1
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
2
|
Tang L, Li D, Wang J, Su B, Tian Y. Ambient air pollution, genetic risk and telomere length in UK biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:845-852. [PMID: 37550565 DOI: 10.1038/s41370-023-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Telomere length (TL) is a biomarker of genomic aging. The evidence on the association between TL and air pollution was inconsistent. Besides, the modification effect of genetic susceptibility on the air pollution-TL association remains unknown. OBJECTIVE We aimed to evaluate the association of ambient air pollution with TL and further assess the modification effect of genetic susceptibility. METHODS 433,535 participants with complete data of TL and air pollutants in UK Biobank were included. Annual average exposure of NO2, NOx, PM10 and PM2.5 was estimated by applying land use regression models. Genetic risk score (GRS) was constructed using reported telomere-related SNPs. Leukocyte TL was measured by quantitative polymerase chain reaction (qPCR). Multivariable linear regression models were employed to conduct associational analyses. RESULTS Categorical exposure models and RCS models both indicated U-shaped (for NO2 and NOx) and L-shaped (for PM10 and PM2.5) correlations between air pollution and TL. In comparison to the lowest quartile, the 2nd and 3rd quartile of NO2 (q2: -1.3% [-2.1%, -0.4%]; q3: -1.2% [-2.0%, -0.3%], NOx (q2: -1.3% [-2.1%, -0.5%]; q3: -1.4% [-2.2%, -0.5%]), PM2.5 (q2: -0.8% [-1.7%, 0.0%]; q3: -1.3% [-2.2%, -0.5%]), and the third quartile of PM10 (q3: -1.1% [-1.9%, -0.2%]) were inversely associated with TL. The highest quartile of NO2 was positively correlated with TL (q4: 1.0% [0.0%, 2.0%]), whereas the negative correlation between the highest quartile of other pollutants and TL was also attenuated and no longer significant. In the genetic analyses, synergistic interactions were observed between the 4th quartile of three air pollutants (NO2, NOx, and PM2.5) and genetic risk. IMPACT STATEMENT Our study for the first time revealed a non-linear trend for the association between air pollution and telomere length. The genetic analyses suggested synergistic interactions between air pollution and genetic risk on the air pollution-TL association. These findings may shed new light on air pollution's health effects, offer suggestions for identifying at-risk individuals, and provide hints regarding further investigation into gene-environment interactions.
Collapse
Affiliation(s)
- Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No.31, Beijige-3, Dongcheng District, 100730, Beijing, China.
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
| |
Collapse
|
3
|
de la Rosa R, Le A, Holm S, Ye M, Bush NR, Hessler D, Koita K, Bucci M, Long D, Thakur N. Associations Between Early-Life Adversity, Ambient Air Pollution, and Telomere Length in Children. Psychosom Med 2024; 86:422-430. [PMID: 38588482 PMCID: PMC11142884 DOI: 10.1097/psy.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Examine the independent associations and interaction between early-life adversity and residential ambient air pollution exposure on relative buccal telomere length (rBTL). METHODS Experiences of abuse, neglect, household challenges, and related life events were identified in a cross-sectional sample of children aged 1 to 11 years ( n = 197) using the 17-item Pediatric ACEs and Related Life Event Screener (PEARLS) tool. The PEARLS tool was analyzed both as a total score and across established domains (Maltreatment, Household Challenges, and Social Context). Ground-level fine particulate matter (PM 2.5 ) concentrations were matched to residential locations for the 1 and 12 months before biospecimen collection. We used multivariable linear regression models to examine for independent associations between continuous PM 2.5 exposure and PEARLS score/domains with rBTL. In addition, effect modification by PEARLS scores and domains on associations between PM 2.5 exposure and rBTL was examined. RESULTS Study participants were 47% girls, with mean (standard deviation) age of 5.9 (3.4) years, median reported PEARLS score of 2 (interquartile range [IQR], 4), median 12-month prior PM 2.5 concentrations of 11.8 μg/m 3 (IQR, 2.7 μg/m 3 ), median 1-month prior PM 2.5 concentrations of 10.9 μg/m 3 (IQR, 5.8 μg/m 3 ), and rBTL of 0.1 (IQR, 0.03). Mean 12-month prior PM 2.5 exposure was inversely associated with rBTL ( β = -0.02, 95% confidence interval = -0.04 to -0.01). Although reported PEARLS scores and domains were not independently associated with rBTL, we observed a greater decrement in rBTL with increment of average annual PM 2.5 as reported Social Context domain items increased ( p -interaction < .05). CONCLUSIONS Our results suggest that adverse Social Context factors may accelerate the association between chronic PM 2.5 exposure on telomere shortening during childhood.
Collapse
Affiliation(s)
- Rosemarie de la Rosa
- Environmental Health Sciences Division, University of California, Berkeley, School of Public Health
- University of California, San Francisco, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Austin Le
- Environmental Health Sciences Division, University of California, Berkeley, School of Public Health
| | - Stephanie Holm
- Western States Pediatric Environmental Health Specialty Unit
| | - Morgan Ye
- University of California, San Francisco, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Nicole R. Bush
- University of California San Francisco, Department of Psychiatry and Behavioral Science
- University of California, San Francisco, Department of Pediatrics
| | - Danielle Hessler
- University of California San Francisco, Department of Family and Community Medicine
| | | | | | - Dayna Long
- University of California, San Francisco, Department of Pediatrics
- UCSF Benioff Children’s Hospital Oakland
| | - Neeta Thakur
- University of California, San Francisco, Department of Medicine, Division of Pulmonary and Critical Care Medicine
| |
Collapse
|
4
|
Wei B, Zhou Y, Li Q, Zhen S, Wu Q, Xiao Z, Liao J, Zhu B, Duan J, Yang X, Liang F. Outdoor fine particulate matter exposure and telomere length in humans: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116206. [PMID: 38518608 DOI: 10.1016/j.ecoenv.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 μg/m3 increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (β) of -0.12 (95% CI: -0.20, -0.03, I2= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I2= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.
