1
|
Sahnoon L, Bajbouj K, Mahboub B, Hamoudi R, Hamid Q. Targeting IL-13 and IL-4 in Asthma: Therapeutic Implications on Airway Remodeling in Severe Asthma. Clin Rev Allergy Immunol 2025; 68:44. [PMID: 40257546 PMCID: PMC12011922 DOI: 10.1007/s12016-025-09045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflammation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imaging, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.
Collapse
Affiliation(s)
- Lina Sahnoon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health, 4545, Dubai, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
2
|
Sage SE, Leeb T, Jagannathan V, Gerber V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology 2024; 171:549-565. [PMID: 38153159 DOI: 10.1111/imm.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Severe equine asthma (SEA) is a complex respiratory condition characterized by chronic airway inflammation. It shares many clinical and pathological features with human neutrophilic asthma, making it a valuable model for studying this condition. However, the immune mechanisms driving SEA have remained elusive. Although SEA has been primarily associated with a Th2 response, there have also been reports of Th1, Th17, or mixed-mediated responses. To uncover the elusive immune mechanisms driving SEA, we performed single-cell mRNA sequencing (scRNA-seq) on cryopreserved bronchoalveolar cells from 11 Warmblood horses, 5 controls and 6 with SEA. We identified six major cell types, including B cells, T cells, monocytes-macrophages, dendritic cells, neutrophils, and mast cells. All cell types exhibited significant heterogeneity, with previously identified and novel cell subtypes. Notably, we observed monocyte-lymphocyte complexes and detected a robust Th17 signature in SEA, with CXCL13 upregulation in intermediate monocytes. Asthmatic horses exhibited expansion of the B-cell population, Th17 polarization of the T-cell populations, and dysregulation of genes associated with T-cell function. Neutrophils demonstrated enhanced migratory capacity and heightened aptitude for neutrophil extracellular trap formation. These findings provide compelling evidence for a predominant Th17 immune response in neutrophilic SEA, driven by dysregulation of monocyte and T-cell genes. The dysregulated genes identified through scRNA-seq have potential as biomarkers and therapeutic targets for SEA and provide insights into human neutrophilic asthma.
Collapse
Affiliation(s)
- Sophie E Sage
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Al Khathlan N. Association of inflammatory cytokines with obesity and pulmonary function testing. PLoS One 2023; 18:e0294592. [PMID: 37992066 PMCID: PMC10664933 DOI: 10.1371/journal.pone.0294592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) reported that the prevalence of obesity in the Kingdom of Saudi Arabia (KSA) is 33.7% (women 39.5% and men 29.5%), respectively. The effects of obesity on airway inflammation and respiratory mechanics as well as the function of adipose tissue has a key role in the development of various lung diseases. Therefore, this study aimed to compare the level of cytokines between obese (BMI ≥ 30) and non-obese participants and to assess their association with BMI, airways inflammation and pulmonary function. METHOD One-hundred and seven non-smoking students (18-25 years of age) were recruited using convenience sampling technique for comparative cross-sectional study. Of them, 80 students were eligible and included in the analysis; 54 were non-obese (BMI<30) and 26 were obese (BMI ≥ 30). All the participants underwent anthropometric measurements, fractional exhaled nitric oxide (FeNO) measurement, spirometry and cytokines measurement (IL-6, IL-1β, GM-CSF, IL-7, IL-8 and IL-10). Measurements were compared between obese and non-obese groups. Then a correlation test was made between pro- and anti-inflammatory cytokines with BMI, pulmonary function test finding and FeNO. RESULTS The prevalence of obesity was 32.5% in the study population. Levels of pro-inflammatory cytokine IL-6 levels was significantly higher in obese than non-obese participants (p = 0.044). The level of FeNO log was significantly higher in obese participants than non-obese (p = 0.002). The pro-inflammatory cytokine IL-6 showed positive correlation with BMI while GMCSF showed negative correlation with FVC (p<0.05). CONCLUSION The levels of pro-inflammatory cytokine IL-6 was found to be significantly higher in obese participants than non-obese participants. Furthermore, it showed positive correlation with BMI whereas pro-inflammatory cytokine GMCSF showed negative correlation with FVC.
