1
|
Morgan KM, Campbell-Salome G, Walters NL, Betts MN, Brangan A, Johns A, Kirchner HL, Lindsey-Mills Z, McGowan MP, Tricou EP, Rahm AK, Sturm AC, Jones LK. Innovative Implementation Strategies for Familial Hypercholesterolemia Cascade Testing: The Impact of Genetic Counseling. J Pers Med 2024; 14:841. [PMID: 39202032 PMCID: PMC11355397 DOI: 10.3390/jpm14080841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The IMPACT-FH study implemented strategies (packet, chatbot, direct contact) to promote family member cascade testing for familial hypercholesterolemia (FH). We evaluated the impact of genetic counseling (GC) on medical outcomes, strategy selection, and cascade testing. Probands (i.e., patients with FH) were recommended to complete GC and select sharing strategies. Comparisons were performed for both medical outcomes and strategy selection between probands with or without GC. GEE models for Poisson regression were used to examine the relationship between proband GC completion and first-degree relative (FDR) cascade testing. Overall, 46.3% (81/175) of probands completed GC. Probands with GC had a median LDL-C reduction of -13.0 mg/dL (-61.0, 4.0) versus -1.0 mg/dL (-16.0, 17.0) in probands without GC (p = 0.0054). Probands with and without GC selected sharing strategies for 65.3% and 40.3% of FDRs, respectively (p < 0.0001). Similarly, 27.1% of FDRs of probands with GC completed cascade testing, while 12.0% of FDRs of probands without GC completed testing (p = 0.0043). Direct contact was selected for 47 relatives in total and completed for 39, leading to the detection of 18 relatives with FH. Proband GC was associated with improved medical outcomes and increased FDR cascade testing. Direct contact effectively identified FH cases for the subset who participated.
Collapse
Affiliation(s)
- Kelly M. Morgan
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
| | - Gemme Campbell-Salome
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
- Department of Population Health Sciences, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA;
| | - Nicole L. Walters
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
| | - Megan N. Betts
- WellSpan Health, 605 S. George Street, York, PA 17401, USA;
| | - Andrew Brangan
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
| | - Alicia Johns
- Biostatistics Core, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA;
| | - H. Lester Kirchner
- Department of Population Health Sciences, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA;
| | - Zoe Lindsey-Mills
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
| | - Mary P. McGowan
- Family Heart Foundation, 605 E. Colorado Blvd Ste 180, Pasadena, CA 91101, USA (E.P.T.)
| | - Eric P. Tricou
- Family Heart Foundation, 605 E. Colorado Blvd Ste 180, Pasadena, CA 91101, USA (E.P.T.)
| | - Alanna Kulchak Rahm
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
| | - Amy C. Sturm
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
- Heart and Vascular Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA
- 23andMe, 223 N. Mathilda Avenue, Sunnyvale, CA 94086, USA
| | - Laney K. Jones
- Department of Genomic Health, Research Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA; (G.C.-S.); (N.L.W.); (A.B.); (Z.L.-M.); (A.C.S.)
- Heart and Vascular Institute, Geisinger, 100 N. Academy Avenue, Danville, PA 17922, USA
| |
Collapse
|
2
|
Paquette M, Baass A. Advances in familial hypercholesterolemia. Adv Clin Chem 2024; 119:167-201. [PMID: 38514210 DOI: 10.1016/bs.acc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Familial hypercholesterolemia (FH), a semi-dominant genetic disease affecting more than 25 million people worldwide, is associated with severe hypercholesterolemia and premature atherosclerotic cardiovascular disease. Over the last decade, advances in data analysis, screening, diagnosis and cardiovascular risk stratification has significantly improved our ability to deliver precision medicine for these patients. Furthermore, recent updates on guideline recommendations and new therapeutic approaches have also proven to be highly beneficial. It is anticipated that both ongoing and upcoming clinical trials will offer further insights for the care and treatment of FH patients.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, QC, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Piccioni A, Niccolai E, Rozzi G, Spaziani G, Zanza C, Candelli M, Covino M, Gasbarrini A, Franceschi F, Amedei A. Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota-Immunity Axis in the New Diagnostic and Prognostic Frontiers. Pathogens 2023; 12:627. [PMID: 37111513 PMCID: PMC10142551 DOI: 10.3390/pathogens12040627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Familial hypercholesterolemia is a common genetic disorder with a propensity towards early onset of atherosclerotic cardiovascular disease (CVD). The main goal of therapy is to reduce the LDL cholesterol and the current treatment generally consists of statin, ezetimibe and PCSK9 inhibitors. Unfortunately, lowering LDL cholesterol may be difficult for many reasons such as the variation of response to statin therapy among the population or the high cost of some therapies (i.e., PCSK9 inhibitors). In addition to conventional therapy, additional strategies may be used. The gut microbiota has been recently considered to play a part in chronic systemic inflammation and hence in CVD. Several studies, though they are still preliminary, consider dysbiosis a risk factor for various CVDs through several mechanisms. In this review, we provide an update of the current literature about the intricate relation between the gut microbiota and the familial hypercholesterolemia.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gloria Rozzi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Giacomo Spaziani
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Christian Zanza
- Foundation “Ospedale Alba-Bra Onlus”, Department of Emergency Medicine, Anesthesia and Critical Care Medicine, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Marcello Covino
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
4
|
Kallapur A, Sallam T. Pharmacotherapy in familial hypercholesterolemia - Current state and emerging paradigms. Trends Cardiovasc Med 2023; 33:170-179. [PMID: 34968676 DOI: 10.1016/j.tcm.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Familial hypercholesterolemia is a highly prevalent but underdiagnosed disease marked by increased risk of cardiovascular morbidity and mortality. Aggressive reduction of LDL-cholesterol is a hallmark of cardiovascular risk mitigation in familial hypercholesterolemia. More recently, we have witnessed an expanded repertoire of pharmacologic agents that directly target LDL-cholesterol and/or reduce heart disease burden. In this state-of-the-art review, we explore the development, clinical efficacy and limitations of existing and potential future therapeutics in familial hypercholesterolemia.
Collapse
Affiliation(s)
- Aneesh Kallapur
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, United States
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Tada H, Nomura A, Nohara A, Usui S, Sakata K, Hayashi K, Fujino N, Takamura M, Kawashiri MA. Attainment of the low-density lipoprotein cholesterol treatment target and prognosis of heterozygous familial hypercholesterolemia. Atherosclerosis 2023; 371:61-66. [PMID: 36948965 DOI: 10.1016/j.atherosclerosis.2023.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND AND AIMS No previous study has investigated the association between attainment of low-density lipoprotein (LDL) cholesterol treatment target and better prognosis in patients with familial hypercholesterolemia (FH). The current research aimed to examine the association between attainment of LDL cholesterol treatment target and major adverse cardiac events (MACEs) in patients with FH to validate the current LDL cholesterol treatment targets in primary (<100 mg/dL) and secondary (<70 mg/dL) prevention settings. METHODS The data of patients with FH who were admitted to Kanazawa University Hospital between 2000 and 2020 and who were followed-up were retrospectively reviewed. The number of MACEs, including mortality associated with cardiovascular disease, unstable angina, and myocardial infarction per 1000 person-years, was calculated for each stratum for the attainment of LDL cholesterol target. RESULTS The median follow-up duration was 12.6 years. In total, 132 MACEs were recorded during the follow-up period. The numbers of patients who attained the LDL cholesterol target in the primary and secondary prevention groups were 228 (31.9%) and 40 (11.9%), respectively. The event rates per 1000 person-years for LDL cholesterol levels of <100 and ≥100 mg/dL in the primary prevention group were 2.6 and 4.4, respectively. The event rates per 1000 person-years for LDL cholesterol levels of <70 and ≥70 mg/dL in the secondary prevention group were 15.3 and 27.5, respectively. CONCLUSIONS Attainment of the LDL cholesterol target is associated with better prognosis in patients with FH. However, the attainment rate is currently inadequate among Japanese.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
6
|
Lloyd-Jones DM, Wilkins JT. Cardiovascular Risk Assessment and Prevention Across the Life Course: Propensity, Determinants, Risk, Disease. J Am Coll Cardiol 2023; 81:633-635. [PMID: 36792278 DOI: 10.1016/j.jacc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 02/16/2023]
Affiliation(s)
- Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - John T Wilkins
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Poornima IG, Pulipati VP, Brinton EA, Wild RA. Update on Statin Use in Pregnancy. Am J Med 2023; 136:12-14. [PMID: 36150512 PMCID: PMC10575572 DOI: 10.1016/j.amjmed.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Indu G Poornima
- Division of Cardiovascular Medicine, Allegheny Health Network, Pittsburgh, Penn.