Collapse
Affiliation(s)
- Bincai Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yawen Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyi Xiao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China..
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
6
|
Fiter RJ, Murphy LJ, Gong MN, Cleven KL. The impact of air pollution on asthma: clinical outcomes, current epidemiology, and health disparities. Expert Rev Respir Med 2023; 17:1237-1247. [PMID: 38247719 DOI: 10.1080/17476348.2024.2307545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Air pollution has been shown to have a significant impact on morbidity and mortality of respiratory illnesses including asthma. AREAS COVERED Outdoor air pollution consists of a mixture of individual pollutants including vehicle traffic and industrial pollution. Studies have implicated an array of individual components of air pollution, with PM2.5, NO2, SO2, and ozone being the most classically described, and newer literature implicating other pollutants such as black carbon and volatile organic compounds. Epidemiological and cohort studies have described incidence and prevalence of pollution-related asthma and investigated both acute and chronic air pollution exposure as they relate to asthma outcomes. There is an increasing body of literature tying disparities in pollution exposure to clinical outcomes. In this narrative review, we assessed the published research investigating the association of pollution with asthma outcomes, focusing on the adult population and health care disparities. EXPERT OPINION Pollution has multiple deleterious effects on respiratory health but there is a lack of data on individualized pollution monitoring, making it difficult to establish a temporal relationship between exposure and symptoms, thereby limiting our understanding of safe exposure levels. Future research should focus on more personalized monitoring and treatment plans for mitigating exposure.
Collapse
Affiliation(s)
- Ryan J Fiter
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Lila J Murphy
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michelle N Gong
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Krystal L Cleven
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Francis M, Lindrose A, O'Connell S, Tristano RI, McGarvey C, Drury S. The interaction of socioeconomic stress and race on telomere length in children: A systematic review and meta-analysis. SSM Popul Health 2023; 22:101380. [PMID: 37065841 PMCID: PMC10102414 DOI: 10.1016/j.ssmph.2023.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Rationale Proposed mechanisms relating early life exposures to poor health suggest that biologic indicators of risk are observable in childhood. Telomere length (TL) is a biomarker of aging, psychosocial stress, and a range of environmental exposures. In adults, exposure to early life adversity, including low socioeconomic status (SES), is predictive of shorter TL. However, results in pediatric populations have been mixed. Defining the true relation between TL and SES in childhood is expected to enhance the understanding of the biological pathways through which socioeconomic factors influence health across the life span. Objective The aim of this meta-analysis was to systematically review and quantitatively assess the published literature to better understand how SES, race, and TL are related in pediatric populations. Methods Studies in the United States in any pediatric population with any measure of SES were included and identified through the following electronic databases: PubMed, EMBASE, Web of Science, Medline, Socindex, CINAHL, and Psychinfo. Analysis utilized a multi-level random-effects meta-analysis accounting for multiple effect sizes within a study. Results Thirty-two studies were included with a total of 78 effect sizes that were categorized into income-based, education-based, and composite indicators. Only three studies directly tested the relation between SES and TL as the primary study aim. In the full model, there was a significant relation between SES and TL (r = 0.0220 p = 0.0286). Analysis by type of SES categorization identified a significant moderating effect of income on TL (r = 0.0480, 95% CI: 0.0155 to 0.0802, p = 0.0045) but no significant effect for education or composite SES. Conclusions There is an overall association between SES and TL that is predominately due to the association with income-based SES measures implicating income disparities as a key target for efforts to address health inequity across the life span. Identification of associations between family income and biological changes in children that predict life-span health risk provides key data to support public health policies addressing economic inequality in families and presents a unique opportunity to assess the effect of prevention efforts at the biologic level.
Collapse
Affiliation(s)
- Mariza Francis
- Neuroscience Program, Tulane Brain Institute and School of Science and Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA, USA
| | - Alyssa Lindrose
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Samantha O'Connell
- Office of Academic Affairs and Provost, Tulane University, New Orleans, LA, USA
| | - Renee I. Tristano
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Cecile McGarvey
- Neuroscience Program, Tulane Brain Institute and School of Science and Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA, USA
| | - Stacy Drury
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute and School of Science and Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA, USA