Collapse
Affiliation(s)
- Noor Al Khathlan
- Department of Respiratory Care, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
4
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
5
|
Di Cicco M, Ghezzi M, Kantar A, Song WJ, Bush A, Peroni D, D'Auria E. Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Gruppo Ospedaliero San Donato, Bergamo, Italy and Università Vita Salute San Raffaele, Milan, Italy
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Andrew Bush
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital and National Heart and Lung Institute, School of Medicine, Imperial College London, London, UK
| | - Diego Peroni
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Li Y, Yang K, Zhang F, Wang J, Shen H, Liu M, Guo J, Wang J. Identification of cerebrospinal fluid biomarker candidates for anti-N-methyl-D-aspartate receptor encephalitis: High-throughput proteomic investigation. Front Immunol 2022; 13:971659. [PMID: 36389787 PMCID: PMC9643472 DOI: 10.3389/fimmu.2022.971659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Although the diagnosis is mainly dependent on the detection of anti-N-methyl-D-aspartate receptor (NMDAR) antibodies in cerebrospinal fluid (CSF) and/or serum, there was no direct correlations between anti-NMDAR antibody titers in CSF and disease severity and prognosis in anti-NMDAR encephalitis patients. Here, we aimed to extensively identify CSF biomarkers related to the occurrence, development, and prognosis of anti-NMDAR encephalitis using a high-throughput proteomic approach. METHODS A CSF cytokine antibody array containing 80 cytokines and inflammatory mediators related to immune and inflammatory responses was applied to identify biomarker candidates in individual CSF samples from a well-characterized cohort comprising patients with anti-NMDAR encephalitis (n = 6) and controls (n = 6). Validation and specific detection were performed in an extended cohort consisting of anti-NMDAR encephalitis patients (n = 13), controls (n = 13), and viral encephalitis (n = 13) by enzyme-linked immunosorbent assay (ELISA). Additionally, the levels of some inflammatory proteins in three groups in cohort 2 reported in previous literatures that may be involved in the development of anti-NMDAR encephalitis were also tested by ELISA. Correlations between candidate biomarkers and clinical characteristics of anti-NMDAR encephalitis patients were analyzed. RESULTS Three differentially expressed cytokines and inflammatory mediators were screened from the 80-cytokine array in cohort 1. Functional enrichment analysis results suggested that these differentially expressed proteins were related to autophagy, immune/inflammatory responses, cell death, and other processes. In cohort 2, the elevations of cellular inhibitor of apoptosis protein-1 (cIAP-1), macrophage colony-stimulating factor (MCSF), CXC chemokine ligand 13 (CXCL13), and nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) in anti-NMDAR encephalitis were validated by ELISA. Linear regression revealed that the levels of CSF CXCL13 and cIAP-1 were positively correlated with the highest modified Rankin scale (mRS) score in the acute phase (p < 0.05). The level of cIAP-1 was positively correlated with the anti-NMDAR Encephalitis One-Year Functional Status (NEOS) score (p < 0.05). CONCLUSION These biomarkers show promising functions to evaluate severity or prognosis of anti-NMDAR encephalitis. The biological processes of immune/inflammatory responses, altered levels of autophagy, and the tumor necrosis factor (TNF) signal pathway may be involved in the pathophysiology of anti-NMDAR encephalitis to some extent.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Keyu Yang
- Department of Critical Care Medicine, Aerospace Center Hospital, Beijing, China
| | - Fang Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huijun Shen
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Miaomiao Liu
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Liao X, Zhang W, Dai H, Jing R, Ye M, Ge W, Pei S, Pan L. Neutrophil-Derived IL-17 Promotes Ventilator-Induced Lung Injury via p38 MAPK/MCP-1 Pathway Activation. Front Immunol 2022; 12:768813. [PMID: 34975857 PMCID: PMC8714799 DOI: 10.3389/fimmu.2021.768813] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation and can severely affect health. VILI appears to involve excessive inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-17 (IL-17) plays a critical role in the immune system and the development of infectious and inflammatory diseases, we investigated here whether it plays a role in VILI. In a mouse model of VILI, mechanical ventilation with high tidal volume promoted the accumulation of lung neutrophils, leading to increased IL-17 levels in the lung, which in turn upregulated macrophage chemoattractant protein-1 via p38 mitogen-activated protein kinase. Depletion of neutrophils decreases the production IL-17 in mice and inhibition of IL-17 significantly reduced HTV-induced lung injury and inflammatory response. These results were confirmed in vitro using RAW264.7 macrophage cultures. Our results suggest that IL-17 plays a pro-inflammatory role in VILI and could serve as a new target for its treatment.