| | | | | | - Robert A Wild
- Divisions of Reproductive Endocrinology and Biostatistics and Clinical Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| |
Collapse
|
8
|
Toutouzas K, Antonopoulos AS, Koutagiar I, Skoumas I, Benetos G, Kafouris P, Miliou A, Petrocheilou A, Georgakopoulos A, Oikonomou G, Drakopoulou M, Siores I, Pitsavos C, Antoniades C, Anagnostopoulos CD, Tousoulis D. Visceral adipose tissue phenotype and hypoadiponectinemia are associated with aortic Fluorine-18 fluorodeoxyglucose uptake in patients with familial dyslipidemias. J Nucl Cardiol 2022; 29:1405-1414. [PMID: 33501546 DOI: 10.1007/s12350-020-02472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of adipose tissue (AT) in arterial inflammation in familial dyslipidaemias is poorly studied. We investigated the relationship between AT and arterial inflammation in patients with heterozygous familial hypercholesterolemia (heFH) and familial combined hyperlipidemia (FCH). METHODS AND RESULTS A total of 40 patients (20 heFH/20 FCH) and a subgroup of 20 of non-heFH/FCH patients were enrolled. Participants underwent blood sampling for serum adipokine measurements and Fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT imaging. Abdominal visceral (VAT) and subcutaneous (SAT) AT volumes and AT and abdominal aorta 18F-FDG uptake were quantified. FCH patients had increased VAT (pANOVA = 0.004) and SAT volumes (pANOVA = 0.003), lower VAT metabolic activity (pANOVA = 0.0047), and lower adiponectin levels (pANOVA = 0.007) compared to heFH or the control group. Log(Serum adiponectin) levels were correlated with aortic TBR (b = - 0.118, P = 0.038). In mediation analysis, VAT volume was the major determinant of circulating adiponectin, an effect partly mediated via VAT TBR. Clustering of the population of heFH/FCH by VAT volume/TBR and serum adiponectin identified two distinct patient clusters with significant differences in aortic TBR levels (2.11 ± 0.06 vs 1.89 ± 0.05, P= 0.012). CONCLUSIONS VAT phenotype (increased VAT volume and/or high VAT TBR) and hypoadiponectinemia may account for the observed differences in arterial inflammation levels between heFH and FCH patients.
Collapse
Affiliation(s)
- Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Alexios S Antonopoulos
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece.
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Iosif Koutagiar
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
- Fifth Department of Cardiology, Hygheia Hospital, Athens, Greece
| | - Ioannis Skoumas
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Georgios Benetos
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Pavlos Kafouris
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 11527, Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Miliou
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Aikaterini Petrocheilou
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Alexandros Georgakopoulos
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 11527, Athens, Greece
| | - Georgios Oikonomou
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Maria Drakopoulou
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Ilias Siores
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Christos Pitsavos
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Constantinos D Anagnostopoulos
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 11527, Athens, Greece.
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, Vasilissis Sofias 114, PO 11528, Athens, Greece
| |
Collapse
|
9
|
Winchester B, Cragun D, Redlinger-Grosse K, Walters ST, Ash E, Baldry E, Zierhut H. Application of motivational interviewing strategies with the extended parallel process model to improve risk communication for parents of children with familial hypercholesterolemia. J Genet Couns 2022; 31:847-859. [PMID: 35150174 DOI: 10.1002/jgc4.1554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Current genetic counseling practice has not been found to significantly increase risk communication between family members. A more diverse set of genetic counseling approaches may be needed. A genetic counseling intervention based on motivational interviewing principles and the extended parallel process model was utilized to increase cascade outcomes within families with familial hypercholesterolemia, a common, underdiagnosed, and treatable condition. Parents of children with familial hypercholesterolemia were invited to participate in an online pre-survey, single-session genetic counseling intervention, and post-intervention surveys as a part of the CHEERS (Cholesterol Evaluation to Explore Risk Screening) intervention. This study investigated the efficacy of a genetic counselor delivered motivational interviewing intervention and how parents of children with familial hypercholesterolemia react by assessing family member cholesterol screening and risk communication to at-risk relatives. Transcripts were audio-recorded, transcribed, and analyzed for change talk using the Motivational Interviewing Skill Code version 2.1. Participant surveys were analyzed for self-reported extended parallel process constructs and motivations. Coincidence analysis was conducted to explore differences between those with and without positive cascade outcomes within 12 months after the intervention. On average, change talk increased during the session in order of the extended parallel process constructs (perceived severity, susceptibility, response efficacy, self-efficacy). Coincidence analysis revealed that 6 of the 7 cases with positive cascade outcomes were explained by either the presence of high change talk during the intervention or presence of positive motivations shortly after, while 5 of the 5 cases without a positive outcome lacked both of these key factors that were associated with cascade outcomes. Results of this study suggest that incorporating motivational interviewing and the extended parallel process model increases change talk and that the presence of either high levels of change talk or positive motivations is associated with positive cascade outcomes.
Collapse
Affiliation(s)
- Bridget Winchester
- Department of Genetics, Cell Biology, & Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Deborah Cragun
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Krista Redlinger-Grosse
- Department of Genetics, Cell Biology, & Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Scott T Walters
- School of Public Health, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Erin Ash
- Genetic Counseling Program, Sarah Lawrence College, Bronxville, New York, USA
| | - Emma Baldry
- Department of Genetics, Cell Biology, & Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Heather Zierhut
- Department of Genetics, Cell Biology, & Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Gold JI, Gold NB, DeLeon DD, Ganetzky R. Contraceptive use in women with inherited metabolic disorders: a retrospective study and literature review. Orphanet J Rare Dis 2022; 17:41. [PMID: 35135572 PMCID: PMC8822780 DOI: 10.1186/s13023-022-02188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproductive planning is an emerging concern for women with inherited metabolic disease (IMD). Anticipatory guidance on contraception is necessary to prevent unintended pregnancies in this population. Few resources exist to aid informed decision-making on contraceptive choice. A retrospective case-control study was performed to examine trends in reproductive planning for adolescent and adult women seen at the Children's Hospital of Philadelphia (CHOP). Literature review on contraception and IMD was performed to assess global use. RESULTS In a cohort of 221 reproductive-aged female IMD patients, 29.4% reported routine contraceptive use. Anticipatory guidance on contraception was provided by metabolic physicians to 36.8% of patients during the study period. Contraception discussion was more likely to occur in women older than 21 years, who lived independently and were followed by gynecology. Women who received contraception counseling from their metabolic physician were 40-fold more likely to use regular contraception. Use of combined hormonal contraceptives was most commonly reported, but contraception choice varied by age and IMD. CONCLUSION Metabolic physicians are ideally suited to provide guidance on contraception to women with IMD. Reproductive planning should be addressed routinely using shared decision-making. Contraceptives should be selected for their efficacy, effects on metabolism, and likelihood of patient adherence.
Collapse
Affiliation(s)
- Jessica I Gold
- Division of Human Genetics, Section of Biochemical Genetics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Nina B Gold
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Diva D DeLeon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Ganetzky
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, Section of Biochemical Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
11
|
Langsted A, Nordestgaard BG. Lipoprotein(a) as Part of the Diagnosis of Clinical Familial Hypercholesterolemia. Curr Atheroscler Rep 2022; 24:289-296. [PMID: 35107760 DOI: 10.1007/s11883-022-01002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Individuals with familial hypercholesterolemia have very high risk of cardiovascular disease due to lifelong elevations in LDL cholesterol. Elevated lipoprotein(a) is a risk factor for cardiovascular diseases such as myocardial infarction and aortic valve stenosis. It has been proposed to include elevated lipoprotein(a) in the diagnosis of clinical familial hypercholesterolemia. RECENT FINDINGS Lipoprotein(a) is co-measured in LDL cholesterol, and up to one-quarter of all diagnoses of clinical familial hypercholesterolemia are due to high levels of lipoprotein(a). Further, individuals with both familial hypercholesterolemia and elevated lipoprotein(a) have an extremely high risk of myocardial infarction. We discuss the background for familial hypercholesterolemia and elevated lipoprotein(a) as risk factors for cardiovascular disease and the consequences of the fact that LDL cholesterol measurements/calculations include the cholesterol present in lipoprotein(a). Finally, we discuss the potential of including lipoprotein(a) as part of the diagnosis of familial hypercholesterolemia and in consequence possible treatments.
Collapse
Affiliation(s)
- Anne Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark.
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Futema M, Taylor-Beadling A, Williams M, Humphries SE. Genetic testing for familial hypercholesterolemia-past, present, and future. J Lipid Res 2021; 62:100139. [PMID: 34666015 PMCID: PMC8572866 DOI: 10.1016/j.jlr.2021.100139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 01/01/2023] Open
Abstract
In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and Joe Goldstein led to the identification of the LDL receptor gene as the first gene where mutations cause the familial hypercholesterolemia (FH) phenotype. We now know that autosomal dominant monogenic FH can be caused by pathogenic variants of three additional genes (APOB/PCSK9/APOE) and that the plasma LDL-C concentration and risk of premature coronary heart disease differs according to the specific locus and associated molecular cause. It is now possible to use next-generation sequencing to sequence all exons of all four genes, processing 96 patient samples in one sequencing run, increasing the speed of test results, and reducing costs. This has resulted in the identification of not only many novel FH-causing variants but also some variants of unknown significance, which require further evidence to classify as pathogenic or benign. The identification of the FH-causing variant in an index case can be used as an unambiguous and rapid test for other family members. An FH-causing variant can be found in 20-40% of patients with the FH phenotype, and we now appreciate that in the majority of patients without a monogenic cause, a polygenic etiology for their phenotype is highly likely. Compared with those with a monogenic cause, these patients have significantly lower risk of future coronary heart disease. The use of these molecular genetic diagnostic methods in the characterization of FH is a prime example of the utility of precision or personalized medicine.
