1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Sasaki A, Sargen M, Maskey AR, Li XM. Scratching the surface: biomarkers and neurobiomarkers for improved allergic contact dermatitis management. FRONTIERS IN ALLERGY 2025; 6:1564528. [PMID: 40181807 PMCID: PMC11966390 DOI: 10.3389/falgy.2025.1564528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Allergic contact dermatitis (ACD), also known as allergic eczema, is a common inflammatory skin disorder that affects millions of Americans and imposes significant physical, psychological, and economic burdens. Differentiating ACD from other forms of dermatitis remains a challenge, with patch testing as the gold standard. Despite its utility, patch testing can lack diagnostic accuracy, highlighting the importance of molecular biomarkers to refine diagnosis and treatment. Advances in transcriptomics and machine-learning have enabled the identification of biomarkers involved in ACD, such as loricrin (LOR), ADAM8, CD47, BATF, SELE, and IL-37. Moreover, biomarkers such as LOR, NMF, and TEWL, may have prognostic value in evaluating therapeutic response. Emerging neurological biomarkers (neurobiomarkers), including IL-31 and TRPV1, target pathways involved in the pruritic and inflammatory responses, offering novel therapeutic targets as well. This mini review summarizes current ACD treatments, biomarkers for targeted therapies, and emphasizes the role of neurobiomarkers in ACD treatment. Additional research on the validity of the therapeutic potential of these biomarkers is necessary to improve ACD treatment and outcomes.
Collapse
Affiliation(s)
- Akimi Sasaki
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Manuel Sargen
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Anish R. Maskey
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
- Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
- Department of Dermatology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
3
|
Chen Y, Tang Z, Han Z, Wang M, Li X, Lai L, Zhou P, Wang F, Li F. A topical Chinese herbal inhibits pruritus and skin inflammation via neural TRPM8 in atopic dermatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156524. [PMID: 39986232 DOI: 10.1016/j.phymed.2025.156524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic, itchy, and inflammatory skin disease. The neuroimmune concept of itch involves aberrant immune responses and neural activities. Chinese herbal medicine has been demonstrated to alleviate AD symptoms, but the underlying mechanisms remain not fully understand. PURPOSE Chushizhiyang (CS) ointment is a topical treatment consisting of Chinese herbal ingredients. We aimed to study the underlying mechanism of CS on treating AD. METHOD To investigate the therapeutic efficacy of CS, we utilized a well-established atopic dermatitis mouse model, administering CS ointment topically to the ears. To unravel the underlying mechanisms, we employed a multifaceted approach, including behavioral assay, network pharmacology analysis, RNA-sequencing analysis, neural tracing, and calcium imaging. Additionally, transient receptor potential (TRP) M8-deficient mice were employed to validate the specific targets of CS. RESULTS By employing a murine model of AD-like disease, we found that CS ointment can reduce skin inflammation and inhibit scratching behavior. Importantly, its capacity to alleviate itch-induced scratching surpasses that of topical steroid, a positive control treatment. The RNA-sequencing analysis of the affected skin revealed that the differentially expressed genes were enriched in neuroactive pathways that include ion channels particularly TRPM8. Calcium imaging demonstrated that CS ointment is capable of activating TRPM8-positive sensory neurons. Using transgenic animals, we found that CS ointment exhibited its anti-inflammatory or anti-pruritic effects only when TRPM8 is functional intact. Additionally, CS treatment reduced neuronal activities in wild-type, rather than TRPM8-compromised animals. CONCLUSION Our findings suggest that topical Chinese herbals participate in neuroimmune mechanisms for AD-like disease via TRPM8.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyuan Tang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyao Han
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyang Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinran Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Liu AW, Zhang YR, Chen CS, Edwards TN, Ozyaman S, Ramcke T, McKendrick LM, Weiss ES, Gillis JE, Laughlin CR, Randhawa SK, Phelps CM, Kurihara K, Kang HM, Nguyen SLN, Kim J, Sheahan TD, Ross SE, Meisel M, Sumpter TL, Kaplan DH. Scratching promotes allergic inflammation and host defense via neurogenic mast cell activation. Science 2025; 387:eadn9390. [PMID: 39883751 PMCID: PMC11983162 DOI: 10.1126/science.adn9390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/22/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025]
Abstract
Itch is a dominant symptom in dermatitis, and scratching promotes cutaneous inflammation, thereby worsening disease. However, the mechanisms through which scratching exacerbates inflammation and whether scratching provides benefit to the host are largely unknown. We found that scratching was required for skin inflammation in mouse models dependent on FcεRI-mediated mast cell activation. Scratching-induced inflammation required pain-sensing nociceptors, the neuropeptide substance P, and the mast cell receptor MrgprB2. Scratching also increased cutaneous inflammation and augmented host defense to superficial Staphylococcus aureus infection. Thus, through the activation of nociceptor-driven neuroinflammation, scratching both exacerbated allergic skin disease and provided protection from S. aureus, reconciling the seemingly paradoxical role of scratching as a pathological process and evolutionary adaptation.