Collapse
Affiliation(s)
- Xiaoting Liao
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weikang Zhang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
8
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
9
|
Alturaiki W. Elevated Plasma Levels of CXCL13 Chemokine in Saudi Patients With Asthma Exacerbation. Cureus 2022; 14:e21142. [PMID: 35165593 PMCID: PMC8832178 DOI: 10.7759/cureus.21142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Bronchial asthma is a lung disorder characterized by chronic allergic inflammation of the airways, and several of the immune and non-immune cells contribute to asthma's pathogenicity. B-cell activation plays an essential role in developing allergic inflammation in the lungs. CXCL13 is a potent B-cell chemoattractant chemokine, which has a crucial role in the recruitment and trafficking of B cells after interaction with its receptor CXCR5. This study is aimed to evaluate plasma levels of CXCL13 and its receptor CXCR5 in Saudi patients with asthma exacerbation relative to healthy controls. Methods: A total of 23 patients with asthma exacerbation and 20 healthy controls participated in this study. Total immunoglobulin E (IgE) and CXCL13 protein levels were measured in the plasma of patients with asthma exacerbations and healthy controls by specific enzyme-linked immunosorbent assay (ELISA). Gene expression mRNA for CXCR5 was measured using real-time polymerase chain reaction (RT-PCR). Results: Total IgE protein concentrations were elevated significantly in asthma exacerbation patients than that in healthy controls. CXCL13 protein levels were increased significantly in the asthma group relative to healthy controls. In addition, CXCR5 mRNA levels were elevated significantly in the asthma group than in the healthy controls. Conclusions: Measurement of CXCL13 and CXCR5 may be used as an additional biomarker of asthma exacerbation, and targeting CXCL13 or its receptor may be used as new treatment options in asthma.
Collapse
|
10
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
11
|
Cheng S, Wen S, Xie S, Zhang C, Zhang H, Gao K, Fan R, Xie Z, Jiang W. Circulating C-X-C Motif Ligand 13 as a Biomarker for Early Predicting Efficacy of Subcutaneous Immunotherapy in Children With Chronic Allergic Rhinitis. Front Pediatr 2022; 10:872152. [PMID: 35601415 PMCID: PMC9114669 DOI: 10.3389/fped.2022.872152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND C-X-C motif ligand 13 (CXCL13) and B cell-activating factor (BAFF) are proven to be involved in inflammatory diseases, but their role in allergic rhinitis (AR) remains unclear. The aim of this study was to investigate the role of serum CXCL13 and BAFF in AR and their clinical values as objective biomarkers to predict the efficacy of subcutaneous immunotherapy (SCIT). METHODS We prospectively recruited 90 children with AR treated with SCIT and collected their serum specimens before SCIT. One-year follow-up was conducted for all patients, and they were categorized into effective and ineffective groups based on efficacy. The serum concentrations of CXCL13 and BAFF were detected and compared between the two groups. A validation cohort of 52 responders and 26 non-responders were further assessed for both cytokines and serum CXCL13 and BAFF levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Eighty children completed the follow-up schedule, and 56 children were categorized into the effective group and 24 children into the ineffective group. The serum levels of CXCL13 in the effective group were clearly higher than those in the ineffective group (P < 0.05). Receiver operating characteristic (ROC) curves revealed the potential values of CXCL13 as a biomarker in predicting the response of SCIT. Further, in the validation cohort, ELISA results demonstrated that serum CXCL13 levels were increased in responders than non-responders (P < 0.05). ROC curves showed good accuracy of serum CXCL13 in predicting the efficacy of SCIT. CONCLUSION Our discovery-validation study demonstrated that circulating CXCL13 might serve as a novel biomarker to predict the outcome of SCIT in childhood AR. The findings indicated that CXCL13 was involved in the pathological mechanisms of AR and made help to the fundamental therapeutic mechanism of SCIT.