Collapse
Affiliation(s)
- Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom; Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Alison Taylor-Beadling
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Rosenson RS. Existing and emerging therapies for the treatment of familial hypercholesterolemia. J Lipid Res 2021; 62:100060. [PMID: 33716107 PMCID: PMC8065289 DOI: 10.1016/j.jlr.2021.100060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Familial hypercholesterolemia (FH), an autosomal dominant disorder of LDL metabolism that is characterized by elevated LDL-cholesterol, is commonly encountered in patients with atherosclerotic coronary heart disease. Combinations of cholesterol-lowering therapies are often used to lower LDL-cholesterol in patients with FH; however, current treatment goals for LDL-cholesterol are rarely achieved in patients with homozygous FH (HoFH) and are difficult to achieve in patients with heterozygous FH (HeFH). Therapies that lower LDL-cholesterol through LDL receptor-mediated mechanisms have thus far been largely ineffective in patients with HoFH, particularly in those with negligible (<2%) LDL receptor activity. Among patients with HeFH who were at very high risk for atherosclerotic cardiovascular disease events, combined therapy consisting of a high dose of high-intensity statin, ezetimibe, and proprotein convertase subtilisin Kexin type 9 inhibitor failed to lower LDL-cholesterol to minimal acceptable goals in more than 50%. This article provides a framework for the use of available and emerging treatments that lower LDL-cholesterol in adult patients with HoFH and HeFH. A framework is provided for the use of angiopoietin-like protein 3 inhibitors in the treatment of HoFH and HeFH.
Collapse
Affiliation(s)
- Robert S Rosenson
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health. Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Doi T, Hori M, Harada-Shiba M, Kataoka Y, Onozuka D, Nishimura K, Nishikawa R, Tsuda K, Ogura M, Son C, Miyamoto Y, Noguchi T, Shimokawa H, Yasuda S. Patients With LDLR and PCSK9 Gene Variants Experienced Higher Incidence of Cardiovascular Outcomes in Heterozygous Familial Hypercholesterolemia. J Am Heart Assoc 2021; 10:e018263. [PMID: 33533259 PMCID: PMC7955325 DOI: 10.1161/jaha.120.018263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Patients with familial hypercholesterolemia who harbored both low‐density lipoprotein receptor (LDLR) and PCSK9 (proprotein convertase subtilisin/kexin type 9) gene variants exhibit severe phenotype associated with substantially high levels of low‐density lipoprotein cholesterol. In this study, we investigated the cardiovascular outcomes in patients with both LDLR and PCSK9 gene variants. Methods and Results A total of 232 unrelated patients with LDLR and/or PCSK9 gene variants were stratified as follows: patients with LDLR and PCSK9 (LDLR/PCSK9) gene variants, patients with LDLR gene variant, and patients with PCSK9 gene variant. Clinical demographics and the occurrence of primary outcome (nonfatal myocardial infarction) were compared. The observation period of primary outcome started at the time of birth and ended at the time of the first cardiac event or the last visit. Patients with LDLR/PCSK9 gene variants were identified in 6% of study patients. They had higher levels of low‐density lipoprotein cholesterol (P=0.04) than those with LDLR gene variants. On multivariate Cox regression model, they experienced a higher incidence of nonfatal myocardial infarction (hazard ratio, 4.62; 95% CI, 1.66–11.0; P=0.003 versus patients with LDLR gene variant). Of note, risk for nonfatal myocardial infarction was greatest in male patients with LDLR/PCSK9 gene variants compared with those with LDLR gene variant (86% versus 24%; P<0.001). Conclusions Patients with LDLR/PCSK9 gene variants were high‐risk genotype associated with atherogenic lipid profiles and worse cardiovascular outcomes. These findings underscore the importance of genetic testing to identify patients with LDLR/PCSK9 gene variants, who require more stringent antiatherosclerotic management.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan.,Department of Advanced Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital Herlev Denmark
| | - Mika Hori
- Department of Molecular Innovation in Lipidology National Cerebral and Cardiovascular Center Suita Osaka Japan.,Department of Endocrinology Research Institute of Environmental Medicine, Nagoya University Nagoya Aichi Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Daisuke Onozuka
- Department of Statistics and Data Analysis Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Kunihiro Nishimura
- Department of Statistics and Data Analysis Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Ryo Nishikawa
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Kosuke Tsuda
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism National Cerebral and Cardiovascular Center Suita Osaka Japan.,Omics Research Center National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Yoshihiro Miyamoto
- Preventive Medicine and Epidemiologic Informatics, Center for Cerebral and Cardiovascular Disease Information National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan
| | - Hiroaki Shimokawa
- Department of Medicine International University of Health and Welfare Graduate School of Medicine Narita Chiba Japan.,Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Osaka Japan.,Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| |
Collapse
|
15
|
Children with Heterozygous Familial Hypercholesterolemia in the United States: Data from the Cascade Screening for Awareness and Detection-FH Registry. J Pediatr 2021; 229:70-77. [PMID: 32976895 DOI: 10.1016/j.jpeds.2020.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe enrollment characteristics of youth in the Cascade Screening for Awareness and Detection of FH Registry. STUDY DESIGN This is a cross-sectional analysis of 493 participants aged <18 years with heterozygous familial hypercholesterolemia recruited from US lipid clinics (n = 20) between April 1, 2014, and January 12, 2018. At enrollment, some were new patients and some were already in care. Clinical characteristics are described, including lipid levels and lipid-lowering treatments. RESULTS Mean age at diagnosis was 9.4 (4.0) years; 47% female, 68% white and 12% Hispanic. Average (SD) highest Low-density lipoprotein cholesterol (LDL-C) was 238 (61) mg/dL before treatment. Lipid-lowering therapy was used by 64% of participants; 56% were treated with statin. LDL-C declined 84 mg/dL (33%) among those treated with lipid-lowering therapy; statins produced the greatest decline, 100 mg/dL (39% reduction). At enrollment, 39% had reached an LDL-C goal, either <130 mg/dL or ≥50% decrease from pre-treatment; 20% of those on lipid-lowering therapy reached both goals. CONCLUSIONS Among youth enrolled in the Cascade Screening for Awareness and Detection of FH Registry, diagnosis occurred relatively late, only 77% of children eligible for lipid-lowering therapy were receiving treatment, and only 39% of those treated met their LDL-C goal. Opportunities exist for earlier diagnosis, broader use of lipid-lowering therapy, and greater reduction of LDL-C levels.
Collapse
|
16
|
Kamar A, Khalil A, Nemer G. The Digenic Causality in Familial Hypercholesterolemia: Revising the Genotype-Phenotype Correlations of the Disease. Front Genet 2021; 11:572045. [PMID: 33519890 PMCID: PMC7844333 DOI: 10.3389/fgene.2020.572045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Genetically inherited defects in lipoprotein metabolism affect more than 10 million individuals around the globe with preponderance in some parts where consanguinity played a major role in establishing founder mutations. Mutations in four genes have been so far linked to the dominant and recessive form of the disease. Those players encode major proteins implicated in cholesterol regulation, namely, the low-density lipoprotein receptor (LDLR) and its associate protein 1 (LDLRAP1), the proprotein convertase substilin/kexin type 9 (PCSK9), and the apolipoprotein B (APOB). Single mutations or compound mutations in one of these genes are enough to account for a spectrum of mild to severe phenotypes. However, recently several reports have identified digenic mutations in familial cases that do not necessarily reflect a much severe phenotype. Yet, data in the literature supporting this notion are still lacking. Herein, we review all the reported cases of digenic mutations focusing on the biological impact of gene dosage and the potential protective effects of single-nucleotide polymorphisms linked to hypolipidemia. We also highlight the difficulty of establishing phenotype-genotype correlations in digenic familial hypercholesterolemia cases due to the complexity and heterogeneity of the phenotypes and the still faulty in silico pathogenicity scoring system. We finally emphasize the importance of having a whole exome/genome sequencing approach for all familial cases of familial hyperlipidemia to better understand the genetic and clinical course of the disease.