Collapse
Affiliation(s)
- Andrew W. Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Youran R. Zhang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Sin Chen
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tara N. Edwards
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sumeyye Ozyaman
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Torben Ramcke
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay M. McKendrick
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S. Weiss
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob E. Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Colin R. Laughlin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Kazuo Kurihara
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah M. Kang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney-Lam N. Nguyen
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiwon Kim
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tayler D. Sheahan
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E. Ross
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Pain Research, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Song K, Kim BS. The peripheral neuroimmune system. J Leukoc Biol 2024; 116:1291-1300. [PMID: 39422243 PMCID: PMC11599120 DOI: 10.1093/jleuko/qiae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024] Open
Abstract
Historically, the nervous and immune systems were studied as separate entities. The nervous system relays signals between the body and the brain by processing sensory inputs and executing motor outputs, whereas the immune system provides protection against injury and infection through inflammation. However, recent developments have demonstrated that these systems mount tightly integrated responses. In particular, the peripheral nervous system acts in concert with the immune system to control reflexes that maintain and restore homeostasis. Notwithstanding their homeostatic mechanisms, dysregulation of these neuroimmune interactions may underlie various pathological conditions. Understanding how these two distinct systems communicate is an emerging field of peripheral neuroimmunology that promises to reveal new insights into tissue physiology and identify novel targets to treat disease.
Collapse
Affiliation(s)
- Keaton Song
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, 787 11th Ave, New York, NY 10019, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, 787 11th Ave, New York, NY 10019, USA
| | - Brian S Kim
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, 787 11th Ave, New York, NY 10019, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, 787 11th Ave, New York, NY 10019, USA
| |
Collapse
|
6
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Wilcox NC, Taheri G, Halievski K, Talbot S, Silva JR, Ghasemlou N. Interactions between skin-resident dendritic and Langerhans cells and pain-sensing neurons. J Allergy Clin Immunol 2024; 154:11-19. [PMID: 38492673 DOI: 10.1016/j.jaci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Various immune cells in the skin contribute to its function as a first line of defense against infection and disease, and the skin's dense innervation by pain-sensing sensory neurons protects the host against injury or damage signals. Dendritic cells (DCs) are a heterogeneous population of cells that link the innate immune response to the adaptive response by capturing, processing, and presenting antigens to promote T-cell differentiation and activation. DCs are abundant across peripheral tissues, including the skin, where they are found in the dermis and epidermis. Langerhans cells (LCs) are a DC subset located only in the epidermis; both populations of cells can migrate to lymph nodes to contribute to broad immune responses. Dermal DCs and LCs are found in close apposition with sensory nerve fibers in the skin and express neurotransmitter receptors, allowing them to communicate directly with the peripheral nervous system. Thus, neuroimmune signaling between DCs and/or LCs and sensory neurons can modulate physiologic and pathophysiologic pathways, including immune cell regulation, host defense, allergic response, homeostasis, and wound repair. Here, we summarize the latest discoveries on DC- and LC-neuron interaction with neurons while providing an overview of gaps and areas not previously explored. Understanding the interactions between these 2 defence systems may provide key insight into developing therapeutic targets for treating diseases such as psoriasis, neuropathic pain, and lupus.