- Corresponding author. Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Zhu X, Li Z, Wang Z, Guo C, Qian Y, Wang Z, Li X, Wei Y. Associations between exposure to ambient air pollution and changes in blood telomeres in young people: A repeated-measure study. CHEMOSPHERE 2023:139053. [PMID: 37245595 DOI: 10.1016/j.chemosphere.2023.139053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Telomere length (TL) is one of the early biomarkers of aging. Air pollutants play an important role in promoting the aging process. However, few studies have explored how they adversely affect human health by altering telomeres. This study aims to investigate the associations between telomere alterations and exposure to ambient air pollutants, thereby shedding light on the intrinsic and profound link between these pollutants and aging. We recruited 26 healthy young people and conducted 7 repeated measure studies from 2019 to 2021, and TL and telomerase (TA) in the blood samples. We analyzed the associations between air pollutants, including ozone (O3), particulate matter in diameter smaller than 2.5 μm (PM2.5) and 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) and telomere variability, and explored the lagged effects by linear mixed-effects model. The result showed that short-term exposure to O3 was negatively associated with TL, and this effect in the lag days went up to around 0. In contrast, the associations between O3 and TA presented positive tendency and gradually decreased to around 0 in the lag days. The association between PM2.5 and TL showed positive tendency and gradually decreased to negative. There was no statistically significant association between PM2.5 and TA. Other pollutants (PM10, NO2, SO2, CO) showed similar patterns of variation to that of PM2.5. Our findings suggest that short-term exposure to O3 shortens TL, which can be gradually recovered through activating TA activity, while exposure to PM2.5, PM10, NO2, SO2 and CO lengthens TL and then becomes shorter over time. This implies that the human body has some ability to self-repair telomere changes after exposure to air pollutants, and predictably, when this exposure exceeds a certain threshold, it cannot be repaired, leading to aging of the body.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
9
|
Auto repair workers exposed to PM2.5 particulate matter in Barranquilla, Colombia: telomere length and hematological parameters. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503597. [PMID: 37003649 DOI: 10.1016/j.mrgentox.2023.503597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Exposure to 2.5 µm particulate matter (PM2.5) in automotive repair shops is associated with risks to health. We evaluated the effects of occupational exposure to PM2.5 among auto repair-shop workers. Blood and urine samples were collected from 110 volunteers from Barranquilla, Colombia: 55 active workers and 55 controls. PM2.5 concentrations were assessed at each of the sampling sites and chemical content was analyzed by SEM-EDS electron microscopy. The biological samples obtained were peripheral blood (hematological profiling, DNA extraction) and urine (malondialdehyde concentration). Telomere length was assessed by qPCR and polymorphisms in the glutathione transferase genes GSTT1 and GSTM1 by PCR-RFLP, with confirmation by allelic exclusion. White blood cell (WBC), lymphocyte (LYM%) and platelet (PLT) counts and the malondialdehyde concentration were higher (4.10 ± 0.93) in the exposed group compared to the control group (1.56 ± 0.96). TL was shorter (5071 ± 891) in the exposed individuals compared to the control group (6271 ± 805). White blood cell (WBC) and platelet counts were positively associated with exposure. Age and TBARS were correlated with TL in exposed individuals. The GSTT1 gene alleles were not in Hardy-Weinberg (H-W) equilibrium. The GSTM1 gene alleles were in H-W equilibrium and allelic exclusion analysis confirmed the presence of heterozygous GSTM1 genotypes. SEM-EDS analysis showed the presence of potentially toxic elements, including Mg, Al, Fe, Mn, Rh, Zn, and Cu. Auto repair shop workers showed effects that may be associated with exposure to mixtures of pollutants present in PM2.5. The GSTM1 and GSTT1 genes had independent modulatory effects.
Collapse
|
10
|
Zheng B, Fu J. Telomere dysfunction in some pediatric congenital and growth-related diseases. Front Pediatr 2023; 11:1133102. [PMID: 37077333 PMCID: PMC10106694 DOI: 10.3389/fped.2023.1133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Telomere wear and dysfunction may lead to aging-related diseases. Moreover, increasing evidence show that the occurrence, development, and prognosis of some pediatric diseases are also related to telomere dysfunction. In this review, we systematically analyzed the relationship between telomere biology and some pediatric congenital and growth-related diseases and proposed new theoretical basis and therapeutic targets for the treatment of these diseases.
Collapse
|
11
|
Guo C, Yu T, Chen J, Chang LY, Lin C, Yu Z, Chan SHT, Dong G, Tam T, Huang B, Lau AK, Lao XQ. Associations between long-term exposure to multiple air pollutants and age at menopause: a longitudinal cohort study. Ann Epidemiol 2022; 76:68-76. [DOI: 10.1016/j.annepidem.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
12
|
Assavanopakun P, Sapbamrer R, Kumfu S, Chattipakorn N, Chattipakorn SC. Effects of air pollution on telomere length: Evidence from in vitro to clinical studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120096. [PMID: 36067971 DOI: 10.1016/j.envpol.2022.120096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution remains the major environmental problem globally. There is extensive evidence showing that the variety of air pollutants from environmental and occupational exposures cause adverse effects to our health. The clinical symptoms of those effects may present at a late stage, so surveillance is difficult to manage. Several biomarkers have been used for the early detection of health issues following exposure to air pollution, including the use of telomere length which indicates cellular senescence in response to oxidative stress. Oxidative stress is one of the most plausible mechanisms associated with exposure to air pollutants. Some specific contexts including age groups, gender, ethnicity, occupations, and health conditions, showed significant alterations in telomere length after exposure to air pollutants. Several reports demonstrated both negative and positive associations between telomere length and air pollution, the studies using different concentrations and exposure times to air pollution on the study of telomere lengths. Surprisingly, some studies reported that low levels of exposure to air pollutants (lower than regulated levels) caused the alterations in telomere length. Those findings suggest that telomere length could be one of most practical biomarkers in air pollution surveillance. Therefore, this review aimed to summarize and discuss the relationship between telomere length and exposure to air pollution. The knowledge from this review will be beneficial for the planning of public health to reduce health problems in the general population, particularly in vulnerable people, who still live in areas with high air pollution.