Collapse
Affiliation(s)
- Amina Kamar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Athar Khalil
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
17
|
Lui DTW, Lee ACH, Tan KCB. Management of Familial Hypercholesterolemia: Current Status and Future Perspectives. J Endocr Soc 2021; 5:bvaa122. [PMID: 33928199 PMCID: PMC8059332 DOI: 10.1210/jendso/bvaa122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Familial hypercholesterolemia (FH) is the most common monogenic disorder associated with premature atherosclerotic cardiovascular disease. Early diagnosis and effective treatment can significantly improve prognosis. Recent advances in the field of lipid metabolism have shed light on the molecular defects in FH and new therapeutic options have emerged. A search of PubMed database up to March 2020 was performed for this review using the following keywords: "familial hypercholesterolemia," "diagnosis," "management," "guideline," "consensus," "genetics," "screening," "lipid lowering agents." The prevalence rate of heterozygous FH is approximately 1 in 200 to 250 and FH is underdiagnosed and undertreated in many parts of the world. Diagnostic criteria have been developed to aid the clinical diagnosis of FH. Genetic testing is now available but not widely used. Cascade screening is recommended to identify affected family members, and the benefits of early interventions are clear. Treatment strategy and target is currently based on low-density lipoprotein (LDL) cholesterol levels as the prognosis of FH largely depends on the magnitude of LDL cholesterol-lowering that can be achieved by lipid-lowering therapies. Statins with or without ezetimibe are the mainstay of treatment and are cost-effective. Addition of newer medications like PCSK9 inhibitors is able to further lower LDL cholesterol levels substantially, but the cost is high. Lipoprotein apheresis is indicated in homozygous FH or severe heterozygous FH patients with inadequate response to cholesterol-lowering therapies. In conclusion, FH is a common, treatable genetic disorder, and although our understanding of this disease has improved, many challenges still remain for its optimal management.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| | - Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| |
Collapse
|
18
|
Ferrari F, Martins VM, Rocha VZ, Santos RD. Advances with lipid-lowering drugs for pediatric patients with familial hypercholesterolemia. Expert Opin Pharmacother 2020; 22:483-495. [PMID: 33016816 DOI: 10.1080/14656566.2020.1832991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Familial hypercholesterolemia (FH) is a frequent genetic disorder characterized by elevated LDL-cholesterol (LDL-C) and early onset of atherosclerosis. AREAS COVERED The authors provide an overview of the pediatric FH scenario, with emphasis on the role of statins as the preferred pharmacological therapy, discussing their potential benefits, as well as adverse effects, and the remaining uncertainties about their use in this population. They also comment on other lipid-lowering therapies. EXPERT OPINION Statin therapy is recommended after the ages of 8-10 years old for heterozygous FH patients and can reduce LDL-C by 24-50% depending on drug type and dosage. For more severe cases, higher doses and adjuvant therapies like ezetimibe may be necessary and treatment should be started at diagnosis, as is the case of homozygous FH. Statins reduce progression of subclinical vascular disease and may reduce early cardiovascular events. The available evidence indicates safety of statins in children with no apparent harms related to growth, sexual maturation, steroid hormones, glucose levels, cognitive function, or muscle and liver problems, in comparison with placebo. Newer treatments like lomitapide, PCSK9 inhibitors, bempedoic acid and evinacumab need to be adequately evaluated in pediatric FH patients with more severe dyslipidemia.
Collapse
Affiliation(s)
- Filipe Ferrari
- Postgraduate Program in Cardiology and Cardiovascular Sciences, Hospital De Clínicas De Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Vítor M Martins
- Graduate Program in Cardiology and Cardiovascular Sciences, School of Medicine, Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
| | - Viviane Z Rocha
- Lipid Clinic Heart Institute (Incor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo Medical School Hospital, São Paulo, Brazil.,Academic Research Organisation, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
19
|
Giammanco A, Cefalù AB, Noto D, Averna MR. Therapeutic Options for Homozygous Familial Hypercholesterolemia: The Role of Lomitapide. Curr Med Chem 2020; 27:3773-3783. [DOI: 10.2174/0929867326666190121120735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/25/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022]
Abstract
Background:Lomitapide (Juxtapid® in US and Lojuxta® in Europe) is the first developed inhibitor of the Microsomal Triglyceride Transfer Protein (MTP) approved as a novel drug for the management of Homozygous Familial Hypercholesterolemia (HoFH). It acts by binding directly and selectively to MTP thus decreasing the assembly and secretion of the apo-B containing lipoproteins both in the liver and in the intestine.Aims:The present review aims at summarizing the recent knowledge on lomitapide in the management of HoFH.Results:The efficacy and safety of lomitapide have been evaluated in several trials and it has been shown a reduction of the plasma levels of Low-Density Lipoprotein Cholesterol (LDL-C) by an average of more than 50%. Although the most common side effects are gastrointestinal and liver events, lomitapide presents generally with a good tolerability and satisfactory patients compliance. Recently, in Europe, to evaluate the long-term safety and efficacy of lomitapide, the LOWER registry (ClinicalTrials.gov Identifier: NCT02135705) has been established in order to acquire informations on HoFH lomitapidetreated patients from “real life” clinical practice.:Furthermore, the observation that lomitapide decreases triglyceride levels may be considered for patients affected by severe forms of hypertriglyceridemia who undergo recurrent episodes of pancreatitis and are poor responders to conventional treatment.Conclusion:Lomitapide represents an innovative and efficacious drug for the treatment of HoFH. Longterm safety data, treatment of pediatric and pregnant HoFH patients and management of severe hypertriglyceridemia still require further investigations.
Collapse
Affiliation(s)
- Antonina Giammanco
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Angelo B. Cefalù
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Davide Noto
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Maurizio R. Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
20
|
Vuorio A, Watts GF, Schneider WJ, Tsimikas S, Kovanen PT. Familial hypercholesterolemia and elevated lipoprotein(a): double heritable risk and new therapeutic opportunities. J Intern Med 2020; 287:2-18. [PMID: 31858669 DOI: 10.1111/joim.12981] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022]
Abstract
There is compelling evidence that the elevated plasma lipoprotein(a) [Lp(a)] levels increase the risk of atherosclerotic cardiovascular disease (ASCVD) in the general population. Like low-density lipoprotein (LDL) particles, Lp(a) particles contain cholesterol and promote atherosclerosis. In addition, Lp(a) particles contain strongly proinflammatory oxidized phospholipids and a unique apoprotein, apo(a), which promotes the growth of an arterial thrombus. At least one in 250 individuals worldwide suffer from the heterozygous form of familial hypercholesterolemia (HeFH), a condition in which LDL-cholesterol (LDL-C) is significantly elevated since birth. FH-causing mutations in the LDL receptor gene demonstrate a clear gene-dosage effect on Lp(a) plasma concentrations and elevated Lp(a) levels are present in 30-50% of patients with HeFH. The cumulative burden of two genetically determined pro-atherogenic lipoproteins, LDL and Lp(a), is a potent driver of ASCVD in HeFH patients. Statins are the cornerstone of treatment of HeFH, but they do not lower the plasma concentrations of Lp(a). Emerging therapies effectively lower Lp(a) by as much as 90% using RNA-based approaches that target the transcriptional product of the LPA gene. We are now approaching the dawn of an era, in which permanent and significant lowering of the high cholesterol burden of HeFH patients can be achieved. If outcome trials of novel Lp(a)-lowering therapies prove to be safe and cost-effective, they will provide additional risk reduction needed to effectively treat HeFH and potentially lower the CVD risk in these high-risk patients even more than currently achieved with LDL-C lowering alone.
Collapse
Affiliation(s)
- A Vuorio
- From the, Mehiläinen Airport Health Centre, Vantaa, Finland.,Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - G F Watts
- School of Medicine, Faculty of Medicine and Health Sciences, University of Western Australia, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - W J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - S Tsimikas
- Vascular Medicine Program, Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California, San Diego, CA, USA
| | - P T Kovanen
- Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
21
|
Jin W, Zhang Q, Wang B, Pan L, Qin H, Yang D, Zhou X, Du Y, Lin L, Kutryk MJ. Cascade screening for familial hypercholesterolemia-identification of the C308Y mutation in multiple family members and relatives for the first time in mainland China. BMC MEDICAL GENETICS 2019; 20:173. [PMID: 31706281 PMCID: PMC6842482 DOI: 10.1186/s12881-019-0901-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022]
Abstract
Background Familial hypercholesterolemia (FH), an autosomal dominant genetic disorder, is underdiagnosed and undertreated. The majority of FH cases are caused by low density lipoprotein receptor (LDL-R) gene mutations. The C308Y mutation in LDL-R results in approximately 70% loss of LDL-R activity, leading to the elevation of low density lipoprotein-cholesterol (LDL-C) and an increased risk of premature coronary heart disease (CHD). The aim of this study was to identify FH cases by cascade screening in family members and relatives of a 37-year old male with premature CHD and hypercholesterolemia. Methods Clinical exam, blood lipid profiling and genomic DNA sequencing of all exons of LDL-R were performed for the proband and his 14 family members and relatives. FH diagnosis was carried out using the Dutch Lipid Clinic Network (DLCN) criteria. Results Lipid profiling showed that 9 individuals, including the proband, had hypercholesterolemia. All these 9 subjects had a G > A substitution at nucleotide 986 in exon 7 resulting in the C308Y mutation as determined by DNA sequencing, and all those carrying the mutation were diagnosed as having definite FH under the DLCN criteria. However, most (7/9) did not have suggestive clinical manifestations of CHD. Conclusions The C308Y mutation was discovered in multiple family members and relatives for the first time in mainland China. Cascade screening is key for the confirmatory diagnosis of FH. Our hypothesis that the C308Y is a common variant in the population of Southern China origin warrants further validation by screening for the C308Y mutation in a large population.
