1
|
Kim VHD, Upton JEM, Derfalvi B, Hildebrand KJ, McCusker C. Inborn errors of immunity (primary immunodeficiencies). ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2025; 20:76. [PMID: 39780212 PMCID: PMC11714877 DOI: 10.1186/s13223-024-00938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Primary immunodeficiencies (PID), now often referred to as inborn errors of immunity (IEI), are a large heterogeneous group of disorders that result from deficiencies in immune system development and/or function. IEIs can be broadly classified as disorders of adaptive immunity (e.g., combined or humoral immunodeficiencies) or of innate immunity (e.g., phagocyte and complement disorders). Although the clinical manifestations of IEIs are highly variable, traditionally many disorders involve an increased susceptibility to infection. Research in recent years has underscored how IEI can present with features other than infection such as: severe atopy, autoimmunity, autoinflammation, lymphoproliferation, and/or malignancy resulting from immune dysregulation. Early consultation with a clinical immunologist is essential, as timely diagnosis and treatment are imperative for preventing significant disease-associated morbidity and mortality. The treatment of IEIs is complex and generally requires both supportive and definitive strategies, including but not limited to, immunoglobulin replacement therapy, antibiotic prophylaxis, immune response modifiers, and hematopoietic stem cell transplantation. This article provides an overview of the major categories of IEIs and strategies for the appropriate diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Vy H D Kim
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Julia E M Upton
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
| | - Beata Derfalvi
- Division of Immunology, IWK Health Centre, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Kyla J Hildebrand
- Division of Immunology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Christine McCusker
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
2
|
Schnell JT, Briviesca RL, Kim T, Charbonnier LM, Henderson LA, van Wijk F, Nigrovic PA. The 'T reg paradox' in inflammatory arthritis. Nat Rev Rheumatol 2025; 21:9-21. [PMID: 39653758 DOI: 10.1038/s41584-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Classic regulatory T (Treg) cells expressing CD4 and the hallmark transcription factor FOXP3 are integral to the prevention of multi-system autoimmunity. However, immune-mediated arthritis is often associated with increased numbers of Treg cells in the inflamed joints. To understand these seemingly conflicting observations, which we collectively describe as 'the Treg paradox', we provide an overview of Treg cell biology with a focus on Treg cell heterogeneity, function and dysfunction in arthritis. We discuss how the inflamed environment constrains the immunosuppressive activity of Treg cells while also promoting the differentiation of TH17-like Treg cell, exTreg cell (effector T cells that were formerly Treg cells), and osteoclastogenic Treg cell subsets that mediate tissue injury. We present a new framework to understand Treg cells in joint inflammation and define potential strategies for Treg cell-directed interventions in human inflammatory arthritis.
Collapse
Affiliation(s)
- Julia T Schnell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Ye L, Song X, Cui Y, Wu S, Wang Y, Zhang T, Weng W, Ge T. Sirolimus alleviated intractable diarrhea of IPEX syndrome: a case report and literature review. BMC Pediatr 2024; 24:806. [PMID: 39696094 PMCID: PMC11653752 DOI: 10.1186/s12887-024-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare single-gene X-linked immunodeficiency disease caused by mutations in the forkhead box protein 3 (FOXP3) gene. The typical clinical manifestations of IPEX mainly include severe atopic dermatitis, insulin-dependent type 1 diabetes mellitus, and intractable diarrhea. CASE PRESENTATION Here, we report a boy with intractable diarrhea diagnosed with early-onset IPEX syndrome due to the c.434C > T (p.Ala145Val) mutation in exon 4 of the FOXP3 gene. The patient experienced intractable diarrhea and severe weight loss, and his clinical symptoms could not be alleviated by conventional supportive and anti-infection treatment. Sirolimus, an immunosuppressant, preferentially inhibits effector T cells while allowing the proliferation of Tregs and is used to treat IPEX patients and alleviate intractable diarrhea. CONCLUSION We reviewed the literature on the use of sirolimus for the treatment of IPEX syndrome over the past two decades.
Collapse
Affiliation(s)
- Lin Ye
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Xue Song
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Shengnan Wu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China.
| | - Ting Ge
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China.
| |
Collapse
|
4
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
5
|
Voarino M, Consonni F, Gambineri E. Expanding the spectrum of IPEX: from new clinical findings to novel treatments. Curr Opin Allergy Clin Immunol 2024; 24:457-463. [PMID: 39475830 PMCID: PMC11537464 DOI: 10.1097/aci.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of recent research findings regarding immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, focusing on clinical and immunological novelties, as well as emerging treatment strategies, based on the published literature of the last few years. RECENT FINDINGS While it is well known that IPEX can present with a wide range of atypical clinical manifestations, new and unique phenotypes continue to emerge, making it essential to maintain a high level of clinical suspicion both at the time of diagnosis and during follow-up. This unpredictability in clinical presentation is further compounded by the lack of a clear genotype-phenotype correlation. A valuable tool for monitoring comes from recent discoveries regarding the epigenetic signature of Tregs, which, by correlating with disease severity, could prove to be a useful biomarker for diagnosis and ongoing management. The use of biological agents is emerging as an alternative to traditional immunosuppression. Additionally, ongoing studies are exploring the feasibility of gene therapy through the introduction of the wild-type FOXP3 into peripheral CD4 + T cells. SUMMARY Further research is needed to fully understand the variable clinical presentations of IPEX and optimize tailored therapies, ensuring better management and outcomes for affected individuals.
Collapse
Affiliation(s)
| | - Filippo Consonni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
6
|
Ehrenzeller SA, Lukesh NR, Stiepel RT, Middleton DD, Nuzzolo SM, Tate AJ, Batty CJ, Bachelder EM, Ainslie KM. Comparison of emulsion and spray methods for fabrication of rapamycin-loaded acetalated dextran microparticles. RSC PHARMACEUTICS 2024; 1:727-741. [PMID: 39415944 PMCID: PMC11474811 DOI: 10.1039/d4pm00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024]
Abstract
Rapamycin (rapa), an immunosuppressive medication, has demonstrated considerable effectiveness in reducing organ transplant rejection and treating select autoimmune diseases. However, the standard oral administration of rapa results in poor bioavailability, broad biodistribution, and harmful off-target effects, necessitating improved drug delivery formulations. Polymeric microparticles (MPs) are one such solution and have demonstrated promise in pre-clinical studies to improve the therapeutic efficacy of rapa. Nevertheless, MP formulations are highly diverse, and fabrication method selection is a critical consideration in formulation design. Herein, we compared common fabrication processes for the development of rapa-loaded MPs. Using the biopolymer acetalated dextran (Ace-DEX), rapa-loaded MPs were fabricated by both emulsion (homogenization and sonication) and spray (electrospray and spray drying) methods, and resultant MPs were characterized for size, morphology, surface charge, and drug release kinetics. MPs were then screened in LPS-stimulated macrophages to gauge immunosuppressive efficacy relative to soluble drug. We determined that homogenized MPs possessed the most optimal combination of sizing, tunable drug release kinetics, and immunosuppressive efficacy, and we subsequently demonstrated that these characteristics were maintained across a range of potential rapa loadings. Further, we performed in vivo trafficking studies to evaluate depot kinetics and cellular uptake at the injection site after subcutaneous injection of homogenized MPs. We observed preferential MP uptake by dendritic cells at the depot, highlighting the potential for MPs to direct more targeted drug delivery. Our results emphasize the significance of fabrication method in modulating the efficacy of MP systems and inform improved formulation design for the delivery of rapa.