Collapse
Affiliation(s)
- Pheerasak Assavanopakun
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
13
|
Kahrizi MS, Patra I, Jalil AT, Achmad H, Alesaeidi S, Al-Gazally ME, Alesaeidi S. Leukocyte telomere length and obesity in children and adolescents: A systematic review and meta-analysis. Front Genet 2022; 13:861101. [PMID: 36160016 PMCID: PMC9490371 DOI: 10.3389/fgene.2022.861101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Several studies have revealed the negative effects of adiposity on telomere length shortening. However, the results of the studies assessing the negative relationship between obesity and leukocyte telomere length (LTL) are not consistent. This systematic review and meta-analysis are aimed to pool the results of articles assessing the relationship between obesity and LTL among children and adolescents. Methods: To retrieve the related studies, four online databases including PubMed, Embase, ProQuest, and Scopus were searched until May 2022. Observational studies evaluating the relationship between obesity and LTL among apparently healthy children and adolescents (aged ≤18 years) were included in the study. We considered the studies that had reported a mean ± standard deviation of LTL. The random-effects model was used to assess the pooled weighted mean difference (WMD) and a 95% confidence interval (CI). Results: The search yielded seven studies from an initial 3,403 records identified. According to the results of seven articles with 4,546 participants, obesity was associated with LTL shortening among children and adolescents (WMD = -0.081; 95% CI: -0.137 to -0.026; p = 0.004; I2 = 99.9%). Also, no publication bias was observed. According to the results of subgrouping, significant results were only attributed to the studies conducted in Europe, with high quality scores, among overweight and obese adolescents, with a baseline LTL lower than 1, and performed in community-based school settings. Also, according to the subgrouping and meta-regression results, the obesity definition criteria and baseline LTL were the possible sources of between-study heterogeneity. Conclusion: We observed shorter LTL among overweight and obese children and adolescents. To obtain more reliable results, further longitudinal prospective studies with large sample sizes and more consistent and accurate definitions of obesity are required.
Collapse
Affiliation(s)
| | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | | | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sogol Alesaeidi
- Department of Pediatric Medicine, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Song L, Wu M, Wang L, Bi J, Cao Z, Xu S, Tian Y, Xiong C, Wang Y. Ambient ozone exposure during pregnancy and telomere length in newborns: a prospective investigation in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62662-62668. [PMID: 35411518 DOI: 10.1007/s11356-022-19977-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Recent studies suggest that environmental exposures, including air pollution, may influence initial (newborn) telomere length (TL), which has important implications for lifetime health. However, the effect of prenatal ozone exposure on newborn TL is unclear. This study aimed to examine the association of ozone exposure during pregnancy with newborn TL. We used data from a birth cohort study of 762 mother-newborn pairs performed in Wuhan, China, during 2013-2015. Land-use regression models were used to assess prenatal ozone exposure. Newborn TL was quantified in cord blood by qPCR assay. We applied multiple informant model to explore the relationship of prenatal ozone exposure with newborn TL. After adjustment for potential confounders, an interquartile range (IQR) increase in ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy were associated with 6.00% (95% confidence interval [CI]: 1.59%, 10.62%), 12.64% (95% CI: 7.52%, 18.00%), and 7.10% (95% CI: 4.09%, 10.20%) longer cord blood TL, respectively. In contrast, an IQR increase in ozone exposure during the 1st trimester was associated with a 8.39% (95% CI: - 12.90%, - 3.65%) shorter cord blood TL. In multipollutant models, consistent associations were observed between ozone exposures during the 2nd trimester and whole pregnancy and cord blood TL, but not significant for the 1st and 3rd trimesters. In conclusion, our findings suggest positive associations of ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy with newborn TL and a negative association during the 1st trimester. This study provides new evidence in humans for a potential "programming" mechanism linking maternal ozone exposure to the initial (newborn) setting of offspring's telomere biology.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Do We Need More Urban Green Space to Alleviate PM2.5 Pollution? A Case Study in Wuhan, China. LAND 2022. [DOI: 10.3390/land11060776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban green space can help to reduce PM2.5 concentration by absorption and deposition processes. However, few studies have focused on the historical influence of green space on PM2.5 at a fine grid scale. Taking the central city of Wuhan as an example, this study has analyzed the spatiotemporal trend and the relationship between green space and PM2.5 in the last two decades. The results have shown that: (1) PM2.5 concentration reached a maximum value (139 μg/m3) in 2010 and decreased thereafter. Moran’s I index values of PM2.5 were in a downward trend, which indicates a sparser distribution; (2) from 2000 to 2019, the total area of green space decreased by 25.83%. The reduction in larger patches, increment in land cover diversity, and less connectivity led to fragmented spatial patterns of green space; and (3) the regression results showed that large patches of green space significantly correlated with PM2.5 concentration. The land use/cover diversity negatively correlated with the PM2.5 concentration in the ordinary linear regression. In conclusion, preserving large native natural habitats can be a supplemental measure to enlarge the air purification function of the green space. For cities in the process of PM2.5 reduction, enhancing the landscape patterns of green space provides a win-win solution to handle air pollution and raise human well-being.