Collapse
Affiliation(s)
- Shenghao Cheng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Sihui Wen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shaobing Xie
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Caixia Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hua Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Kelei Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ruohao Fan
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zhihai Xie
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Weihong Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
12
|
Guo L, Li N, Yang Z, Li H, Zheng H, Yang J, Chen Y, Zhao X, Mei J, Shi H, Worthen GS, Liu L. Role of CXCL5 in Regulating Chemotaxis of Innate and Adaptive Leukocytes in Infected Lungs Upon Pulmonary Influenza Infection. Front Immunol 2021; 12:785457. [PMID: 34868067 PMCID: PMC8637413 DOI: 10.3389/fimmu.2021.785457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Respirovirus such as influenza virus infection induces pulmonary anti-viral immune response, orchestration of innate and adaptive immunity restrain viral infection, otherwise causes severe diseases such as pneumonia. Chemokines regulate leukocyte recruitment to the inflammation site. One chemokine CXCL5, plays a scavenging role to regulate pulmonary host defense against bacterial infection, but its role in pulmonary influenza virus infection is underdetermined. Here, using an influenza (H1N1) infected CXCL5-/- mouse model, we found that CXCL5 not only responds to neutrophil infiltration into infected lungs at the innate immunity stage, but also affects B lymphocyte accumulation in the lungs by regulating the expression of the B cell chemokine CXCL13. Inhibition of CXCL5-CXCR2 axis markedly induces CXCL13 expression in CD64+CD44hiCD274hi macrophages/monocytes in infected lungs, and in vitro administration of CXCL5 to CD64+ alveolar macrophages suppresses CXCL13 expression via the CXCL5-CXCR2 axis upon influenza challenge. CXCL5 deficiency leads to increased B lymphocyte accumulation in infected lungs, contributing to an enhanced B cell immune response and facilitating induced bronchus-associated lymphoid tissue formation in the infected lungs during the late infection and recovery stages. These data highlight multiple regulatory roles of CXCL5 in leukocyte chemotaxis during pulmonary influenza infection.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Research Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yanli Chen
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Junjie Mei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - G Scott Worthen
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
13
|
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J Clin Med 2021; 10:jcm10020169. [PMID: 33418879 PMCID: PMC7825135 DOI: 10.3390/jcm10020169] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma and obesity are two epidemics affecting the developed world. The relationship between obesity and both asthma and severe asthma appears to be weight-dependent, causal, partly genetic, and probably bidirectional. There are two distinct phenotypes: 1. Allergic asthma in children with obesity, which worsens a pre-existing asthma, and 2. An often non allergic, late-onset asthma developing as a consequence of obesity. In obesity, infiltration of adipose tissue by macrophages M1, together with an increased expression of multiple mediators that amplify and propagate inflammation, is considered as the culprit of obesity-related inflammation. Adipose tissue is an important source of adipokines, such as pro-inflammatory leptin, produced in excess in obesity, and adiponectin with anti-inflammatory effects with reduced synthesis. The inflammatory process also involves the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and TGFβ, which also contribute to asthma pathogenesis. In contrast, asthma pro-inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-33 contribute to maintain the lean state. The resulting regulatory effects of the immunomodulatory pathways underlying both diseases have been hypothesized to be one of the mechanisms by which obesity increases asthma risk and severity. Reduction of weight by diet, exercise, or bariatric surgery reduces inflammatory activity and improves asthma and lung function.