Collapse
Affiliation(s)
- Stephen A Ehrenzeller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Steven M Nuzzolo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Aliyah J Tate
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University Chapel Hill North Carolina USA
- Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
7
|
Silva RCMC. mTOR-mediated differentiation and maintenance of suppressive T cells at the center stage of IPEX treatment. Immunol Res 2024; 72:523-525. [PMID: 38462561 DOI: 10.1007/s12026-024-09472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
9
|
Wang T, Wang J, Xu H, Yan H, Liu Y, Zhang N, Zhang Y, Zhang J, Xu J, Zhang L, Ge X, Meng M, Liu P, Yang Q, Qin D, Li S, He B. Salvianolic acid B alleviates autoimmunity in Treg-deficient mice via inhibiting IL2-STAT5 signaling. Phytother Res 2024; 38:3825-3836. [PMID: 38887974 DOI: 10.1002/ptr.8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
Regulatory T cell (Treg) deficiency leads to immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which is a CD4+ T cell-driven autoimmune disease in both humans and mice. Despite understanding the molecular and cellular characteristics of IPEX syndrome, new treatment options have remained elusive. Here, we hypothesized that salvianolic acid B (Sal B), one of the main active ingredients of Salvia miltiorrhiza, can protect against immune disorders induced by Treg deficiency. To examine whether Sal B can inhibit Treg deficiency-induced autoimmunity, Treg-deficient scurfy (SF) mice with a mutation in forkhead box protein 3 were treated with different doses of Sal B. Immune cells, inflammatory cell infiltration, and cytokines were evaluated by flow cytometry, hematoxylin and eosin staining and enzyme-linked immunosorbent assay Kits, respectively. Moreover, RNA sequencing, western blot, and real-time PCR were adopted to investigate the molecular mechanisms of action of Sal B. Sal B prolonged lifespan and reduced inflammation in the liver and lung of SF mice. Moreover, Sal B decreased plasma levels of several inflammatory cytokines, such as IL-2, IFN-γ, IL-4, TNF-α, and IL-6, in SF mice. By analyzing the transcriptomics of livers, we determined the signaling pathways, especially the IL-2-signal transducer and activator of transcription 5 (STAT5) signaling pathway, which were associated with Treg deficiency-induced autoimmunity. Remarkably, Sal B reversed the expression of gene signatures related to the IL-2-STAT5 signaling pathway in vitro and in vivo. Sal B prolongs survival and inhibits lethal inflammation in SF mice through the IL-2-STAT5 axis. Our findings may inspire novel drug discovery efforts aimed at treating IPEX syndrome.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Huan Xu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Han Yan
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Ying Liu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Yawen Zhang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jingmin Zhang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jingxuan Xu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Lei Zhang
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Ge
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjing Meng
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Peiman Liu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Qiaozhi Yang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Daogang Qin
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Sen Li
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Baokun He
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
11
|
Bacchetta R, Roncarolo MG. IPEX syndrome from diagnosis to cure, learning along the way. J Allergy Clin Immunol 2024; 153:595-605. [PMID: 38040040 DOI: 10.1016/j.jaci.2023.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
In the past 2 decades, a significant number of studies have been published describing the molecular and clinical aspects of immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome. These studies have refined our knowledge of this rare yet prototypic genetic autoimmune disease, advancing the diagnosis, broadening the clinical spectrum, and improving our understanding of the underlying immunologic mechanisms. Despite these advances, Forkhead box P3 mutations have devastating consequences, and treating patients with IPEX syndrome remains a challenge, even with safer strategies for hematopoietic stem cell transplantation and gene therapy becoming a promising reality. The aim of this review was to highlight novel features of the disease to further advance awareness and improve the diagnosis and treatment of patients with IPEX syndrome.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, Calif; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
12
|
Borna S, Meffre E, Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol Rev 2024; 322:244-258. [PMID: 37994657 DOI: 10.1111/imr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Uhlig HH, Booth C, Cho J, Dubinsky M, Griffiths AM, Grimbacher B, Hambleton S, Huang Y, Jones K, Kammermeier J, Kanegane H, Koletzko S, Kotlarz D, Klein C, Lenardo MJ, Lo B, McGovern DPB, Özen A, de Ridder L, Ruemmele F, Shouval DS, Snapper SB, Travis SP, Turner D, Wilson DC, Muise AM. Precision medicine in monogenic inflammatory bowel disease: proposed mIBD REPORT standards. Nat Rev Gastroenterol Hepatol 2023; 20:810-828. [PMID: 37789059 DOI: 10.1038/s41575-023-00838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
Owing to advances in genomics that enable differentiation of molecular aetiologies, patients with monogenic inflammatory bowel disease (mIBD) potentially have access to genotype-guided precision medicine. In this Expert Recommendation, we review the therapeutic research landscape of mIBD, the reported response to therapies, the medication-related risks and systematic bias in reporting. The mIBD field is characterized by the absence of randomized controlled trials and is dominated by retrospective observational data based on case series and case reports. More than 25 off-label therapeutics (including small-molecule inhibitors and biologics) as well as cellular therapies (including haematopoietic stem cell transplantation and gene therapy) have been reported. Heterogeneous reporting of outcomes impedes the generation of robust therapeutic evidence as the basis for clinical decision making in mIBD. We discuss therapeutic goals in mIBD and recommend standardized reporting (mIBD REPORT (monogenic Inflammatory Bowel Disease Report Extended Phenotype and Outcome of Treatments) standards) to stratify patients according to a genetic diagnosis and phenotype, to assess treatment effects and to record safety signals. Implementation of these pragmatic standards should help clinicians to assess the therapy responses of individual patients in clinical practice and improve comparability between observational retrospective studies and controlled prospective trials, supporting future meta-analysis.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judy Cho
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marla Dubinsky
- Department of Paediatric Gastroenterology, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kelsey Jones
- Paediatric Gastroenterology, Great Ormond Street Hospital, London, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Paediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ahmet Özen
- Marmara University Division of Allergy and Immunology, Istanbul, Turkey
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Ruemmele
- Université Paris Cité, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David C Wilson
- Child Life and Health, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Gastroenterology, The Royal Hospital for Children, and Young People, Edinburgh, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Wobma H, Janssen E. Expanding IPEX: Inborn Errors of Regulatory T Cells. Rheum Dis Clin North Am 2023; 49:825-840. [PMID: 37821198 DOI: 10.1016/j.rdc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Division of Pediatric Rheumatology, Michigan Medicine, C.S. Mott Children's Hospital, 1500 East Medical Center Drive, SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Halvorson T, Tuomela K, Levings MK. Targeting regulatory T cell metabolism in disease: Novel therapeutic opportunities. Eur J Immunol 2023; 53:e2250002. [PMID: 36891988 DOI: 10.1002/eji.202250002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023]
Abstract
Regulatory T cells (Tregs) are essential for immune homeostasis and suppression of pathological autoimmunity but can also play a detrimental role in cancer progression via inhibition of anti-tumor immunity. Thus, there is broad applicability for therapeutic Treg targeting, either to enhance function, for example, through adoptive cell therapy (ACT), or to inhibit function with small molecules or antibody-mediated blockade. For both of these strategies, the metabolic state of Tregs is an important consideration since cellular metabolism is intricately linked to function. Mounting evidence has shown that targeting metabolic pathways can selectively promote or inhibit Treg function. This review aims to synthesize the current understanding of Treg metabolism and discuss emerging metabolic targeting strategies in the contexts of transplantation, autoimmunity, and cancer. We discuss approaches to gene editing and cell culture to manipulate Treg metabolism during ex vivo expansion for ACT, as well as in vivo nutritional and pharmacological interventions to modulate Treg metabolism in disease states. Overall, the intricate connection between metabolism and phenotype presents a powerful opportunity to therapeutically tune Treg function.