Collapse
|
16
|
Kopp MV, Muche-Borowski C, Abou-Dakn M, Ahrens B, Beyer K, Blümchen K, Bubel P, Chaker A, Cremer M, Ensenauer R, Gerstlauer M, Gieler U, Hübner IM, Horak F, Klimek L, Koletzko BV, Koletzko S, Lau S, Lob-Corzilius T, Nemat K, Peters EM, Pizzulli A, Reese I, Rolinck-Werninghaus C, Rouw E, Schaub B, Schmidt S, Steiß JO, Striegel AK, Szépfalusi Z, Schlembach D, Spindler T, Taube C, Trendelenburg V, Treudler R, Umpfenbach U, Vogelberg C, Wagenmann M, Weißenborn A, Werfel T, Worm M, Sitter H, Hamelmann E. S3 guideline Allergy Prevention. Allergol Select 2022; 6:61-97. [PMID: 35274076 PMCID: PMC8905073 DOI: 10.5414/alx02303e] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The persistently high prevalence of allergic diseases in Western industrial nations and the limited possibilities of causal therapy make evidence-based recommendations for primary prevention necessary. METHODS The recommendations of the S3 guideline Allergy Prevention, published in its last version in 2014, were revised and consulted on the basis of a current systematic literature search. The evidence search was conducted for the period 06/2013 - 11/2020 in the electronic databases Cochrane and MEDLINE, as well as in the reference lists of current reviews and through references from experts. The literature found was screened in two filtering processes, first by title and abstract, and the remaining papers were screened in the full text for relevance. The studies included after this were sorted by level of evidence, and the study quality was indicated in terms of potential bias (low/high). The revised recommendations were formally agreed and consented upon with the participation of representatives of the relevant professional societies and (self-help) organizations (nominal group process). Of 5,681 hits, 286 studies were included and assessed. RESULTS Recommendations on maternal nutrition during pregnancy and breastfeeding as well as on infant nutrition in the first months of life again play an important role in the updated guideline: Many of the previous recommendations were confirmed by the current data. It was specified that breastfeeding should be exclusive for the first 4 - 6 months after birth, if possible, and that breastfeeding should continue with the introduction of complementary foods. A new recommendation is that supplementary feeding of cow's milk-based formula should be avoided in the first days of life if the mother wishes to breastfeed. Furthermore, it was determined that the evidence for a clear recommendation for hydrolyzed infant formula in non-breastfed infants at risk is currently no longer sufficient. It is therefore currently recommended to check whether an infant formula with proven efficacy in allergy prevention studies is available until the introduction of complementary feeding. Finally, based on the EAACI guideline, recommendations were made for the prevention of chicken egg allergy by introducing and regularly giving thoroughly heated (e.g., baked or hard-boiled) but not "raw" chicken egg (also no scrambled egg) with the complementary food. The recommendation to introduce peanut in complementary feeding was formulated cautiously for the German-speaking countries: In families who usually consume peanut, the regular administration of peanut-containing foods in age-appropriate form (e.g., peanut butter) with the complementary diet can be considered for the primary prevention of peanut allergy in infants with atopic dermatitis (AD). Before introduction, a clinically relevant peanut allergy must be ruled out, especially in infants with moderate to severe AD. There is still insufficient evidence for an allergy-preventive efficacy of prebiotics or probiotics, vitamin D, or other vitamins in the form of supplements so that recommendations against their supplementation were adopted for the first time in the current guideline. Biodiversity plays an important role in the development of immunological tolerance to environmental and food allergens: there is clear evidence that growing up on a farm is associated with a lower risk of developing asthma and allergic diseases. This is associated with early non-specific immune stimulation due to, among other things, the greater microbial biodiversity of house dust in this habitat. This aspect is also reflected in the recommendations on animal husbandry, on which a differentiated statement was made: In families without a recognizable increased allergy risk, pet keeping with cats or dogs should not generally be restricted. Families with an increased allergy risk or with children with already existing AD should not acquire a new cat - in contrast, however, dog ownership should not be discouraged. Interventions to reduce exposure to dust mite allergens in the home, such as the use of mite allergen-proof mattress covers ("encasings"), should be restricted to patients with already proven specific sensitization against house dust mite allergen. Children born by caesarean section have a slightly increased risk of asthma - this should be taken into account when advising on mode of delivery outside of emergency situations. Recent work also supports the recommendations on air pollutants: Active and passive exposure to tobacco smoke increase the risk of allergies, especially asthma, and should therefore be avoided. Exposure to nitrogen oxides, ozone, and small particles (PM 2.5) is associated with an increased risk, especially for asthma. Therefore, exposure to emissions of nitrogen oxides, ozone, and small particles (PM 2.5) should be kept low. The authors of this guideline are unanimously in favor of enacting appropriate regulations to minimize these air pollutants. There is no evidence that vaccinations increase the risk of allergies, but conversely there is evidence that vaccinations can reduce the risk of allergies. All children, including children at risk, should be vaccinated according to the current recommendations of the national public health institutes, also for reasons of allergy prevention. CONCLUSION The consensus of recommendations in this guideline is based on an extensive evidence base. The update of the guideline enables evidence-based and up-to-date recommendations for the prevention of allergic diseases including asthma and atopic dermatitis.
Collapse
Affiliation(s)
- Matthias V. Kopp
- Airway Research Center North, University of Lübeck, Member of Deutsches Zentrum für Lungenforschung, Universitätsklinik für Kinderheilkunde, Inselspital, Bern, Switzerland
| | - Cathleen Muche-Borowski
- Institut für Allgemeinmedizin, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Abou-Dakn
