ochsner Clinical School, Ochsner Medical Center, The University of Queensland School of Medicine, New Orleans, Louisiana
| | | |
Collapse
|