Collapse
Affiliation(s)
- Torin Halvorson
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Vaseghi-Shanjani M, Yousefi P, Sharma M, Samra S, Sifuentes E, Turvey SE, Biggs CM. Transcription factor defects in inborn errors of immunity with atopy. FRONTIERS IN ALLERGY 2023; 4:1237852. [PMID: 37727514 PMCID: PMC10505736 DOI: 10.3389/falgy.2023.1237852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factors (TFs) are critical components involved in regulating immune system development, maintenance, and function. Monogenic defects in certain TFs can therefore give rise to inborn errors of immunity (IEIs) with profound clinical implications ranging from infections, malignancy, and in some cases severe allergic inflammation. This review examines TF defects underlying IEIs with severe atopy as a defining clinical phenotype, including STAT3 loss-of-function, STAT6 gain-of-function, FOXP3 deficiency, and T-bet deficiency. These disorders offer valuable insights into the pathophysiology of allergic inflammation, expanding our understanding of both rare monogenic and common polygenic allergic diseases. Advances in genetic testing will likely uncover new IEIs associated with atopy, enriching our understanding of molecular pathways involved in allergic inflammation. Identification of monogenic disorders profoundly influences patient prognosis, treatment planning, and genetic counseling. Hence, the consideration of IEIs is essential for patients with severe, early-onset atopy. This review highlights the need for continued investigation into TF defects to enhance our understanding and management of allergic diseases.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Sifuentes
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E. Turvey
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M. Biggs
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
20
|
Azabdaftari A, Jones KDJ, Kammermeier J, Uhlig HH. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum Genet 2023; 142:599-611. [PMID: 35761107 DOI: 10.1007/s00439-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Over 100 genes are associated with monogenic forms of inflammatory bowel disease (IBD). These genes affect the epithelial barrier function, innate and adaptive immunity in the intestine, and immune tolerance. We provide an overview of newly discovered monogenic IBD genes and illustrate how a recently proposed taxonomy model can integrate phenotypes and shared pathways. We discuss how functional understanding of genetic disorders and clinical genomics supports personalised medicine for patients with monogenic IBD.
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey D J Jones
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
21
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
22
|
Stallard L, Siddiqui I, Muise A. Beyond IBD: the genetics of other early-onset diarrhoeal disorders. Hum Genet 2023; 142:655-667. [PMID: 36788146 PMCID: PMC10182111 DOI: 10.1007/s00439-023-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
Diarrhoeal disorders in childhood extend beyond the inflammatory bowel diseases. Persistent and severe forms of diarrhoea can occur from birth and are associated with significant morbidity and mortality. These disorders can affect not only the gastrointestinal tract but frequently have extraintestinal manifestations, immunodeficiencies and endocrinopathies. Genomic analysis has advanced our understanding of these conditions and has revealed precision-based treatment options such as potentially curative haematopoietic stem cell transplant. Although many new mutations have been discovered, there is frequently no clear genotype-phenotype correlation. The functional effects of gene mutations can be studied in model systems such as patient-derived organoids. This allows us to further characterise these disorders and advance our understanding of the pathophysiology of the intestinal mucosa. In this review, we will provide an up to date overview of genes involved in diarrhoeal disorders of early onset, particularly focussing on the more recently described gene defects associated with protein loosing enteropathy.
Collapse
Affiliation(s)
- Lorraine Stallard
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iram Siddiqui
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada. .,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
23
|
Narula M, Lakshmanan U, Borna S, Schulze JJ, Holmes TH, Harre N, Kirkey M, Ramachandran A, Tagi VM, Barzaghi F, Grunebaum E, Upton JEM, Hong-Diep Kim V, Wysocki C, Dimitriades VR, Weinberg K, Weinacht KG, Gernez Y, Sathi BK, Schelotto M, Johnson M, Olek S, Sachsenmaier C, Roncarolo MG, Bacchetta R. Epigenetic and immunological indicators of IPEX disease in subjects with FOXP3 gene mutation. J Allergy Clin Immunol 2023; 151:233-246.e10. [PMID: 36152823 DOI: 10.1016/j.jaci.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Forkhead box protein 3 (FOXP3) is the master transcription factor in CD4+CD25hiCD127lo regulatory T (Treg) cells. Mutations in FOXP3 result in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome. Clinical presentation of IPEX syndrome is broader than initially described, challenging the understanding of the disease, its evolution, and treatment choice. OBJECTIVE We sought to study the type and extent of immunologic abnormalities that remain ill-defined in IPEX, across genetic and clinical heterogeneity. METHODS We performed Treg-cell-specific epigenetic quantification and immunologic characterization of severe "typical" (n = 6) and "atypical" or asymptomatic (n = 9) patients with IPEX. RESULTS Increased number of cells with Treg-cell-Specific Demethylated Region demethylation in FOXP3 is a consistent feature in patients with IPEX, with (1) highest values in those with typical IPEX, (2) increased values in subjects with pathogenic FOXP3 but still no symptoms, and (3) gradual increase over the course of disease progression. Large-scale profiling using Luminex identified plasma inflammatory signature of macrophage activation and TH2 polarization, with cytokines previously not associated with IPEX pathology, including CCL22, CCL17, CCL15, and IL-13, and the inflammatory markers TNF-α, IL-1A, IL-8, sFasL, and CXCL9. Similarly, both Treg-cell and Teff compartments, studied by Mass Cytometry by Time-Of-Flight, were skewed toward the TH2 compartment, especially in typical IPEX. CONCLUSIONS Elevated TSDR-demethylated cells, combined with elevation of plasmatic and cellular markers of a polarized type 2 inflammatory immune response, extends our understanding of IPEX diagnosis and heterogeneity.