Collapse
Affiliation(s)
- Marina Bantulà
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, 08036 Barcelona, Spain
| | - César Picado
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-5400
| |
Collapse
|
14
|
Weitbrecht L, Berchtold D, Zhang T, Jagdmann S, Dames C, Winek K, Meisel C, Meisel A. CD4 + T cells promote delayed B cell responses in the ischemic brain after experimental stroke. Brain Behav Immun 2021; 91:601-614. [PMID: 33002634 DOI: 10.1016/j.bbi.2020.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
CD4+ T lymphocytes are key mediators of tissue damage after ischemic stroke. However, their infiltration kinetics and interactions with other immune cells in the delayed phase of ischemia remain elusive. We hypothesized that CD4+ T cells facilitate delayed autoreactive B cell responses in the brain, which have been previously linked to post-stroke cognitive impairment (PSCI). Therefore, we treated myelin oligodendrocyte glycoprotein T cell receptor transgenic 2D2 mice of both sexes with anti-CD4 antibody following 60-minute middle cerebral artery occlusion and assessed lymphocyte infiltration for up to 72 days. Anti-CD4-treatment eliminated CD4+ T cells from the circulation and ischemic brain for 28 days and inhibited B cell infiltration into the brain, particularly in animals with large infarcts. Absence of CD4+ T cells did not influence infarct maturation or survival. Once the CD4+ population recovered in the periphery, both CD4+ T and B lymphocytes entered the infarct site forming follicle-like structures. Additionally, we provide further evidence for PSCI that could be attenuated by CD4 depletion. Our findings demonstrate that CD4+ T cells are essential in delayed B cell infiltration into the ischemic brain after stroke. Importantly, lymphocyte infiltration after stroke is a long-lasting process. As CD4 depletion improved cognitive functions in an experimental set-up, these findings set the stage to elaborate more specific immune modulating therapies in treating PSCI.
Collapse
Affiliation(s)
- Luis Weitbrecht
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Daniel Berchtold
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Tian Zhang
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Sandra Jagdmann
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany
| | - Claudia Dames
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany
| | - Katarzyna Winek
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany
| | - Christian Meisel
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany
| | - Andreas Meisel
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Germany; Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|
15
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
16
|
Jirmo AC, Busse M, Happle C, Skuljec J, Dalüge K, Habener A, Grychtol R, DeLuca DS, Breiholz OD, Prinz I, Hansen G. IL-17 regulates DC migration to the peribronchial LNs and allergen presentation in experimental allergic asthma. Eur J Immunol 2020; 50:1019-1033. [PMID: 32142593 DOI: 10.1002/eji.201948409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
Abstract
IL-17 is associated with different phenotypes of asthma, however, it is not fully elucidated how it influences induction and maintenance of asthma and allergy. In order to determine the role of IL-17 in development of allergic asthma, we used IL-17A/F double KO (IL-17A/F KO) and WT mice with or without neutralization of IL-17 in an experimental allergic asthma model and analyzed airway hyperresponsiveness, lung inflammation, T helper cell polarization, and DCs influx and activation. We report that the absence of IL-17 reduced influx of DCs into lungs and lung draining LNs. Compared to WT mice, IL-17A/F KO mice or WT mice after neutralization of IL-17A showed reduced airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and IgE levels. DCs from draining LNs of allergen-challenged IL-17A/F KO mice showed a reduction in expression of migratory and costimulatory molecules CCR7, CCR2, MHC-II, and CD40 compared to WT DCs. Moreover, in vivo stimulation of adoptively transferred antigen-specific cells was attenuated in lung-draining LNs in the absence of IL-17. Thus, we report that IL-17 enhances airway DC activation, migration, and function. Consequently, lack of IL-17 leads to reduced antigen-specific T cell priming and impaired development of experimental allergic asthma.