- Clinic for Gynecology and Obstetrics, St. Joseph-Krankenhaus Berlin-Tempelhof, Germany
| | - Birgit Ahrens
- Children’s Hospital, University Hospital Frankfurt, Germany
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | | | | | - Adam Chaker
- HNO-Klinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Monika Cremer
- Ökotrophologin, Journalistin, Idstein/Taunus, Germany
| | - Regina Ensenauer
- Institut für Kinderernährung, Max Rubner-Institut, Karlsruhe, Germany
| | | | - Uwe Gieler
- Klinik für Psychosomatik und Psychotherapie des UKGM, Universitätsklinik, Giessen, Germany
| | - Inga-Marie Hübner
- Arbeitsgemeinschaft Dermatologiche Prävention e.V., Hamburg, Germany
| | | | - Ludger Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Germany
| | - Berthold V. Koletzko
- Integriertes Sozialpädiatrisches Zentrum, Dr. von Haunerschen Kinderspital, LMU Klinikum der Universität München, Munich, Germany
| | - Sybille Koletzko
- Abteilung für Stoffwechsel und Ernährung, Dr. von Haunersches Kinderspital, LMU Klinikum der Universität München, Munich, Germany
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | | | - Katja Nemat
- Kinderzentrum Dresden-Friedrichstadt, Dresden, Germany
| | - Eva M.J. Peters
- Klinik für Psychosomatik und Psychotherapie des UKGM, Universitätsklinik, Giessen, Germany
| | - Antonio Pizzulli
- Schwerpunktpraxis für Allergologie und Lungenheilkunde im Kinder- und Jugendalter, Berlin, Germany
| | - Imke Reese
- Ernährungsberatung und -therapie mit Schwerpunkt Allergologie, Munich, Germany
| | | | | | - Bianca Schaub
- Asthma- und Allergieambulanz, Dr. von Haunersches Kinderspital, LMU Klinikum der Universität, Munich, Germany
| | - Sebastian Schmidt
- Allgemeine Pädiatrie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | - Zsolt Szépfalusi
- Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Vienna, Austria
| | | | | | - Christian Taube
- Klinik für Pneumologie, Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum, Essen, Germany
| | - Valérie Trendelenburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | - Regina Treudler
- Klinik für Dermatologie, Venerologie und Allergologie, Leipziger Allergie-Centrum LICA – CAC, Universitätsmedizin, Leipzig, Germany
| | | | - Christian Vogelberg
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität, Dresden, Germany
| | - Martin Wagenmann
- HNO-Klinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Anke Weißenborn
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Werfel
- Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Margitta Worm
- Klinik für Dermatologie, Allergologie und Venerologie, Campus Charité Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | - Helmut Sitter
- Institut für Chirurgische Forschung, Philipps-Universität, Marburg, Germany, and
| | - Eckard Hamelmann
- Kinder-Zentrum Bethel, Evangelisches Klinikum Bethel, Universitätsklinik für Kinder- und Jugendmedizin, Universitätsklinikum OWL, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
17
|
Guerra E Oliveira T, Trancoso IA, Lorençoni MF, Souza Júnior AD, Campagnaro BP, Coco LZ, Weitzel Dias Carneiro MT, do Espírito Santo Lemos M, Endringer DC, Fronza M. Toxicological effects of air settled particles from the Vitoria Metropolitan Area mediated by oxidative stress, pro-inflammatory mediators and NFΚB pathway. ENVIRONMENTAL RESEARCH 2022; 204:112015. [PMID: 34509484 DOI: 10.1016/j.envres.2021.112015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric pollution is a major environmental and public health risk due to its effect on global air quality and climate. Increase in pollutants concentrations, especially particulate matter (PM), are associated with increased respiratory diseases. The pathophysiology of respiratory diseases involves molecular and cellular mechanisms as inflammatory biomarkers and reactive oxygen species production. Thus, the present study aimed to investigate the in vitro cytotoxic and pro-inflammatory effects of particulate matter (PM) of six monitoring stations (1-6) from the Vitoria Metropolitan Area (VMA), Espirito Santo, Brazil in 2018. The PM was chemically characterized by inductively coupled plasma mass spectrometry. In vitro cytotoxic effects of PM (3.12-200.0 μg/mL) were analyzed in human lung epithelial cells (A549) and macrophage cells (RAW 264.7) by MTT assay (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). To investigate the pro-inflammatory effects of PM in RAW 264.7 cells, the levels of proinflammatory mediators such as nitric oxide (NO), superoxide anion (O2•-), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the activation of nuclear factor kappa B (NF- κB) were measured. The comet assay evaluated genotoxicity. Cell cycle, oxidative stress (DCF and DHE), and apoptosis were analyzed by flow cytometry. Chemical analysis of PM revealed aluminum (Al) and Iron (Fe) as the major chemical elements in all studied monitoring stations. In addition, worrying concentrations of mercury (Hg) were detected in the PM. The in vitro results showed that PM presents a dose-dependent cytotoxic effect in macrophage and pulmonary epithelial cell lines. The PM increased the production of NO, O2•-, and pro-inflammatory cytokines TNF-α and IL-6. PM also promoted alterations in the cell cycle, increased apoptosis frequency, and DNA damage. Moreover, PM increased the expression NF-κB. In addition, a positive correlation between Al and Fe and ROS production was observed. Based on the results obtained during the study period, it was concluded that the sedimented particles from the VMA might have deleterious effects on human health, which was evidenced by the increase in oxidative stress, an increase in pro-inflammatory mediators, and genotoxic effects partially mediated by the NF-κB pathway. These results add aspects to elucidate the molecular mechanisms involved in the effects of sedimented particles in vivo and in vitro.
Collapse
Affiliation(s)
- Trícia Guerra E Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Isabelle Araújo Trancoso
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Mariane Fioroti Lorençoni
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Antônio Domingos Souza Júnior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Bianca Prandi Campagnaro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Fisiologia Translacional, Universidade Vila Velha, Vila Velha, Brazil
| | - Larissa Zambom Coco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Fisiologia Translacional, Universidade Vila Velha, Vila Velha, Brazil
| | | | | | - Denise Coutinho Endringer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Marcio Fronza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil.