Collapse
Affiliation(s)
- Mansi Narula
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Uma Lakshmanan
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | | | - Tyson H Holmes
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Nicholas Harre
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Matthew Kirkey
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Akshaya Ramachandran
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Veronica Maria Tagi
- San Raffaele Telethon Institute for Gene Therapy, Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Julia E M Upton
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vy Hong-Diep Kim
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Christian Wysocki
- Department of Internal Medicine, Pediatrics, Allergy and Immunology, UT Southwestern Medical Center, Dallas, Tex
| | - Victoria R Dimitriades
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, UC Davis Health Medical Center, Sacramento, Calif
| | - Kenneth Weinberg
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Katja G Weinacht
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Yael Gernez
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | | | | | - Matthew Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Sven Olek
- Ivana Turbachova Laboratory of Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | | | - Maria-Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
24
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
25
|
Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol 2022; 13:1026511. [PMID: 36248828 PMCID: PMC9556666 DOI: 10.3389/fimmu.2022.1026511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease, ulcerative colitis and inflammatory bowel disease-undefined (IBD-U). IBD are understood to be multifactorial, involving genetic, immune, microbial and environmental factors. Advances in next generation sequencing facilitated the growing identification of over 80 monogenic causes of IBD, many of which overlap with Inborn errors of immunity (IEI); Approximately a third of currently identified IEI result in gastrointestinal manifestations, many of which are inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract represents an opportune system to study IEI as it consists of the largest mass of lymphoid tissue in the body and employs a thin layer of intestinal epithelial cells as the critical barrier between the intestinal lumen and the host. In this mini-review, a selection of pertinent IEI resulting in monogenic IBD is described involving disorders in the intestinal epithelial barrier, phagocytosis, T and B cell defects, as well as those impairing central and peripheral tolerance. The contribution of disrupted gut-microbiota-host interactions in disturbing intestinal homeostasis among patients with intestinal disease is also discussed. The molecular mechanisms driving pathogenesis are reviewed along with the personalized therapeutic interventions and investigational avenues this growing knowledge has enabled.
Collapse
|
26
|
Huang Y, Fang S, Zeng T, Chen J, Yang L, Sun G, Dai R, An Y, Tang X, Dou Y, Zhao X, Zhou L. Clinical and immunological characteristics of five patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in China–expanding the atypical phenotypes. Front Immunol 2022; 13:972746. [PMID: 36091011 PMCID: PMC9448973 DOI: 10.3389/fimmu.2022.972746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare disorder of the immune regulatory system caused by forkhead box P3 (FOXP3) mutations. Abnormal numbers or functions of regulatory T (Treg) cells account for the various autoimmune symptoms. We aimed to explore the molecular genetics and phenotypic spectra of patients with atypical IPEX syndrome in China. Methods We analyzed the molecular, clinical and immune phenotype characteristics of five Chinese patients with FOXP3 mutations. Results We summarized the molecular and phenotypic features of five patients with FOXP3 mutations, including two novel mutations. Four of the five patients displayed atypical phenotypes, and one developed immune-related peripheral neuropathy. Three of the five patients showed normal frequencies of Treg cells, but the proportions of subsets of Treg cells, CD4+ T cells and B cells were out of balance. Conclusions Our report broadens the understanding of the clinical features of atypical IPEX syndrome. Our detailed analyses of the immunological characteristics of these patients enhance the understanding of the possible mechanisms underlying the clinical manifestations.
Collapse
Affiliation(s)
- Yu Huang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyu Fang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zeng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Gan Sun
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rongxin Dai
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Dou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaodong Zhao, ; Lina Zhou,
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaodong Zhao, ; Lina Zhou,
| |
Collapse
|
27
|
Pacillo L, Giardino G, Amodio D, Giancotta C, Rivalta B, Rotulo GA, Manno EC, Cifaldi C, Palumbo G, Pignata C, Palma P, Rossi P, Finocchi A, Cancrini C. Targeted treatment of autoimmune cytopenias in primary immunodeficiencies. Front Immunol 2022; 13:911385. [PMID: 36052091 PMCID: PMC9426461 DOI: 10.3389/fimmu.2022.911385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/15/2022] [Indexed: 11/14/2022] Open
Abstract
Primary Immunodeficiencies (PID) are a group of rare congenital disorders of the immune system. Autoimmune cytopenia (AIC) represents the most common autoimmune manifestation in PID patients. Treatment of AIC in PID patients can be really challenging, since they are often chronic, relapsing and refractory to first line therapies, thus requiring a broad variety of alternative therapeutic options. Moreover, immunosuppression should be fine balanced considering the increased susceptibility to infections in these patients. Specific therapeutic guidelines for AIC in PID patients are lacking. Treatment choice should be guided by the underlying disease. The study of the pathogenic mechanisms involved in the genesis of AIC in PID and our growing ability to define the molecular underpinnings of immune dysregulation has paved the way for the development of novel targeted treatments. Ideally, targeted therapy is directed against an overexpressed or overactive gene product or substitutes a defective protein, restoring the impaired pathway. Actually, the molecular diagnosis or a specific drug is not always available. However, defining the category of PID or the immunological phenotype can help to choose a semi-targeted therapy directed towards the suspected pathogenic mechanism. In this review we overview all the therapeutic interventions available for AIC in PID patients, according to different immunologic targets. In particular, we focus on T and/or B cells targeting therapies. To support decision making in the future, prospective studies to define treatment response and predicting/stratifying biomarkers for patients with AIC and PID are needed.