Collapse
Affiliation(s)
- Weirong Jin
- Shanghai Human Genome Center, Shanghai, China
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Bei Wang
- Department of Cardiology, the Third People's Hospital of Hainan Province, 1154 Jiefang Road, Sanya, 572000, Hainan Province, China
| | - Lili Pan
- Department of Cardiology, the Third People's Hospital of Hainan Province, 1154 Jiefang Road, Sanya, 572000, Hainan Province, China
| | - Hongyou Qin
- Shanghai Human Genome Center, Shanghai, China
| | - Daying Yang
- Department of Cardiology, the Third People's Hospital of Hainan Province, 1154 Jiefang Road, Sanya, 572000, Hainan Province, China
| | - Xiangqun Zhou
- Department of Cardiology, the Third People's Hospital of Hainan Province, 1154 Jiefang Road, Sanya, 572000, Hainan Province, China
| | - Yongcai Du
- Department of Cardiology, the Third People's Hospital of Hainan Province, 1154 Jiefang Road, Sanya, 572000, Hainan Province, China
| | - Ling Lin
- Department of Cardiology, the Third People's Hospital of Hainan Province, 1154 Jiefang Road, Sanya, 572000, Hainan Province, China.
| | - Michael J Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Association of dietary components with dyslipidemia and low-grade inflammation biomarkers in adults with heterozygous familial hypercholesterolemia from different countries. Eur J Clin Nutr 2019; 73:1622-1625. [DOI: 10.1038/s41430-019-0529-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022]
|
23
|
Barahman M, Zhang W, Harris HY, Aiyer A, Kabarriti R, Kinkhabwala M, Roy-Chowdhury N, Beck AP, Scanlan TS, Roy-Chowdhury J, Asp P, Guha C. Radiation-primed hepatocyte transplantation in murine monogeneic dyslipidemia normalizes cholesterol and prevents atherosclerosis. J Hepatol 2019; 70:1170-1179. [PMID: 30654068 PMCID: PMC6986679 DOI: 10.1016/j.jhep.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited abnormalities in apolipoprotein E (ApoE) or low-density lipoprotein receptor (LDLR) function result in early onset cardiovascular disease and death. Currently, the only curative therapy available is liver transplantation. Hepatocyte transplantation is a potential alternative; however, physiological levels of hepatocyte engraftment and repopulation require transplanted cells to have a competitive proliferative advantage of over host hepatocytes. Herein, we aimed to test the efficacy and safety of a novel preparative regimen for hepatocyte transplantation. METHODS Herein, we used an ApoE-deficient mouse model to test the efficacy of a new regimen for hepatocyte transplantation. We used image-guided external-beam hepatic irradiation targeting the median and right lobes of the liver to enhance cell transplant engraftment. This was combined with administration of the hepatic mitogen GC-1, a thyroid hormone receptor-β agonist mimetic, which was used to promote repopulation. RESULTS The non-invasive preparative regimen of hepatic irradiation and GC-1 was well-tolerated in ApoE-/- mice. This regimen led to robust liver repopulation by transplanted hepatocytes, which was associated with significant reductions in serum cholesterol levels after transplantation. Additionally, in mice receiving this regimen, ApoE was detected in the circulation 4 weeks after treatment and did not induce an immunological response. Importantly, the normalization of serum cholesterol prevented the formation of atherosclerotic plaques in this model. CONCLUSIONS Significant hepatic repopulation and the cure of dyslipidemia in this model, using a novel and well-tolerated preparative regimen, demonstrate the clinical potential of applying this method to the treatment of inherited metabolic diseases of the liver. LAY SUMMARY Hepatocyte transplantation is a promising alternative to liver transplantation for the treatment of liver diseases. However, it is inefficient, as restricted growth of transplanted cells in the liver limits its therapeutic benefits. Preparative treatments improve the efficiency of this procedure, but no clinically-feasible options are currently available. In this study we develop a novel well-tolerated preparative treatment to improve growth of cells in the liver and then demonstrate that this treatment completely cures an inherited lipid disorder in a mouse model.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Zhang
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Yaffe Harris
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anita Aiyer
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Milan Kinkhabwala
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amanda P. Beck
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
24
|
Ward NC, Page MM, Watts GF. Clinical guidance on the contemporary use of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies. Diabetes Obes Metab 2019; 21 Suppl 1:52-62. [PMID: 31002454 DOI: 10.1111/dom.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
There is now significant evidence for the benefits of lowering low-density lipoprotein cholesterol (LDL-c) to reduce the risk of atherosclerotic cardiovascular disease (ASCVD). Although statins are the most widely prescribed lipid-lowering therapy that effectively lower LDL-c, especially in combination with ezetimibe, some patients require adjunctive therapy to further lower LDL-c and mitigate attendant risk of ASCVD. The gap can be filled by proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies whose use is currently supported by two recent cardiovascular outcome studies and new treatment guidelines. We provide an overview of extant studies investigating PCSK9 monoclonal antibodies in various patient populations, an update of the guidelines regarding their use and a case-based discussion.
Collapse
Affiliation(s)
- Natalie C Ward
- School of Public Health, Curtin University, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Michael M Page
- School of Medicine, University of Western Australia, Perth, Australia
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
25
|
Chan MLY, Cheung CL, Lee ACH, Yeung CY, Siu CW, Leung JYY, Pang HK, Tan KCB. Genetic variations in familial hypercholesterolemia and cascade screening in East Asians. Mol Genet Genomic Med 2018; 7:e00520. [PMID: 30592178 PMCID: PMC6393658 DOI: 10.1002/mgg3.520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is a monogenic disorder of lipoprotein metabolism leading to an increased risk of premature cardiovascular disease. Genetic testing for FH is not commonly used in Asian countries. We aimed to define the genetic spectrum of FH in Hong Kong and to test the feasibility of cascade genetic screening. Methods Ninety‐six Chinese subjects with a clinical diagnosis of FH were recruited, and family‐based cascade screening incorporating genetic testing results was performed. Results Forty‐two distinct mutations were identified in 67% of the index FH cases. The majority of causative mutations were in the LDLR gene. The three commonest mutations in the LDLR gene were NM_000527.4(LDLR): c.1241 T>G, NM_000527.4(LDLR): c.1474G>A, and NM_000527.4(LDLR): c. 682G>A, and nine novel variants were identified. The NM_000384.2(APOB): c.10579 C>T variant of the APOB gene was found in 5% of the index subjects. The presence of causative mutation significantly increased the odds of successful family recruitment for screening with an OR of 3.7 (95% CI: 1.53–9.11, p = 0.004). Conclusion Approximately two‐third of the subjects in this clinically ascertained sample of patients with FH had a discrete genetic basis. Genetic identification improves the response rate and efficiency of family screening.
Collapse
Affiliation(s)
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong
| | | | - Chun-Yip Yeung
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Chung-Wah Siu
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | | | - Ho-Kwong Pang
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong
| | | |
Collapse
|
26
|
Parham JS, Goldberg AC. Mipomersen and its use in familial hypercholesterolemia. Expert Opin Pharmacother 2018; 20:127-131. [PMID: 30526168 DOI: 10.1080/14656566.2018.1550071] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Familial Hypercholesterolemia (FH) is an inherited disorder characterized by a defect in the binding and internalization of low-density lipoprotein (LDL) particles, resulting in markedly elevated LDL levels and premature atherosclerosis. It is one of the most common inherited disorders of lipid metabolism. Many FH patients, especially those with homozygous FH do not reach LDL goals with traditional LDL therapies and may require additional, less often used, therapies. Areas covered: Mipomersen is an anti-sense oligonucleotide that prevents production of apolipoprotein B leading to decreased levels of very low-density lipoprotein (VLDL) and LDL. In this review the authors discuss the pharmacokinetics of the drug, the clinical trials evaluating its efficacy and safety, and risks and challenges associated with its clinical implementation. Its use as therapy for the treatment of FH is also discussed. Expert opinion: Mipomersen is approved for use only in homozygous FH. It has frequent adverse effects, such as injection site reactions, flu-like symptoms, and hepatoxicity. It is useful only in patients who have failed other therapies, and it faces competition from other medications that have more tolerable side effect profiles.
Collapse
Affiliation(s)
- Johnathon Seth Parham
- a Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Anne Carol Goldberg
- a Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
27
|
Schöb M, Müller P, Gerth Y, Korte W, Rickli H, Brändle M, Bärlocher A, Bilz S. [Diagnosis and Treatment of Familial Hypercholesterolemia]. PRAXIS 2018; 107:1345-1353. [PMID: 30482120 DOI: 10.1024/1661-8157/a003134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diagnosis and Treatment of Familial Hypercholesterolemia Abstract. Familial hypercholesterolemia secondary to heterozygous mutations in the LDL receptor, Apolipoprotein B or PCSK9 gene is characterized by 2- to 3-fold elevated LDL cholesterol levels, premature atherosclerosis and extravascular cholesterol deposits (tendon xanthomata, corneal arcus). The same phenotype may occur if a person carries several LDL cholesterol rising polymorphisms (polygenic FH). Primary prevention with statins has been shown to dramatically reduce the cardiovascular burden in patients with the disease. However, it is estimated that less than 10 % of affected subjects in Switzerland have received the diagnosis, and undertreatment is frequent. Thus, clinical cardiovascular events are still the first manifestation of the disease in many cases. A correct diagnosis in index patients and cascade screening of families are mandatory to identify and treat patients before they suffer the sequelae of untreated severe hypercholesterolemia. In patients with clinical cardiovascular disease combination lipid lowering treatment with potent statins, ezetimibe and the newly available PCSK9 inhibitors will successfully lower LDL cholesterol to normal or even target levels.