Collapse
Affiliation(s)
- Natalie C Wilcox
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Golnar Taheri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
8
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Zhu J, Zhong X, Liao H, Cong J, Wu Q, Liang S, Xiang Q. A Novel Recombinant Human Filaggrin Segment (rhFLA-10) Alleviated a Skin Lesion of Atopic Dermatitis. Bioengineering (Basel) 2024; 11:426. [PMID: 38790293 PMCID: PMC11117537 DOI: 10.3390/bioengineering11050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Atopic dermatitis (AD), a prevalent chronic inflammatory skin disorder, is marked by impaired skin barrier function and persistent pruritus. It significantly deteriorates patients' quality of life, making it one of the most burdensome non-lethal skin disorders. Filaggrin plays a crucial role in the pathophysiology of barrier disruption in AD, interacting with inflammatory mediators. It is an integral part of the extracellular matrix architecture, serving to protect the skin barrier and attenuate the inflammatory cascade. In this study, we engineered a novel recombinant human filaggrin (rhFLA-10) expression vector, which was subsequently synthesized and purified. In vitro and ex vivo efficacy experiments were conducted for AD. rhFLA-10, at low concentrations (5 to 20 μg/mL), was non-toxic to HACaT cells, significantly inhibited the degranulation of P815 mast cells, and was readily absorbed by cells, thereby exerting a soothing therapeutic effect. Furthermore, rhFLA-10 demonstrated anti-inflammatory properties (p < 0.05). In vivo, efficacy experiments further substantiated that rhFLA-10 could effectively ameliorate AD in mice and facilitate the repair of damaged skin (p < 0.001). These findings underscore the considerable potential of rhFLA-10 in the treatment of AD.
Collapse
Affiliation(s)
- Jiawen Zhu
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Xinhua Zhong
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Hui Liao
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Jianhang Cong
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Qiqi Wu
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (J.Z.); (X.Z.); (H.L.); (J.C.); (Q.W.); (S.L.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
11
|
Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol 2024; 132:187-195. [PMID: 37758055 DOI: 10.1016/j.anai.2023.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide, affecting 20% of children and 5% of adults. One critical component in the pathophysiology of AD is the epidermal skin barrier, with its outermost layer, the stratum corneum (SC), conferring biochemical properties that enable resilience against environmental threats and maintain homeostasis. The skin barrier may be conceptualized as a key facilitator of complex interactions between genetics, host immunity, the cutaneous microbiome, and environmental exposures. The key genetic risk factor for AD development and persistence is a loss-of-function mutation in FLG, with recent advances in genomics focusing on rare variant discovery, establishment of pathogenic mechanisms, and exploration of the role of other epidermal differentiation complex gene variants in AD. Aberrant type 2 inflammatory responses down-regulate the transcription of key epidermal barrier genes, alter the composition of SC lipids, and induce further injury through a neurocutaneous feedback loop and the itch-scratch cycle. The dysbiotic epidermis exhibits reduced bacterial diversity and enhanced colonization with Staphylococcus and Malassezia species, which contribute to both direct barrier injury through the action of bacterial toxins and perpetuation of the inflammatory cascades. Enhanced understanding of each of the pathogenic mechanisms underpinning barrier disruption has led to the development of novel topical and systemic molecules, including interleukin (IL)-4Ra, IL-13, PDE4, and Janus-associated kinase inhibitors, whose clinical effectiveness exceeds conventional treatment modalities. In this narrative review, we aim to summarize the current understanding of the above-mentioned pathophysiological and therapeutic mechanisms, with a focus on the genetic, cellular, and molecular mechanisms underpinning AD development.
Collapse
Affiliation(s)
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Villafán H, Gutiérrez-Ospina G. Looking beyond Self-Protection: The Eyes Instruct Systemic Immune Tolerance Early in Life. Brain Sci 2023; 13:1261. [PMID: 37759864 PMCID: PMC10526493 DOI: 10.3390/brainsci13091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
The eyes provide themselves with immune tolerance. Frequent skin inflammatory diseases in young blind people suggest, nonetheless, that the eyes instruct a systemic immune tolerance that benefits the whole body. We tested this premise by using delayed skin contact hypersensitivity (DSCH) as a tool to compare the inflammatory response developed by sighted (S) and birth-enucleated (BE) mice against oxazolone or dinitrofluorobenzene at the ages of 10, 30 and 60 days of life. Adult mice enucleated (AE) at 60 days of age were also assessed when they reached 120 days of life. BE mice displayed exacerbated DSCH at 60 but not at 10 or 30 days of age. AE mice, in contrast, show no exacerbated DSCH. Skin inflammation in 60-day-old BE mice was hapten exclusive and supported by distinct CD8+ lymphocytes. The number of intraepidermal T lymphocytes and migrating Langerhans cells was, however, similar between S and BE mice by the age of 60 days. Our observations support the idea that the eyes instruct systemic immune tolerance that benefits organs outside the eyes from an early age. The higher prevalence of inflammatory skin disorders reported in young people might then reflect reduced immune tolerance associated with the impaired functional morphology of the eyes.
Collapse
Affiliation(s)
- Horacio Villafán
- Programa de Doctorado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Edificio D, 1piso, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Department of Zoology and Physiology and Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|