Collapse
Affiliation(s)
- Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giuseppe Palumbo
- Department of Onco Hematology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Paolo Palma
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
- *Correspondence: Caterina Cancrini,
| |
Collapse
|
28
|
Gentile M, Miano M, Terranova P, Giardino S, Faraci M, Pierri F, Drago E, Verzola D, Ghiggeri G, Verrina E, Angeletti A, Cafferata B, Grossi A, Ceccherini I, Caridi G, Lugani F, Nescis L, Fiaccadori E, Lanino L, Fenoglio D, La Porta E. Case Report: Atypical Manifestations Associated With FOXP3 Mutations. The “Fil Rouge” of Treg Between IPEX Features and Other Clinical Entities? Front Immunol 2022; 13:854749. [PMID: 35479070 PMCID: PMC9035826 DOI: 10.3389/fimmu.2022.854749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe Forkhead box protein P3 (FOXP3) is a transcription factor central to the function of regulatory T cells (Treg). Mutations in the FOXP3 gene lead to a systemic disease called immune dysregulation, polyendocrinopathy, and enteropathy, an X-linked syndrome (IPEX) characterized by the triad of early-onset intractable diarrhea, type 1 diabetes, and eczema. An atypical presentation of IPEX has been reported.MethodWe report rare cases with equivocal clinical associations that included inflammatory, kidney, and hematologic involvements screened with massively parallel sequencing techniques.ResultsTwo patients with hemizygous mutations of FOXP3 [c.779T>A (p.L260Q)] and [c.1087A>G (p.I363V)] presented clinical manifestations not included in typical cases of IPEX: one was a 16-year-old male patient with an initial clinical diagnosis of autoimmune lymphoproliferative syndrome (ALPS) and who developed proteinuria and decreased kidney function due to membranous nephropathy, an autoimmune renal condition characterized by glomerular sub-epithelial antibodies. The second patient was a 2-year-old child with bone marrow failure who developed the same glomerular lesions of membranous nephropathy and received a bone marrow transplantation. High levels of IgG4 in serum, bone marrow, and kidney led to the definition of IgG4-related kidney disease (IgG4 RKD) in this young boy. The circulating Treg levels were normal in the former case and very low in the second.ConclusionTwo atypical associations of functional mutations of FOXP3 that include ALPS and IgG4 RKD are described. Membranous nephropathy leading to renal failure completed in both cases the clinical phenotypes that should be included in the clinical panorama of FOXP3 failure.
Collapse
Affiliation(s)
- Micaela Gentile
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Terranova
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Giardino
- Hematopoietic Stem Cell Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hematopoietic Stem Cell Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Drago
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties, University of Genova, Genoa, Italy
| | - Gianmarco Ghiggeri
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Dialysis Unit, Department of Pediatric, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Alice Grossi
- Unitá Operativa Semplice Dipartimentale (UOSD) Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Unitá Operativa Semplice Dipartimentale (UOSD) Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Caridi
- Laboratory on Molecular Nephrology, Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Lugani
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lorenzo Nescis
- Unitá Operativa (UO) of Nephrology, Dialysis, and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Martino, Genoa, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Unitá Operativa (UO) Nefrologia, Azienda Ospedaliera-Universitaria, Parma, Italy
| | - Luca Lanino
- Department of Oncology and Hematology, Humanitas Clinical and Research Center, Milan, Italy
| | - Daniela Fenoglio
- Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Martino, Genoa, Italy
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Edoardo La Porta
- Unitá Operativa (UO) of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- *Correspondence: Edoardo La Porta,
| |
Collapse
|
29
|
Borna S, Lee E, Sato Y, Bacchetta R. Towards gene therapy for IPEX syndrome. Eur J Immunol 2022; 52:705-716. [PMID: 35355253 PMCID: PMC9322407 DOI: 10.1002/eji.202149210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Immune dysregulation polyendocrinopathy enteropathy X linked (IPEX) syndrome is an uncurable disease of the immune system, with immune dysregulation that is caused by mutations in FOXP3. Current treatment options, such as pharmacological immune suppression and allogeneic hematopoietic stem cell transplantation, have been beneficial but present limitations, and their life‐long consequences are ill‐defined. Other similar blood monogenic diseases have been successfully treated using gene transfer in autologous patient cells, thus providing an effective and less invasive therapeutic. Development of gene therapy for patients with IPEX is particularly challenging because successful strategies must restore the complex expression profile of the transcription factor FOXP3, ensuring it is tightly regulated and its cell subset‐specific roles are maintained. This review summarizes current efforts toward achieving gene therapy to treat immune dysregulation in IPEX patients.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Abubakar SD, Ihim SA, Farshchi A, Maleknia S, Abdullahi H, Sasaki T, Azizi G. The role of TNF-α and anti-TNF-α agents in the immunopathogenesis and management of immune dysregulation in primary immunodeficiency diseases. Immunopharmacol Immunotoxicol 2022; 44:147-156. [DOI: 10.1080/08923973.2021.2023173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Amir Farshchi
- Biopharmaceutical Research Center, AryoGen Pharmed Inc, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamisu Abdullahi
- Department of Immunology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
31
|
Sato Y, Liu J, Lee E, Perriman R, Roncarolo MG, Bacchetta R. Co-Expression of FOXP3FL and FOXP3Δ2 Isoforms Is Required for Optimal Treg-Like Cell Phenotypes and Suppressive Function. Front Immunol 2021; 12:752394. [PMID: 34737751 PMCID: PMC8560788 DOI: 10.3389/fimmu.2021.752394] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
FOXP3 is the master transcription factor in both murine and human FOXP3+ regulatory T cells (Tregs), a T-cell subset with a central role in controlling immune responses. Loss of the functional Foxp3 protein in scurfy mice leads to acute early-onset lethal lymphoproliferation. Similarly, pathogenic FOXP3 mutations in humans lead to immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which are characterized by systemic autoimmunity that typically begins in the first year of life. However, although pathogenic FOXP3 mutations lead to overlapping phenotypic consequences in both systems, FOXP3 in human Tregs, but not mouse, is expressed as two predominant isoforms, the full length (FOXP3FL) and the alternatively spliced isoform, delta 2 (FOXP3Δ2). Here, using CRISPR/Cas9 to generate FOXP3 knockout CD4+ T cells (FOXP3KOGFP CD4+ T cells), we restore the expression of each isoform by lentiviral gene transfer to delineate their functional roles in human Tregs. When compared to FOXP3FL or FOXP3Δ2 alone, or double transduction of the same isoform, co-expression of FOXP3FL and FOXP3Δ2 induced the highest overall FOXP3 protein expression in FOXP3KOGFP CD4+ T cells. This condition, in turn, led to optimal acquisition of Treg-like cell phenotypes including downregulation of cytokines, such as IL-17, and increased suppressive function. Our data confirm that co-expression of FOXP3FL and FOXP3Δ2 leads to optimal Treg-like cell function and supports the need to maintain the expression of both when engineering therapeutics designed to restore FOXP3 function in otherwise deficient cells.