Collapse
Affiliation(s)
- Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Kathleen Dalüge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Grychtol
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver D Breiholz
- Research Core Unit Genomics (RCUG), Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Excellence Cluster RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Wu J, Zhong W, Zhang H, Yin Y. Mammalian Target of Rapamycin Signaling Enhances Ovalbumin-Induced Neutrophilic Airway Inflammation by Promoting Th17 Cell Polarization in Murine Noneosinophilic Asthma Model. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 33:25-32. [PMID: 33406024 DOI: 10.1089/ped.2019.1088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: T helper 17 (Th17) is regarded as key immune cell in the pathogenesis of noneosinophilic asthma (NEA) due to the recruitment of neutrophils into the airways. The mammalian target of rapamycin (mTOR) is an important signaling molecule that plays a critical role in immune regulation. This study focused on mTOR signaling pathway in the regulation of Th17-mediated neutrophilic airway inflammation. Methods: Ovalbumin (OVA) T cell receptor transgenic DO11.10 mice (DO11.10 mice) were used to establish NEA model, and few mice received specific mTORC1 inhibitor rapamycin (RAPA) before intranasal administration of OVA. The severity of airway inflammation was determined by differential cell counts in bronchoalveolar lavage (BAL) fluids and histopathologic lung analysis. The levels of various cytokines in BAL fluids and lung tissues were measured. To determine the role of mTORC1 signaling in Th17 differentiation, naive T cells from wild-type (WT) and TSC1 knockout (KO) mice were cultured in Th17 skewing condition with or without RAPA in vitro and the production of IL-17A was compared. Results: Treatment with RAPA markedly attenuated OVA-induced neutrophilic airway inflammation in DO11.10 mice. Also the production of IL-17A was inhibited without affecting the production of interferon-γ (IFN-γ) and IL-4 in lungs. Furthermore, RAPA suppressed differentiation of Th17 cells in vitro, whereas enhanced activity of mTORC1 promoted Th17 cell differentiation and increased the expression of Th17-related transcription factors RORγt and RORα. Conclusion: These results suggested that mTOR promoted Th17 cell polarization and enhanced OVA-induced neutrophilic airway inflammation in experimental NEA.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenwei Zhong
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Yin
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Sangaphunchai P, Todd I, Fairclough LC. Extracellular vesicles and asthma: A review of the literature. Clin Exp Allergy 2020; 50:291-307. [PMID: 31925972 DOI: 10.1111/cea.13562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic, recurrent and incurable allergy-related respiratory disease characterized by inflammation, bronchial hyperresponsiveness and narrowing of the airways. Extracellular vesicles (EVs) are a universal feature of cellular function and can be detected in different bodily fluids. Recent evidence has shown the possibility of using EVs in understanding the pathogenesis of asthma, including their potential as diagnostic and therapeutic tools. Studies have reported that EVs released from key cells involved in asthma can induce priming and activation of other asthma-associated cells. A literature review was conducted on all current research regarding the role and function of EVs in the pathogenesis of asthma via the PRISMA statement method. An electronic search was performed using EMBASE and PubMed through to November 2018. The EMBASE search returned 76 papers, while the PubMed search returned 211 papers. Following duplicate removal, titles and abstracts were screened for eligibility with a total of 34 studies included in the final qualitative analysis. The review found evidence of association between the presence of EVs and physiological changes characteristic of asthma, suggesting that EVs are involved in the pathogenesis, with the weight of evidence presently favouring deleterious effects of EVs in asthma. Numerous studies highlighted differences in exosomal contents between EVs of healthy and asthmatic individuals, which could be employed as potential diagnostic markers. In some circumstances, EVs were also found to be suppressive to disease, but more often promote inflammation and airway remodelling. In conclusion, EVs hold immense potential in understanding the pathophysiology of asthma, and as diagnostic and therapeutic markers. While more research is needed for definitive conclusions and their application in medical practice, the literature presented in this review should encourage further research and discovery within the field of EVs and asthma.