| |
Collapse
|
18
|
Miller JG, Buthmann JL, Gotlib IH. Hippocampal volume indexes neurobiological sensitivity to the effect of pollution burden on telomere length in adolescents. New Dir Child Adolesc Dev 2022; 2022:155-172. [PMID: 35738556 PMCID: PMC9492639 DOI: 10.1002/cad.20471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure to environmental pollutants has been associated with cellular aging in children and adolescents. Individuals may vary, however, in their sensitivity or vulnerability to the effects of environmental pollutants. Larger hippocampal volume has emerged as a potential index of increased sensitivity to social contexts. In exploratory analyses (N = 214), we extend work in this area by providing evidence that larger hippocampal volume in early adolescence reflects increased sensitivity to the effect of neighborhood pollution burden on telomere length (standardized β = -0.40, 95% CI[-0.65, -0.15]). In contrast, smaller hippocampal volume appears to buffer this association (standardized β = 0.02). In youth with larger hippocampal volume, pollution burden was indirectly associated with shorter telomere length approximately 2 years later through shorter telomere length at baseline (indirect standardized β = -0.25, 95% CI[-0.40, 0.10]). For these youth, living in high or low pollution-burdened neighborhoods may predispose them to develop shorter or longer telomeres, respectively, later in adolescence.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Jessica L Buthmann
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Campisi M, Liviero F, Maestrelli P, Guarnieri G, Pavanello S. DNA Methylation-Based Age Prediction and Telomere Length Reveal an Accelerated Aging in Induced Sputum Cells Compared to Blood Leukocytes: A Pilot Study in COPD Patients. Front Med (Lausanne) 2021; 8:690312. [PMID: 34368190 PMCID: PMC8342924 DOI: 10.3389/fmed.2021.690312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is the predominant risk factor for most degenerative diseases, including chronic obstructive pulmonary disease (COPD). This process is however very heterogeneous. Defining the biological aging of individual tissues may contribute to better assess this risky process. In this study, we examined the biological age of induced sputum (IS) cells, and peripheral blood leukocytes in the same subject, and compared these to assess whether biological aging of blood leukocytes mirrors that of IS cells. Biological aging was assessed in 18 COPD patients (72.4 ± 7.7 years; 50% males). We explored mitotic and non-mitotic aging pathways, using telomere length (TL) and DNA methylation-based age prediction (DNAmAge) and age acceleration (AgeAcc) (i.e., difference between DNAmAge and chronological age). Data on demographics, life style and occupational exposure, lung function, and clinical and blood parameters were collected. DNAmAge (67.4 ± 5.80 vs. 61.6 ± 5.40 years; p = 0.0003), AgeAcc (-4.5 ± 5.02 vs. -10.8 ± 3.50 years; p = 0.0003), and TL attrition (1.05 ± 0.35 vs. 1.48 ± 0.21 T/S; p = 0.0341) are higher in IS cells than in blood leukocytes in the same patients. Blood leukocytes DNAmAge (r = 0.927245; p = 0.0026) and AgeAcc (r = 0.916445; p = 0.0037), but not TL, highly correlate with that of IS cells. Multiple regression analysis shows that both blood leukocytes DNAmAge and AgeAcc decrease (i.e., younger) in patients with FEV1% enhancement (p = 0.0254 and p = 0.0296) and combined inhaled corticosteroid (ICS) therapy (p = 0.0494 and p = 0.0553). In conclusion, new findings from our work reveal a differential aging in the context of COPD, by a direct quantitative comparison of cell aging in the airway with that in the more accessible peripheral blood leukocytes, providing additional knowledge which could offer a potential translation into the disease management.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Filippo Liviero
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Piero Maestrelli
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Gabriella Guarnieri
- Respiratory Pathophysiology Unit, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
20
|
Li R, Li S, Pan M, Chen H, Liu X, Chen G, Chen R, Mao Z, Huo W, Wang X, Yu S, Duan Y, Guo Y, Hou J, Wang C. Physical activity attenuated the association of air pollutants with telomere length in rural Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143491. [PMID: 33218817 DOI: 10.1016/j.scitotenv.2020.143491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to air pollutants (nitrogen dioxide (NO2) and particulate matters (PMs)) or physical inactivity is linked to telomere length (TL) shortening. However, there is a lack of research on combined effects of either NO2 or PMs and physical activity (PA) on TL. This study aimed to explore the joint associations of air pollutants (NO2 or PMs) and PA with relative TL in rural Chinese adults. METHODS This study was conducted among 2704 participants aged 18-79 years in rural China. Concentrations of NO2 and PMs (PM with an aerodynamics diameter ≤ 1.0 μm (PM1), ≤2.5 μm (PM2.5) or ≤10 μm (PM10)) were estimated using random forest models incorporated with satellites data, meteorological data, and land use information. Relative TL of each participant was measured by a quantitative real-time polymerase chain reaction. Linear regression models were applied to examine the independent associations between PA, NO2 or PMs and relative TL. Interaction plots were used to depict the altered associations between NO2, PM1, PM2.5, or PM10 and relative TL along with increasing PA levels. RESULTS Each 1 μg/m3 increment in NO2, PM1, PM2.5, or PM10 was associated with a 0.038 (95% confidence intervals (CI): -0.044, -0.033), 0.036 (95% CI: -0.041, -0.031), 0.052 (95% CI: -0.059, -0.045), or 0.022 (95% CI: -0.025, -0.019) decrease in relative TL among all participants; similar findings were observed among normal glucose tolerance or impaired fasting glucose (IFG) participants as well as type 2 diabetes mellitus (T2DM) patients. PA at certain levels counteracted the association of air pollutants (NO2, PM1, PM2.5, and PM10) with relative TL among IFG participants or T2DM patients. CONCLUSIONS Long-term exposure to NO2 and PMs was associated with relative TL shortening and these effects may be counteracted by PA at certain levels in IFG participants or T2DM patients.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Hao Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xian Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
21
|
Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6374-6391. [PMID: 33394441 DOI: 10.1007/s11356-020-12051-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 04/16/2023]
Abstract
Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
22
|
Wang C, Wolters PJ, Calfee CS, Liu S, Balmes JR, Zhao Z, Koyama T, Ware LB. Long-term ozone exposure is positively associated with telomere length in critically ill patients. ENVIRONMENT INTERNATIONAL 2020; 141:105780. [PMID: 32417614 PMCID: PMC7535086 DOI: 10.1016/j.envint.2020.105780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 05/14/2023]
Abstract