Collapse
Affiliation(s)
- Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jessica Liu
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rhonda Perriman
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Elkoshi Z. The Binary Model of Chronic Diseases Applied to COVID-19. Front Immunol 2021; 12:716084. [PMID: 34539649 PMCID: PMC8446604 DOI: 10.3389/fimmu.2021.716084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
A binary model for the classification of chronic diseases has formerly been proposed. The model classifies chronic diseases as “high Treg” or “low Treg” diseases according to the extent of regulatory T cells (Treg) activity (frequency or function) observed. The present paper applies this model to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The model correctly predicts the efficacy or inefficacy of several immune-modulating drugs in the treatment of severe coronavirus disease 2019 (COVID-19) disease. It also correctly predicts the class of pathogens mostly associated with SARS-CoV-2 infection. The clinical implications are the following: (a) any search for new immune-modulating drugs for the treatment of COVID-19 should exclude candidates that do not induce “high Treg” immune reaction or those that do not spare CD8+ T cells; (b) immune-modulating drugs, which are effective against SARS-CoV-2, may not be effective against any variant of the virus that does not induce “low Treg” reaction; (c) any immune-modulating drug, which is effective in treating COVID-19, will also alleviate most coinfections; and (d) severe COVID-19 patients should avoid contact with carriers of “low Treg” pathogens.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
33
|
Concha S, Rey-Jurado E, Poli MC, Hoyos-Bachiloglu R, Borzutzky A. Refractory systemic juvenile idiopathic arthritis successfully treated with rapamycin. Rheumatology (Oxford) 2021; 60:e250-e251. [PMID: 33547778 DOI: 10.1093/rheumatology/keab114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sara Concha
- Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Pontificia Universidad Católica de Chile
| | - Emma Rey-Jurado
- Facultad de Medicina Clínica Alemana de Santiago, Universidad del Desarrollo.,Program of Immunogenetics and Translational Immunology, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - M Cecilia Poli
- Facultad de Medicina Clínica Alemana de Santiago, Universidad del Desarrollo.,Program of Immunogenetics and Translational Immunology, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.,Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, Houston, TX, USA
| | - Rodrigo Hoyos-Bachiloglu
- Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Pontificia Universidad Católica de Chile
| | - Arturo Borzutzky
- Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Pontificia Universidad Católica de Chile.,Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Zhang W, Liu X, Zhu Y, Liu X, Gu Y, Dai X, Li B. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol 2021; 51:2137-2150. [PMID: 34322865 DOI: 10.1002/eji.202048794] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells and T helper type 17 (Th17) cells play important roles in adaptive immune responses, antagonizing each other in immune disorders. Th17/Treg balance is critical to maintaining the immune homeostasis of human bodies and is tightly regulated under healthy conditions. The transcription factors that are required for driving Th17 and Treg cell lineages differentiation respectively, RORγt and FOXP3 are tightly regulated under different tissue microenvironment, especially the transcriptional induction, posttranslational modifications, and dynamic enzymatic cofactors binding. The imbalance caused by alteration of the quantity or properties of RORγt+ Th17 or FOXP3+ Treg can contribute to inflammatory disorders in humans. Restoring Th17/Treg balance by modifying the enzymatic activities of RORγt and FOXP3 binding partners may be therapeutically applied to treat severe immune disorders. In this review, we focus on the transcriptional and posttranslational regulations of Th17/Treg balance, immune disorders caused by Th17/Treg imbalance, and new therapeutic strategies for restoring immune homeostasis.
Collapse
Affiliation(s)
- Weiqi Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinnan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunting Gu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
36
|
Cooper MA, Zimmerman O, Nataraj R, Wynn RF. Lifelong Immune Modulation Versus Hematopoietic Cell Therapy for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:628-639. [PMID: 33551038 DOI: 10.1016/j.jaip.2020.11.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Advances in diagnosis of inborn errors of immunity (IEI) and an understanding of the molecular and immunologic mechanisms of these disorders have led to both the development of new therapies and improved approaches to hematopoietic cell transplantation (HCT). For example, monoclonal antibodies (mAbs) and small molecules, such as Janus tyrosine kinase inhibitors, that can modulate immunologic pathways have been designed for or repurposed for management of IEI. A better understanding of molecular mechanisms of IEI has led to use of drugs typically considered "immunosuppressive" to modulate the immune response, such as mammalian target of rapamycin inhibitors in disorders of phosphoinositide 3-kinase gain of function. Since the first HCT in a patient with severe combined immunodeficiency (SCID) in 1968, transplantation strategies have improved, with more than 90% probability of survival after allogeneic HCT in SCID and hence HCT is now the therapeutic standard for SCID and many other IEI. When tailoring treatment for IEI, multiple disease-specific and individual factors should be considered. In diseases such as SCID or agammaglobulinemia, the choice between HCT or medical management is straightforward. However, in many IEI, the choice between the options is challenging. This review focuses on the factors that should be taken into account in the quest for the optimal treatment for patients with IEI.
Collapse
Affiliation(s)
- Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St Louis, St Louis, Mo.
| | - Ofer Zimmerman
- Department of Medicine, Division of Allergy/Immunology, Washington University in St Louis, St Louis, Mo
| | - Ramya Nataraj
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Robert F Wynn
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester, United Kingdom.
| |
Collapse
|
37
|
Zhang Y, Liu H, Ai T, Xia W, Chen T, Zhang L, Luo X, Duan Y. A delayed diagnosis of atypical immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome: A case report. Medicine (Baltimore) 2021; 100:e25174. [PMID: 33761697 PMCID: PMC9281912 DOI: 10.1097/md.0000000000025174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome is a rare monogenic autoimmune disease, which is caused by mutations in the forkhead box protein 3 gene, can affect various systems. The typical clinical manifestations of IPEX are enteropathy, type 1 diabetes mellitus, and skin diseases. However, some atypical phenotypes can easily be misdiagnosed clinically. PATIENT CONCERNS A 9-year-and-7-month old patient suffered from recurrent wheezing, hematochezia, and eczematous dermatitis at the age of six months, but did not have any manifestations of autoimmune endocrinopathy. The patient was treated with glucocorticoids for more than six years, and he developed bronchiectasis. DIAGNOSIS Whole exome sequencing revealed a hemizygous pathogenic mutation c.1010G>A, p. (Arg337Gln) in Forkhead box protein 3 gene (NM_014009.3). INTERVENTIONS The patient was treated with oral mycophenolate mofetil combined with inhaled budesonide formoterol for six months after diagnosis. OUTCOMES The respiratory symptoms of the patient seemed to be controlled but eczematous dermatitis progressed, which led the patient to give up the treatment. CONCLUSION Early diagnosis and treatment of IPEX are crucial. Lung injury may be a major problem in the later stages of atypical IPEX, and mycophenolate mofetil seems to control the respiratory symptoms, but could induce significant skin side effects.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan
- Chengdu Women's and Children's Central Hospital
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan
| | - Tao Ai
- Chengdu Women's and Children's Central Hospital
| | - Wanmin Xia
- Chengdu Women's and Children's Central Hospital
| | | | - Lei Zhang
- Chengdu Women's and Children's Central Hospital
| | - Xiulan Luo
- West China University Hospital, Sichuan University
| | - Yaping Duan
- Chengdu Women's and Children's Central Hospital
| |
Collapse
|
38
|
Rispoli F, Valencic E, Girardelli M, Pin A, Tesser A, Piscianz E, Boz V, Faletra F, Severini GM, Taddio A, Tommasini A. Immunity and Genetics at the Revolving Doors of Diagnostics in Primary Immunodeficiencies. Diagnostics (Basel) 2021; 11:532. [PMID: 33809703 PMCID: PMC8002250 DOI: 10.3390/diagnostics11030532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a large and growing group of disorders commonly associated with recurrent infections. However, nowadays, we know that PIDs often carry with them consequences related to organ or hematologic autoimmunity, autoinflammation, and lymphoproliferation in addition to simple susceptibility to pathogens. Alongside this conceptual development, there has been technical advancement, given by the new but already established diagnostic possibilities offered by new genetic testing (e.g., next-generation sequencing). Nevertheless, there is also the need to understand the large number of gene variants detected with these powerful methods. That means advancing beyond genetic results and resorting to the clinical phenotype and to immunological or alternative molecular tests that allow us to prove the causative role of a genetic variant of uncertain significance and/or better define the underlying pathophysiological mechanism. Furthermore, because of the rapid availability of results, laboratory immunoassays are still critical to diagnosing many PIDs, even in screening settings. Fundamental is the integration between different specialties and the development of multidisciplinary and flexible diagnostic workflows. This paper aims to tell these evolving aspects of immunodeficiencies, which are summarized in five key messages, through introducing and exemplifying five clinical cases, focusing on diseases that could benefit targeted therapy.