Collapse
Affiliation(s)
| | - Ian Todd
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Sun B, Gao J, Shi W, Guo Y, Fan J, Zhang J, Li X, Liu G. The interleukin-17 G-197A polymorphism is associated with cyclosporine metabolism and transplant rejection in liver transplant recipients. Pharmacogenomics 2019; 20:447-456. [PMID: 30799725 DOI: 10.2217/pgs-2018-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study aimed to investigate the effect of and mechanism involved in the IL-17 SNP on cyclosporine metabolism and outcomes of liver transplantation (LT). Materials & methods: The IL-17 genotype, IL-17 expression, postoperative outcome and cyclosporine concentration were reviewed in 106 LT recipients. The functional relevance of rs2275913 was evaluated by luciferase assay. Furthermore, L02 cells were treated with IL-17 recombinant protein or/and pregnane X receptor (PXR) knockdown lentiviruses, then the expression of PXR, CYP3A4, CYP3A5 and IL-17R were detected by PCR and western blotting. Result: The significant distribution difference at IL-17 locus G-197A was confirmed between patients with and without rejection (p = 0.035). Patients with acute rejection showed higher IL-17 level than those without rejection. Cyclosporine concentration was associated with the different IL-17 genotype (p < 0.05). Luciferase assay revealed that 197G genotype had higher luciferase activity than that in 197A genotype (p = 0.009). Furthermore, IL-17 recombinant protein remarkably promoted the expressions of PXR, CYP3A4 and CYP3A5 (p < 0.01), but not IL-17R. PXR knockdown significantly inhibited the mRNA levels of CYP3A4 and CYP3A5 but not IL-17R (p < 0.01), while IL-17 recombinant protein had no influence on the expressions of CYP3A4 and CYP3A5 when PXR was downregulated. Conclusion: This study revealed the possible association of IL-17 G-197A with cyclosporine metabolism and transplant rejection after LT, which might be partly related to the upregulations of CYP3A4/5 dependent on PXR.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Center for Drug Evaluation and Inspection, Shanghai, PR China
| | - Junwei Gao
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weifeng Shi
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yankun Guo
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jigang Zhang
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoyu Li
- Department of pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Gaolin Liu
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
20
|
Revhaug C, Bik-Multanowski M, Zasada M, Rognlien AGW, Günther CC, Ksiązek T, Madetko-Talowska A, Szewczyk K, Grabowska A, Kwinta P, Pietrzyk JJ, Baumbusch LO, Saugstad OD. Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings. Neonatology 2019; 116:269-277. [PMID: 31454811 DOI: 10.1159/000501461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common cause of abrupted lung development after preterm birth. BPD may lead to increased rehospitalization, more severe and frequent respiratory infections, and life-long reduced lung function. The gene regulation in lungs with BPD is complex, with various genetic and epigenetic factors involved. OBJECTIVES The aim of this study was to examine the regulatory relation between gene expression and the epigenome (DNA methylation) relevant for the immune system after hyperoxia followed by a recovery period in air using a mouse model of BPD. METHODS Newborn mice pups were subjected to an immediate hyperoxic condition from birth and kept at 85% O2 levels for 14 days followed by a 14-day period in room air. Next, mice lung tissue was used for RNA and DNA extraction with subsequent microarray-based assessment of lung transcriptome and supplementary methylome analysis. RESULTS The immune system-related transcriptomeregulation was affected in mouse lungs after hyperoxia. A high proportion of genes relevant in the immune system exhibited significant expression alterations, e.g., B cell-specific genes central to the cytokine-cytokine receptor interaction, the PI3K-AKT, and the B cell receptor signaling pathways. The findings were accompanied by significant DNA hypermethylation observed in the PI3K-AKT pathway and immune system-relevant genes. CONCLUSIONS Oxygen damage could be partly responsible for the increased susceptibility and abnormal response to respiratory viruses and infections seen in premature babies with BPD through dysregulated genes.