Collapse
Affiliation(s)
- Manuela Schöb
- 1 Klinik für Endokrinologie, Diabetologie, Osteologie und Stoffwechselkrankheiten, Kantonsspital St. Gallen
| | - Pascal Müller
- 2 Pädiatrische Gastroenterologie & Ernährungsmedizin, Ostschweizer Kinderspital, St. Gallen
| | | | | | - Hans Rickli
- 4 Klinik für Kardiologie, Kantonsspital St. Gallen
| | - Michael Brändle
- 1 Klinik für Endokrinologie, Diabetologie, Osteologie und Stoffwechselkrankheiten, Kantonsspital St. Gallen
- 5 Klinik für Allgemeine Innere Medizin und Hausarztmedizin, Kantonsspital St. Gallen
| | | | - Stefan Bilz
- 1 Klinik für Endokrinologie, Diabetologie, Osteologie und Stoffwechselkrankheiten, Kantonsspital St. Gallen
| |
Collapse
|
28
|
Radaelli G, Sausen G, Cesa CC, Santos FDS, Portal VL, Neyeloff JL, Pellanda LC. Statin Treatments And Dosages In Children With Familial Hypercholesterolemia: Meta-Analysis. Arq Bras Cardiol 2018; 111:810-821. [PMID: 30365601 PMCID: PMC6263457 DOI: 10.5935/abc.20180180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Background Children with familial hypercholesterolemia may develop early endothelial
damage leading to a high risk for the development of cardiovascular disease
(CVD). Statins have been shown to be effective in lowering LDL cholesterol
levels and cardiovascular events in adults. The effect of statin treatment
in the pediatric population is not clearly demonstrated. Objective To systematically review the literature to evaluate the effects of different
statins and dosages in total cholesterol levels in children and adolescents
with familial hypercholesterolemia. We also aimed to evaluate statin safety
in this group. Methods PubMed, EMBASE, Bireme, Web of Science, Cochrane Library, SciELO and LILACS
databases, were searched for articles published from inception until
February 2016. Two independent reviewers performed the quality assessment of
the included studies. We performed a meta-analysis with random effects and
inverse variance, and subgroup analyses were performed. Results Ten trials involving a total of 1543 patients met the inclusion criteria. Our
study showed reductions in cholesterol levels according to the intensity of
statin doses (high, intermediate and low): (-104.61 mg/dl, -67.60 mg/dl,
-56.96 mg/dl) and in the low-density lipoprotein cholesterol level:
[-105.03 mg/dl (95% CI -115.76, -94.30), I2 19.2%],
[-67.85 mg/dl (95% CI -83.36, -52.35), I2 99.8%],
[-58.97 mg/dl (95% CI -67.83, -50.11), I2 93.8%. The duration of
statin therapy in the studies ranged from 8 to 104 weeks, precluding
conclusions about long-term effects. Conclusion Statin treatment is efficient in lowering lipids in children with FH. There
is need of large, long-term and randomized controlled trials to establish
the long-term safety of statins.
Collapse
Affiliation(s)
- Graciane Radaelli
- Instituto de Cardiologia - Fundação Universitária de Cardiologia - IC/FUC, Porto Alegre, RS - Brazil
| | - Grasiele Sausen
- Instituto de Cardiologia - Fundação Universitária de Cardiologia - IC/FUC, Porto Alegre, RS - Brazil
| | - Claudia Ciceri Cesa
- Instituto de Cardiologia - Fundação Universitária de Cardiologia - IC/FUC, Porto Alegre, RS - Brazil
| | | | - Vera Lucia Portal
- Instituto de Cardiologia - Fundação Universitária de Cardiologia - IC/FUC, Porto Alegre, RS - Brazil
| | - Jeruza Lavanholi Neyeloff
- Instituto de Cardiologia - Fundação Universitária de Cardiologia - IC/FUC, Porto Alegre, RS - Brazil
| | - Lucia Campos Pellanda
- Instituto de Cardiologia - Fundação Universitária de Cardiologia - IC/FUC, Porto Alegre, RS - Brazil
| |
Collapse
|
29
|
Vallejo-Vaz AJ, Ray KK. Epidemiology of familial hypercholesterolaemia: Community and clinical. Atherosclerosis 2018; 277:289-297. [DOI: 10.1016/j.atherosclerosis.2018.06.855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023]
|
30
|
van Delden XM, Huijgen R, Wolmarans KH, Brice BC, Barron JK, Blom DJ, Marais AD. LDL-cholesterol target achievement in patients with heterozygous familial hypercholesterolemia at Groote Schuur Hospital: Minority at target despite large reductions in LDL-C. Atherosclerosis 2018; 277:327-333. [DOI: 10.1016/j.atherosclerosis.2018.06.820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
31
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia is a frequent genetic disease associated with a high lifetime risk of cardiovascular disease (CVD). Statins are the cornerstone of treatment of familial hypercholesterolemia; however, with the advent of novel LDL-cholesterol lowering therapies, it has become necessary to identify familial hypercholesterolemia subjects presenting a significant residual CVD risk. The aim of this review is to provide an update on the recent literature concerning cardiovascular risk stratification in familial hypercholesterolemia. RECENT FINDINGS Recently, several clinical and genetic factors have been shown to be independent predictors of CVD in familial hypercholesterolemia. These include clinical scores such as the Montreal-FH-SCORE, novel protein biomarkers, carotid plaque score and genetic predictors such as genetic risk scores as well as single-nucleotide polymorphisms. SUMMARY Although there has been recent progress in cardiovascular risk stratification in familial hypercholesterolemia, there is still a need to further refine our knowledge concerning phenotype modifiers in this disease. Indeed, current known predictors do not explain the entirety of cardiovascular risk. More precise individual risk stratification in familial hypercholesterolemia could help to better tailor the proper therapy for each patient.
Collapse
Affiliation(s)
- Martine Paquette
- Nutrition, Metabolism and Atherosclerosis Clinic, Institut de recherches cliniques de Montréal
| | - Alexis Baass
- Nutrition, Metabolism and Atherosclerosis Clinic, Institut de recherches cliniques de Montréal
- Division of Experimental Medicine
- Division of Medical Biochemistry, Department of Medicine, McGill University, Montreal, Québec, Canada
| |
Collapse
|
32
|
Bucholz EM, Rodday AM, Kolor K, Khoury MJ, de Ferranti SD. Prevalence and Predictors of Cholesterol Screening, Awareness, and Statin Treatment Among US Adults With Familial Hypercholesterolemia or Other Forms of Severe Dyslipidemia (1999-2014). Circulation 2018; 137:2218-2230. [PMID: 29581125 PMCID: PMC6381601 DOI: 10.1161/circulationaha.117.032321] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) and other extreme elevations in low-density lipoprotein cholesterol significantly increase the risk of atherosclerotic cardiovascular disease; however, recent data suggest that prescription rates for statins remain low in these patients. National rates of screening, awareness, and treatment with statins among individuals with FH or severe dyslipidemia are unknown. METHODS Data from the 1999 to 2014 National Health and Nutrition Examination Survey were used to estimate prevalence rates of self-reported screening, awareness, and statin therapy among US adults (n=42 471 weighted to represent 212 million US adults) with FH (defined using the Dutch Lipid Clinic criteria) and with severe dyslipidemia (defined as low-density lipoprotein cholesterol levels ≥190 mg/dL). Logistic regression was used to identify sociodemographic and clinical correlates of hypercholesterolemia awareness and statin therapy. RESULTS The estimated US prevalence of definite/probable FH was 0.47% (standard error, 0.03%) and of severe dyslipidemia was 6.6% (standard error, 0.2%). The frequency of cholesterol screening and awareness was high (>80%) among adults with definite/probable FH or severe dyslipidemia; however, statin use was uniformly low (52.3% [standard error, 8.2%] of adults with definite/probable FH and 37.6% [standard error, 1.2%] of adults with severe dyslipidemia). Only 30.3% of patients with definite/probable FH on statins were taking a high-intensity statin. The prevalence of statin use in adults with severe dyslipidemia increased over time (from 29.4% to 47.7%) but not faster than trends in the general population (from 5.7% to 17.6%). Older age, health insurance status, having a usual source of care, diabetes mellitus, hypertension, and having a personal history of early atherosclerotic cardiovascular disease were associated with higher statin use. CONCLUSIONS Despite the high prevalence of cholesterol screening and awareness, only ≈50% of adults with FH are on statin therapy, with even fewer prescribed a high-intensity statin; young and uninsured patients are at the highest risk for lack of screening and for undertreatment. This study highlights an imperative to improve the frequency of cholesterol screening and statin prescription rates to better identify and treat this high-risk population. Additional studies are needed to better understand how to close these gaps in screening and treatment.
Collapse
Affiliation(s)
- Emily M Bucholz
- Department of Medicine (E.M.B.)
- Boston Children's Hospital, MA. Harvard Medical School, Boston, MA (E.M.B., S.D.d.F.)
| | - Angie Mae Rodday
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA (A.M.R.)
| | - Katherine Kolor
- Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA (K.K., M.J.K.)
| | - Muin J Khoury
- Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA (K.K., M.J.K.)
| | - Sarah D de Ferranti
- Department of Cardiology (S.D.d.F.)