Collapse
Affiliation(s)
- Francesco Rispoli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Elisa Piscianz
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Flavio Faletra
- Department of Diagnostics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giovanni Maria Severini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Andrea Taddio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| |
Collapse
|
39
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Liu Q, Wang X, Liu X, Liao YP, Chang CH, Mei KC, Jiang J, Tseng S, Gochman G, Huang M, Thatcher Z, Li J, Allen SD, Lucido L, Xia T, Nel AE. Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. ACS NANO 2021; 15:1608-1626. [PMID: 33351586 PMCID: PMC7943028 DOI: 10.1021/acsnano.0c09206] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The targeting of natural tolerogenic liver sinusoidal endothelial cells (LSEC) by nanoparticles (NPs), decorated with a stabilin receptor ligand, is capable of generating regulatory T-cells (Tregs), which can suppress antigen-specific immune responses, including to ovalbumin (OVA), a possible food allergen. In this regard, we have previously demonstrated that OVA-encapsulating poly(lactic-co-glycolic acid) (PLGA) nanoparticles eliminate allergic airway inflammation in OVA-sensitized mice, prophylactically and therapeutically. A competing approach is a nanocarrier platform that incorporates pharmaceutical agents interfering in mTOR (rapamycin) or NF-κB (curcumin) pathways, with the ability to induce a tolerogenic state in nontargeted antigen-presenting cells system-wide. First, we compared OVA-encapsulating, LSEC-targeting tolerogenic nanoparticles (TNPs) with nontargeted NPs incorporating curcumin and rapamycin (Rapa) in a murine eosinophilic airway inflammation model, which is Treg-sensitive. This demonstrated roughly similar tolerogenic effects on allergic airway inflammation by stabilin-targeting NPOVAversus nontargeted NPs delivering OVA plus Rapa. Reduction in eosinophilic inflammation and TH2-mediated immune responses in the lung was accompanied by increased Foxp3+ Treg recruitment and TGF-β production in both platforms. As OVA incorporates IgE-binding as well as non-IgE-binding epitopes, the next experiment explored the possibility of obtaining immune tolerance by non-anaphylactic T-cell epitopes. This was accomplished by incorporating OVA323-339 and OVA257-264 epitopes in liver-targeting NPs to assess the prophylactic and therapeutic impact on allergic inflammation in transgenic OT-II mice. Importantly, we demonstrated that the major histocompatibility complex (MHC)-II binding (former) but not the MHC-I binding (latter) epitope interfered in allergic airway inflammation, improving TNPOVA efficacy. The epitope-specific effect was transduced by TGF-β-producing Tregs. In the final phase of experimentation, we used an OVA-induced anaphylaxis model to demonstrate that targeted delivery of OVA and its MHC-II epitope could significantly suppress the anaphylaxis symptom score, mast cell release, and the late-phase inflammatory response. In summary, these results demonstrate comparable efficacy of LSEC-targeting versus pharmaceutical PLGA nanoparticles, as well as the ability of T-cell epitopes to achieve response outcomes similar to those of the intact allergens.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Shannon Tseng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Grant Gochman
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Marissa Huang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zoe Thatcher
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sean D. Allen
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Luke Lucido
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding author ;
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding author ;
| |
Collapse
|
41
|
Bayati F, Mohammadi M, Valadi M, Jamshidi S, Foma AM, Sharif-Paghaleh E. The Therapeutic Potential of Regulatory T Cells: Challenges and Opportunities. Front Immunol 2021; 11:585819. [PMID: 33519807 PMCID: PMC7844143 DOI: 10.3389/fimmu.2020.585819] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subgroup of CD4+ T cells which are identified by the expression of forkhead box protein P3 (Foxp3). The modulation capacity of these immune cells holds an important role in both transplantation and the development of autoimmune diseases. These cells are the main mediators of self-tolerance and are essential for avoiding excessive immune reactions. Tregs play a key role in the induction of peripheral tolerance that can prevent autoimmunity, by protecting self-reactive lymphocytes from the immune reaction. In contrast to autoimmune responses, tumor cells exploit Tregs in order to prevent immune cell recognition and anti-tumor immune response during the carcinogenesis process. Recently, numerous studies have focused on unraveling the biological functions and principles of Tregs and their primary suppressive mechanisms. Due to the promising and outstanding results, Tregs have been widely investigated as an alternative tool in preventing graft rejection and treating autoimmune diseases. On the other hand, targeting Tregs for the purpose of improving cancer immunotherapy is being intensively evaluated as a desirable and effective method. The purpose of this review is to point out the characteristic function and therapeutic potential of Tregs in regulatory immune mechanisms in transplantation tolerance, autoimmune diseases, cancer therapy, and also to discuss that how the manipulation of these mechanisms may increase the therapeutic options.