Collapse
Affiliation(s)
- Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,
| | - Miroslaw Bik-Multanowski
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Zasada
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anne Gro W Rognlien
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | | | - Teofila Ksiązek
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Grabowska
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek J Pietrzyk
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.,Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Lars O Baumbusch
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Ola D Saugstad
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Poole JA, Mikuls TR, Duryee MJ, Warren KJ, Wyatt TA, Nelson AJ, Romberger DJ, West WW, Thiele GM. A role for B cells in organic dust induced lung inflammation. Respir Res 2017; 18:214. [PMID: 29273051 PMCID: PMC5741951 DOI: 10.1186/s12931-017-0703-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Agriculture organic dust exposures induce lung disease with lymphoid aggregates comprised of both T and B cells. The precise role of B cells in mediating lung inflammation is unknown, yet might be relevant given the emerging role of B cells in obstructive pulmonary disease and associated autoimmunity. METHODS Using an established animal model, C57BL/6 wild-type (WT) and B-cell receptor (BCR) knock-out (KO) mice were repetitively treated with intranasal inhalation of swine confinement organic dust extract (ODE) daily for 3 weeks and lavage fluid, lung tissues, and serum were collected. RESULTS ODE-induced neutrophil influx in lavage fluid was not reduced in BCR KO animals, but there was reduction in TNF-α, IL-6, CXCL1, and CXCL2 release. ODE-induced lymphoid aggregates failed to develop in BCR KO mice. There was a decrease in ODE-induced lung tissue CD11c+CD11b+ exudative macrophages and compensatory increase in CD8+ T cells in lavage fluid of BCR KO animals. Compared to saline, there was an expansion of conventional B2-, innate B1 (CD19+CD11b+CD5+/-)-, and memory (CD19+CD273+/-CD73+/-) B cells following ODE exposure in WT mice. Autoreactive responses including serum IgG anti-citrullinated protein antibody (ACPA) and anti-malondialdehyde-acetaldehyde (MAA) autoantibodies were increased in ODE treated WT mice as compared to saline control. B cells and serum immunoglobulins were not detected in BCR KO animals. CONCLUSIONS Lung tissue staining for citrullinated and MAA modified proteins were increased in ODE-treated WT animals, but not BCR KO mice. These studies show that agriculture organic dust induced lung inflammation is dependent upon B cells, and dust exposure induces an autoreactive response.
Collapse
Affiliation(s)
- Jill A Poole
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), 985990 Nebraska Medical Center, Omaha, NE, 68198-5990, USA.
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA.,Rheumatology Division, Department of Internal Medicine, UNMC, Omaha, NE, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA.,Rheumatology Division, Department of Internal Medicine, UNMC, Omaha, NE, USA
| | - Kristi J Warren
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), 985990 Nebraska Medical Center, Omaha, NE, 68198-5990, USA
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), 985990 Nebraska Medical Center, Omaha, NE, 68198-5990, USA.,Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA.,Department of Environmental, Agricultural, and Occupational Health, UNMC, Omaha, NE, USA
| | - Amy J Nelson
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), 985990 Nebraska Medical Center, Omaha, NE, 68198-5990, USA
| | - Debra J Romberger
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), 985990 Nebraska Medical Center, Omaha, NE, 68198-5990, USA.,Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
| | - William W West
- Pathology and Microbiology Department, UNMC, Omaha, NE, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA.,Rheumatology Division, Department of Internal Medicine, UNMC, Omaha, NE, USA
| |
Collapse
|
22
|
Mansour AI, Abd Almonaem ER, Behairy OG, Gouda TM. Predictive value of IL-35 and IL-17 in diagnosis of childhood asthma. Scand J Clin Lab Invest 2017; 77:373-378. [PMID: 28554228 DOI: 10.1080/00365513.2017.1328739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to evaluate the correlation between serum levels of IL-17 and IL-35 and the presence and severity of childhood asthma. The study was performed on 60 diagnosed asthmatic children, who were further classified into four groups according to the Global Initiative for Asthma Guidelines for Asthma Severity and Control (GINA) 2016, plus 30 age- and sex-matched apparently healthy children. All participants were subjected to full medical history, clinical examination, pulmonary function tests and laboratory evaluation in the form of complete blood count (CBC), serum total IgE, IL-17 and IL-35 by ELISA. Our results revealed that eosinophils count, IgE and IL-17 were significantly higher in the asthmatic group than the control group (p < .001), while IL-35 levels were significantly lower in asthmatics than control (p < .001). A strong negative correlation was found between serum IL-17 and serum IL-35; a positive correlation was found between serum IL-17 and both of serum total IgE and eosinophils counts in atopic asthmatic patients, and serum IL-35 showed significant negative correlations with both. ROC analysis of the data showed that the cut-off value of IL-35 level was <189.5 pg/mL and for IL-17 level, it was >13.1 pg/mL; this value could predict childhood asthma with sensitivity of 81.7% and 83.3%, and specificity of 76.7% and 70%, respectively. A combination of both cytokines yielded an increase in sensitivity to 95%. In conclusion, in the current study, IL-17 is upregulated while IL-35 is downregulated in childhood asthma with a significant negative correlation between both. These results suggest that both may play an important role in the pathogenesis of childhood asthma.
Collapse
|