RATIONALE Chronic air pollutant exposure has been associated with development of Acute Respiratory Distress Syndrome (ARDS) in patients at risk, particularly from severe trauma. We recently reported that shorter peripheral blood leukocyte (PBL) telomere length (TL) was associated with worse outcomes and higher severity of ARDS in critically ill patients. Since most major air pollutants are potent oxidants that can induce cellular oxidative stress, and oxidative stress can accelerate telomere shortening, we hypothesized that higher levels of chronic air pollutant exposure would be associated with shorter telomere length in critically ill patients including patients with ARDS. METHODS PBL-TL was measured in genomic DNA collected on the morning of ICU day 2 in 772 critically ill patients enrolled in a prospective observational study. Exposures to air pollutants including ozone (warm-season only), particulate matter < 2.5 µm (PM2.5), particulate matter < 10 µm (PM10), CO, NO2 and SO2, were estimated by weighted average of daily levels from all monitors within 50 km of each patient's residential address for the 3 years prior to admission. Associations of each air pollutant exposure and PBL-TL were investigated by multivariable linear regression models adjusting for age, ethnicity, sex, smoking history, alcohol abuse, insurance status, median household income, history of malignancy and APACHE II. RESULTS Contrary to our hypothesis, TL increased across exposure quartiles in both ozone and PM2.5 analyses (p < 0.05). In a regression model controlling for potential confounders, long term ozone exposure was significantly associated with an increase in TL in the entire cohort (0.31 kb per 10 ppb), as well as in subgroups with sepsis, trauma and ARDS (all p < 0.05). In multivariable models, entire-year exposure to PM2.5, PM10, CO, NO2 and SO2 was not associated with TL after adjustment for potential confounders. In an analysis restricted to warm-season levels to assess the effect of seasonality, higher warm-season PM2.5 and CO exposures were independently associated with longer TL. CONCLUSIONS Long-term exposure to ozone is associated with longer peripheral blood TL in critically ill patients. Further studies are needed to investigate the potential underlying mechanisms for this unexpected positive association between telomere length and air pollution exposure in critical illness.
Collapse
Affiliation(s)
- Chunxue Wang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - John R Balmes
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
23
|
Moslem A, Rad A, de Prado Bert P, Alahabadi A, Ebrahimi Aval H, Miri M, Gholizadeh A, Ehrampoush MH, Sunyer J, Nawrot TS, Miri M, Dadvand P. Association of exposure to air pollution and telomere length in preschool children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137933. [PMID: 32213432 DOI: 10.1016/j.scitotenv.2020.137933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Exposure to air pollution is associated with adverse health effects; however, the available evidence of its association with telomere length (TL), an early marker of ageing, in children is still scarce with no study available for preschool children. This study aimed to investigate the association of exposure to air pollution and traffic indicators at home and kindergarten with relative leukocyte TL (LTL) in preschool children. This cross-sectional study included 200 preschool children (5-7 years old) recruited from 27 kindergartens in Sabzevar, Iran (2017). Outdoor annual average levels PM1, PM2.5, and PM10 at residential address and kindergartens were estimated applying land use regression (LUR) models. Moreover, indoor levels of PMs at kindergartens were measured for four days in each season resulting in a total of 16 days of measurements for each kindergarten. Total streets length in different buffers and distance to major road were calculated as traffic indicators at residential address and kindergartens. We applied quantitative real-time polymerase chain reaction (qRT-PCR) to measure relative LTL in blood samples obtained from children. Mixed linear regression models were developed with qPCR plate and kindergarten as random effects, to estimate association of each pollutant and traffic indicator with LTL, controlled for relevant covariates. Higher concentrations of outdoor PM1, PM2.5, and PM10, at home and kindergartens were associated with shorter relative LTL. Similarly, increase in indoor PM2.5 concentrations at kindergartens was associated with shorter relative LTL (β = -0.18, 95% CI: -0.36, -0.01, P-value < 0.01). Moreover, higher total street length in 100 m buffer around residence and lower residential distance to major roads were associated with shorter relative LTL (β = -0.25, 95% CI: -0.37, -0.13, P-value < 0.01, and 0.32, 95% CI: 0.20, 0.44, P-value < 0.01, respectively). Overall, our study suggested that higher exposure to air pollution and traffic at kindergarten and residential home were associated with shorter relative LTL in preschool children.
Collapse
Affiliation(s)
- Alireza Moslem
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Paula de Prado Bert
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ahmad Alahabadi
- Non-communicable diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamideh Ebrahimi Aval
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Miri
- Student Research Committee, Department of Biostatistics, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jordi Sunyer
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Mohammad Miri
- Non-communicable diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
24
|
Wang ZN, Su RN, Yang BY, Yang KX, Yang LF, Yan Y, Chen ZG. Potential Role of Cellular Senescence in Asthma. Front Cell Dev Biol 2020; 8:59. [PMID: 32117985 PMCID: PMC7026390 DOI: 10.3389/fcell.2020.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is a complicated process featured by irreversible cell cycle arrest and senescence-associated secreted phenotype (SASP), resulting in accumulation of senescent cells, and low-grade inflammation. Cellular senescence not only occurs during the natural aging of normal cells, but also can be accelerated by various pathological factors. Cumulative studies have shown the role of cellular senescence in the pathogenesis of chronic lung diseases including chronic obstructive pulmonary diseases (COPD) and idiopathic pulmonary fibrosis (IPF) by promoting airway inflammation and airway remodeling. Recently, great interest has been raised in the involvement of cellular senescence in asthma. Limited but valuable data has indicated accelerating cellular senescence in asthma. This review will compile current findings regarding the underlying relationship between cellular senescence and asthma, mainly through discussing the potential mechanisms of cellular senescence in asthma, the impact of senescent cells on the pathobiology of asthma, and the efficiency and feasibility of using anti-aging therapies in asthmatic patients.
Collapse
Affiliation(s)
- Zhao-Ni Wang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruo-Nan Su
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bi-Yuan Yang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke-Xin Yang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Fen Yang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|