Collapse
Affiliation(s)
- Fatemeh Bayati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Valadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Jamshidi
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Arron Munggela Foma
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
42
|
Barzaghi F, Passerini L. IPEX Syndrome: Improved Knowledge of Immune Pathogenesis Empowers Diagnosis. Front Pediatr 2021; 9:612760. [PMID: 33692972 PMCID: PMC7937806 DOI: 10.3389/fped.2021.612760] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare monogenic autoimmune disease with variable clinical manifestations, ranging from early-onset severe autoimmunity, including enteropathy, eczema, and type 1 diabetes, to late-onset or atypical symptoms. Despite the clinical heterogeneity, the unifying feature of IPEX is mutation of the FOXP3 gene, which encodes a transcription factor essential for maintenance of thymus-derived regulatory T cells (Tregs). In IPEX patients, Tregs can be present, although unstable and impaired in function, unable to inhibit proliferation and cytokine production of effector T (Teff) cells. Mutated FOXP3 can also disrupt other compartments: FOXP3-deficient Teff cells proliferate more than the wild-type counterpart, display altered T-cell-receptor signaling response, a reduced T-naïve compartment and a skew toward a Th2 profile. Due to FOXP3 mutations, the frequency of autoreactive B cells is increased and the IgA and IgE production is altered, together with early emergence of tissue-specific autoantibodies. Recently, the awareness of the wide clinical spectrum of IPEX improved the diagnostic tools. In cases presenting with enteropathy, histological evaluation is helpful, although there are no pathognomonic signs of disease. On the other hand, the study of FOXP3 expression and in vitro Treg function, as well as the detection of specific circulating autoantibodies, is recommended to narrow the differential diagnosis. Nowadays, Sanger sequencing should be limited to cases presenting with the classical triad of symptoms; otherwise, next-generation sequencing is recommended, given the cost-effectiveness and the advantage of excluding IPEX-like syndromes. The latter approach could be time spearing in children with severe phenotypes and candidate to advanced therapies.
Collapse
Affiliation(s)
- Federica Barzaghi
- Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Seidel MG. Treatment of immune-mediated cytopenias in patients with primary immunodeficiencies and immune regulatory disorders (PIRDs). HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:673-679. [PMID: 33275670 PMCID: PMC7727533 DOI: 10.1182/hematology.2020000153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Severe immune cytopenias (SICs) are rare acquired conditions characterized by immune-mediated blood cell destruction. They may necessitate emergency medical management and long-term immunosuppressive therapy, strongly compromising the quality of life. The initial diagnostic workup involves excluding malignancies, congenital cytopenias, bone marrow failure syndromes, infections, and rheumatologic diseases such as systemic lupus erythematosus. Causal factors for SIC such as primary immunodeficiencies or immune regulatory disorders, which are referred to as inborn errors of immunity (IEIs), should be diagnosed as early as possible to allow the initiation of a targeted therapy and avoid multiple lines of ineffective treatment. Ideally, this therapy is directed against an overexpressed or overactive gene product or substitutes a defective protein, restoring the impaired pathway; it can also act indirectly, enhancing a countermechanism against the disease-causing defect. Ultimately, the diagnosis of an underling IEI in patients with refractory SIC may lead to evaluation for hematopoietic stem cell transplantation or gene therapy as a definitive treatment. Interdisciplinary care is highly recommended in this complex patient cohort. This case-based educational review supports decision making for patients with immune-mediated cytopenias and suspected inborn errors of immunity.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
44
|
Regulatory T cell heterogeneity and therapy in autoimmune diseases. Autoimmun Rev 2020; 20:102715. [PMID: 33197573 DOI: 10.1016/j.autrev.2020.102715] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022]
Abstract
Regulatory T (Treg) cells are a group of CD4+ T cell with high expression of CD25 and cell linage specific transcription factor forkhead box P3 (Foxp3) and play a vital role in maintaining immune homeostasis. In the last two decades, researchers have shown that Treg cells involved in the occurrence, development and prognosis of many diseases, especially in autoimmune diseases. Treg targeted therapies, such as low-dose interleukin-2 (IL-2) treatment and Treg infusion therapy, which are aimed at restoring the number or function of Treg cells, have become a hot topic in clinical trials of these diseases. It is believed that Treg cells are heterogeneous. Different subsets of Treg cells have various functions and play different parts in immunomodulatory. Gaining insights into Treg heterogeneity will help us further understand the function of Treg cells and provide news ideas for the selective therapeutic manipulation of Treg cells. In this review, we mainly summarize the heterogeneity of Treg cells and their potential therapeutic value in autoimmune diseases.
Collapse
|
45
|
Kurniawan H, Soriano-Baguet L, Brenner D. Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer. Eur J Immunol 2020; 50:1626-1642. [PMID: 33067808 PMCID: PMC7756807 DOI: 10.1002/eji.201948470] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are critical for peripheral immune tolerance and homeostasis, and altered Treg behavior is involved in many pathologies, including autoimmunity and cancer. The expression of the transcription factor FoxP3 in Tregs is fundamental to maintaining their stability and immunosuppressive function. Recent studies have highlighted the crucial role that metabolic reprogramming plays in controlling Treg plasticity, stability, and function. In this review, we summarize how the availability and use of various nutrients and metabolites influence Treg metabolic pathways and activity. We also discuss how Treg-intrinsic metabolic programs define and shape their differentiation, FoxP3 expression, and suppressive capacity. Lastly, we explore how manipulating the regulation of Treg metabolism might be exploited in different disease settings to achieve novel immunotherapies.
Collapse
Affiliation(s)
- Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
46
|
Caldirola MS, Martínez MP, Bezrodnik L, Zwirner NW, Gaillard MI. Immune Monitoring of Patients With Primary Immune Regulation Disorders Unravels Higher Frequencies of Follicular T Cells With Different Profiles That Associate With Alterations in B Cell Subsets. Front Immunol 2020; 11:576724. [PMID: 33193371 PMCID: PMC7658009 DOI: 10.3389/fimmu.2020.576724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory conditions due to defects in the immune homeostasis affecting different T, B and NK cell subsets. To improve our understanding of these conditions, in this work we analyzed the T and B cell compartments of 15 PID patients with dysregulation, including 3 patients with STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and compared them with healthy donors and with CVID patients without dysregulation. CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of naïve and regulatory T cells with increased frequencies of activated cells, central memory CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients also exhibited a significantly increased frequency of circulating CD4+ follicular helper T cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient presented a skew toward cTfh17 cells. These alterations confirmed the existence of an imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked dysregulation in the B cell compartment, characterized by a prevalence of transitional and naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant positive correlation between the frequencies cTfh17 cells and switched-memory B cells and between the frequency of switched-memory B cells and the serum IgG. Therefore, primary immunodeficiencies with dysregulation are characterized by a skew toward an activated/memory phenotype within the CD4+ and CD8+ T cell compartment, accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17 subsets that likely impact on B cell help for antibody production, which likely contributes to their autoimmune and inflammatory conditions. Therefore, assessment of these alterations by flow cytometry constitutes a simple and straightforward manner to improve diagnosis of these complex clinical entities that may impact early diagnosis and patients' treatment. Also, our findings unravel phenotypic alterations that might be associated, at least in part, with some of the clinical manifestations observed in these patients.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Paula Martínez
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Centro de Inmunología Clínica Dra. Bezrodnik, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| |
Collapse
|
47
|
The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol 2020; 21:1346-1358. [DOI: 10.1038/s41590-020-0769-3] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
|
48
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|