- Boston Children's Hospital, MA. Harvard Medical School, Boston, MA (E.M.B., S.D.d.F.)
| |
Collapse
|
33
|
Sánchez Muñoz-Torrero JF, Rivas MD, Zamorano J, Joya-Vázquez PP, de Isla LP, Padro T, Mata P, The Safeheart Investigators. Multivariate analysis for coronary heart disease in heterozygote familial hypercholesterolemia patients. Per Med 2018; 15:87-92. [PMID: 29714125 DOI: 10.2217/pme-2017-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM rs599839 polymorphism has been related with low levels of cholesterol and reduced coronary heart disease (CHD). METHODS We investigated the frequency of this polymorphism in patients with heterozygous familial hypercholesterolemia (HeFH) in the Spanish familial hypercholesterolemia cohort, 230 with and 202 without CHD. Results & discussion: A lower G-allele prevalence was observed in HeFH patients with CHD with respect to controls, 35 versus 45%, respectively (p = 0.029), suggesting a protective effect. However, it was found that there was no association between rs599839 alleles and CHD in the multivariate analysis. CONCLUSION The frequency of the protective G-allele of the rs599839 polymorphism was lower in HeFH patients with CHD compared with those HeFH patients without CHD. However, its role in HeFH may be masked by very high levels of cholesterol.
Collapse
Affiliation(s)
| | - Maria D Rivas
- Research Unit, Hospital San Pedro de Alcantara, Caceres, Spain
| | - Jose Zamorano
- Research Unit, Hospital San Pedro de Alcantara, Caceres, Spain
| | | | | | - Teresa Padro
- Centro de Investigacion Cardiovascular CSIC-ICCC, Hospital Sant Pau & IIB-Sant Pau, & CIBEROBN, ISC III, Barcelona, Spain
| | - Pedro Mata
- Fundacion Hipercolesterolemia Familial, Madrid, Spain
| | | |
Collapse
|
34
|
Ruel I, Aljenedil S, Sadri I, de Varennes É, Hegele RA, Couture P, Bergeron J, Wanneh E, Baass A, Dufour R, Gaudet D, Brisson D, Brunham LR, Francis GA, Cermakova L, Brophy JM, Ryomoto A, Mancini GBJ, Genest J. Imputation of Baseline LDL Cholesterol Concentration in Patients with Familial Hypercholesterolemia on Statins or Ezetimibe. Clin Chem 2018; 64:355-362. [DOI: 10.1373/clinchem.2017.279422] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023]
Abstract
Abstract
BACKGROUND
Familial hypercholesterolemia (FH) is the most frequent genetic disorder seen clinically and is characterized by increased LDL cholesterol (LDL-C) (>95th percentile), family history of increased LDL-C, premature atherosclerotic cardiovascular disease (ASCVD) in the patient or in first-degree relatives, presence of tendinous xanthomas or premature corneal arcus, or presence of a pathogenic mutation in the LDLR, PCSK9, or APOB genes. A diagnosis of FH has important clinical implications with respect to lifelong risk of ASCVD and requirement for intensive pharmacological therapy. The concentration of baseline LDL-C (untreated) is essential for the diagnosis of FH but is often not available because the individual is already on statin therapy.
METHODS
To validate a new algorithm to impute baseline LDL-C, we examined 1297 patients. The baseline LDL-C was compared with the imputed baseline obtained within 18 months of the initiation of therapy. We compared the percent reduction in LDL-C on treatment from baseline with the published percent reductions.
RESULTS
After eliminating individuals with missing data, nonstandard doses of statins, or medications other than statins or ezetimibe, we provide data on 951 patients. The mean ± SE baseline LDL-C was 243.0 (2.2) mg/dL [6.28 (0.06) mmol/L], and the mean ± SE imputed baseline LDL-C was 244.2 (2.6) mg/dL [6.31 (0.07) mmol/L] (P = 0.48). There was no difference in response according to the patient's sex or in percent reduction between observed and expected for individual doses or types of statin or ezetimibe.
CONCLUSIONS
We provide a validated estimation of baseline LDL-C for patients with FH that may help clinicians in making a diagnosis.
Collapse
Affiliation(s)
- Isabelle Ruel
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Sumayah Aljenedil
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Iman Sadri
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Émilie de Varennes
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Robert A Hegele
- Departments of Medicine and Biochemistry, Schulich School of Medicine and Robarts Research Institute, Western University, London, ON, Canada
| | - Patrick Couture
- Lipid Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Jean Bergeron
- Lipid Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Eric Wanneh
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alexis Baass
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Nutrition, Metabolism, and Atherosclerosis Clinic, Institut de recherches cliniques de Montréal, QC, Canada
- Division of Medical Biochemistry, Department of Medicine, McGill University, QC, Canada
| | - Robert Dufour
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Centre and ECOGENE-21, Department of Medicine, Université de Montréal, Saguenay, QC, Canada
| | - Diane Brisson
- Lipidology Unit, Community Genomic Medicine Centre and ECOGENE-21, Department of Medicine, Université de Montréal, Saguenay, QC, Canada
| | - Liam R Brunham
- Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Healthy Heart Program Prevention Clinic, St. Paul's Hospital, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lubomira Cermakova
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James M Brophy
- McGill University, Royal Victoria Hospital, Montreal, QC, Canada
| | - Arnold Ryomoto
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - G B John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Genetic dyslipidemias contribute to the prevalence of ischemic heart disease. The field of genetic dyslipidemias and their influence on atherosclerotic heart disease is rapidly developing and accumulating increasing evidence. The purpose of this review is to describe the current state of knowledge in regard to inherited atherogenic dyslipidemias. The disorders of familial hypercholesterolemia (FH) and elevated lipoprotein(a) will be detailed. Genetic technology has made rapid advancements, leading to new discoveries in inherited atherogenic dyslipidemias, which will be explored in this review, as well as a description of possible future developments. Increasing attention has come upon the genetic disorders of familial hypercholesterolemia and elevated lipoprotein(a). RECENT FINDINGS This review includes new knowledge of these disorders including description of these disorders, their method of diagnosis, their prevalence, their genetic underpinnings, and their effect on the development of cardiovascular disease. In addition, it discusses major advances in genetic technology, including the completion of the human genome sequence, next-generation sequencing, and genome-wide association studies. Also discussed are rare variant studies with specific genetic mechanisms involved in inherited dyslipidemias, such as in the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme. The field of genetics of dyslipidemia and cardiovascular disease is rapidly growing, which will result in a bright future of novel mechanisms of action and new therapeutics.
Collapse
Affiliation(s)
- Kavita Sharma
- Ohio Health Heart and Vascular Physicians, 765 North Hamilton Road, Suite 120, Gahanna, OH, 43230, USA
| | - Ragavendra R Baliga
- The Ohio State University Wexner Medical Center, Suite 200, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Schmidt N, Grammer T, Gouni-Berthold I, Julius U, Kassner U, Klose G, König C, Laufs U, Otte B, Steinhagen-Thiessen E, Wanner C, März W. CaRe high – Cascade screening and registry for high cholesterol in Germany. ATHEROSCLEROSIS SUPP 2017; 30:72-76. [DOI: 10.1016/j.atherosclerosissup.2017.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Skrzypczyk P, Pańczyk-Tomaszewska M. Methods to evaluate arterial structure and function in children - State-of-the art knowledge. Adv Med Sci 2017; 62:280-294. [PMID: 28501727 DOI: 10.1016/j.advms.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND With increasing rates of hypertension, obesity, and diabetes in the pediatric population, wide available, and reproducible methods are necessary to evaluate arterial structure and function in children and adolescents. METHODS MEDLINE/Pubmed was searched for articles published in years 2012-2017 on methodology of, current knowledge on, and limitations of the most commonly used methods to evaluate central, proximal and coronary arteries, as well as endothelial function in pediatric patients. RESULTS Among 1528 records screened (including 1475 records from years 2012 to 2017) 139 papers were found suitable for the review. Following methods were discussed in this review article: ultrasound measurements of the intima-media thickness, coronary calcium scoring using computed tomography, arterial stiffness measurements (pulse wave velocity and pulse wave analysis, carotid artery distensibility, pulse pressure, and ambulatory arterial stiffness index), ankle-brachial index, and methods to evaluate vascular endothelial function (flow-mediated vasodilation, peripheral arterial tonometry, Doppler laser flowmetry, and cellular and soluble markers of endothelial dysfunction). CONCLUSIONS Ultrasonographic measurement of carotid intima-media thickness and measurement of pulse wave velocity (by oscillometry or applanation tonometry) are highly reproducible methods applicable for both research and clinical practice with proved applicability for children aged ≥6 years or with height ≥120cm. Evaluation of ambulatory arterial stiffness index by ambulatory blood pressure monitoring is another promising option in pediatric high-risk patients. Clearly, further studies are necessary to evaluate usefulness of these and other methods for the detection of subclinical arterial damage in children.
Collapse
|
38
|
Martin AC, Bell DA, Brett T, Watts GF. Beyond cascade screening: detection of familial hypercholesterolaemia at childhood immunization and other strategies. Curr Opin Lipidol 2017; 28:321-327. [PMID: 28426524 DOI: 10.1097/mol.0000000000000423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Familial hypercholesterolaemia is a common genetic disorder that accelerates premature coronary heart disease. Although effective treatments are available, the majority of individuals remain undiagnosed. We review new evidence for improving the detection of familial hypercholesterolaemia. RECENT FINDINGS Recent studies have demonstrated that universal screening of children for familial hypercholesterolaemia may be highly effective at the time of immunization if combined with reverse cascade testing of adult family members, who have a more immediate risk of a coronary event. Alerts on laboratory reports and the application of bioinformatics to electronic health records may also be useful for identifying familial hypercholesterolaemia in community settings. Effective detection, diagnosis, and codification of familial hypercholesterolaemia are essential for the development of registries. SUMMARY Although the cost-effectiveness of screening programs for familial hypercholesterolaemia in childhood remains to be established, combining universal and reverse cascade screening, complemented by opportunistic identification of individuals in high-risk settings, use of laboratory alerts, and screening of electronic health records are likely to have a high yield in the detection of familial hypercholesterolaemia in the community.
Collapse
Affiliation(s)
- Andrew C Martin
- aDepartment of General Paediatrics, Princess Margaret Hospital for Children bSchool of Paediatrics and Child Health cFaculty of Health and Medical Sciences, School of Medicine, University of Western Australia dLipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth eGeneral Practice and Primary Care Research, School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | | | | | | |
Collapse
|
39
|
Martin AC, Gidding SS, Wiegman A, Watts GF. Knowns and unknowns in the care of pediatric familial hypercholesterolemia. J Lipid Res 2017; 58:1765-1776. [PMID: 28701353 DOI: 10.1194/jlr.s074039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder that causes elevated LDL cholesterol levels from birth. Untreated FH accelerates atherosclerosis and predisposes individuals to premature coronary artery disease (CAD) in adulthood. Mendelian randomization studies have demonstrated that LDL cholesterol has both a causal and cumulative effect on the risk of CAD. This supports clinical recommendations that children with FH commence pharmacological treatment from the age of 8 to 10 years, to reduce the burden of hypercholesterolemia. Worldwide, the majority of children with FH remain undiagnosed. Recent evidence suggests that the frequency of FH is at least 1 in 250 and this constitutes a public health issue. We review and identify the knowns and unknowns concerning the detection and management of pediatric FH that impact on the developing model of care for this condition.
Collapse
Affiliation(s)
- Andrew C Martin
- Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Samuel S Gidding
- Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE
| | - Albert Wiegman
- Department of Paediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerald F Watts
- Lipid Disorders Clinic, School of Medicine, University of Western Australia, Perth, Western Australia, Australia and Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
40
|
de Ferranti SD, Rodday AM, Parsons SK, Cull WL, O'Connor KG, Daniels SR, Leslie LK. Cholesterol Screening and Treatment Practices and Preferences: A Survey of United States Pediatricians. J Pediatr 2017; 185:99-105.e2. [PMID: 28209292 DOI: 10.1016/j.jpeds.2016.12.078] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/28/2016] [Accepted: 12/30/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine pediatricians' practices, attitudes, and barriers regarding screening for and treatment of pediatric dyslipidemias in 9- to 11-year-olds and 17- to 21-year-olds. STUDY DESIGN American Academy of Pediatrics (AAP) 2013-2014 Periodic Survey of a national, randomly selected sample of 1627 practicing AAP physicians. Pediatricians' responses were described and modeled. RESULTS Of 614 (38%) respondents who met eligibility criteria, less than half (46%) were moderately/very knowledgeable about the 2008 AAP cholesterol statement; fewer were well-informed about 2011 National Heart, Lung, and Blood Institute Guidelines or 2007 US Preventive Service Task Force review (both 26%). Despite published recommendations, universal screening was not routine: 68% reported they never/rarely/sometimes screened healthy 9- to 11-year-olds. In contrast, more providers usually/most/all of the time screened based on family cardiovascular history (61%) and obesity (82%). Screening 17- to 21-year-olds was more common in all categories (P?<?.001). Only 58% agreed with universal screening, and 23% felt screening was low priority. Pediatricians uniformly provided lifestyle counseling but access to healthy food (81%), exercise (83%), and adherence to lifestyle recommendations (96%) were reported barriers. One-half of pediatricians (55%) reported a lack of local subspecialists. Although 62% and 89% believed statins were appropriate for children and adolescents with high low-density lipoprotein cholesterol (200?mg/dL) unresponsive to lifestyle, a minority initiated statins (8%, 21%). CONCLUSIONS US pediatricians report lipid screening and treatment practices that are largely at odds with existing recommendations, likely because of lack of knowledge and conflicts among national guidelines, and concern about treatment efficacy and harms. Education regarding pediatric lipid disorders could promote guideline implementation.
Collapse
Affiliation(s)
| | - Angie Mae Rodday
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA; Departments of Medicine and Pediatrics, Tufts University School of Medicine, Boston, MA
| | - Susan K Parsons
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA; Departments of Medicine and Pediatrics, Tufts University School of Medicine, Boston, MA
| | - William L Cull
- Department of Research, American Academy of Pediatrics, Elk Grove Village, IL
| | - Karen G O'Connor
- Department of Research, American Academy of Pediatrics, Elk Grove Village, IL
| | | | - Laurel K Leslie
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA; Departments of Medicine and Pediatrics, Tufts University School of Medicine, Boston, MA; American Board of Pediatrics, Chapel Hill, NC
| |
Collapse
|
41
|
Bañares VG, Corral P, Medeiros AM, Araujo MB, Lozada A, Bustamante J, Cerretini R, López G, Bourbon M, Schreier LE. Preliminary spectrum of genetic variants in familial hypercholesterolemia in Argentina. J Clin Lipidol 2017; 11:524-531. [DOI: 10.1016/j.jacl.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 01/07/2023]
|
42
|
Banach M, Jankowski P, Jóźwiak J, Cybulska B, Windak A, Guzik T, Mamcarz A, Broncel M, Tomasik T, Rysz J, Jankowska-Zduńczyk A, Hoffman P, Mastalerz-Migas A. PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for Family Physicians 2016. Arch Med Sci 2017; 13:1-45. [PMID: 28144253 PMCID: PMC5206369 DOI: 10.5114/aoms.2017.64712] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| | - Piotr Jankowski
- 1 Department of Cardiology, Interventional Electrocardiology and Hypertension, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Jóźwiak
- Institute of Health and Nutrition Sciences, Czestochowa University of Technology, Czestochowa, Poland
| | | | - Adam Windak
- Department of Family Medicine, Chair of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Guzik
- Department of Internal Diseases and Rural Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Artur Mamcarz
- 3 Department of Internal Diseases and Cardiology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Tomasz Tomasik
- Department of Family Medicine, Chair of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| | | | - Piotr Hoffman
- Department of Congenital Cardiac Defects, Institute of Cardiology, Warsaw, Poland
| | | |
Collapse
|
43
|
Santos RD, Bourbon M, Alonso R, Cuevas A, Vasques-Cardenas NA, Pereira AC, Merchan A, Alves AC, Medeiros AM, Jannes CE, Krieger JE, Schreier L, Perez de Isla L, Magaña-Torres MT, Stoll M, Mata N, Dell Oca N, Corral P, Asenjo S, Bañares VG, Reyes X, Mata P. Clinical and molecular aspects of familial hypercholesterolemia in Ibero-American countries. J Clin Lipidol 2017; 11:160-166. [DOI: 10.1016/j.jacl.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022]
|
44
|
Vallejo-Vaz AJ, Akram A, Kondapally Seshasai SR, Cole D, Watts GF, Hovingh GK, Kastelein JJP, Mata P, Raal FJ, Santos RD, Soran H, Freiberger T, Abifadel M, Aguilar-Salinas CA, Alnouri F, Alonso R, Al-Rasadi K, Banach M, Bogsrud MP, Bourbon M, Bruckert E, Car J, Ceska R, Corral P, Descamps O, Dieplinger H, Do CT, Durst R, Ezhov MV, Fras Z, Gaita D, Gaspar IM, Genest J, Harada-Shiba M, Jiang L, Kayikcioglu M, Lam CSP, Latkovskis G, Laufs U, Liberopoulos E, Lin J, Lin N, Maher V, Majano N, Marais AD, März W, Mirrakhimov E, Miserez AR, Mitchenko O, Nawawi H, Nilsson L, Nordestgaard BG, Paragh G, Petrulioniene Z, Pojskic B, Reiner Ž, Sahebkar A, Santos LE, Schunkert H, Shehab A, Slimane MN, Stoll M, Su TC, Susekov A, Tilney M, Tomlinson B, Tselepis AD, Vohnout B, Widén E, Yamashita S, Catapano AL, Ray KK. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: Rationale and design of the global EAS Familial Hypercholesterolaemia Studies Collaboration. ATHEROSCLEROSIS SUPP 2016; 22:1-32. [PMID: 27939304 DOI: 10.1016/j.atherosclerosissup.2016.10.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The potential for global collaborations to better inform public health policy regarding major non-communicable diseases has been successfully demonstrated by several large-scale international consortia. However, the true public health impact of familial hypercholesterolaemia (FH), a common genetic disorder associated with premature cardiovascular disease, is yet to be reliably ascertained using similar approaches. The European Atherosclerosis Society FH Studies Collaboration (EAS FHSC) is a new initiative of international stakeholders which will help establish a global FH registry to generate large-scale, robust data on the burden of FH worldwide. METHODS The EAS FHSC will maximise the potential exploitation of currently available and future FH data (retrospective and prospective) by bringing together regional/national/international data sources with access to individuals with a clinical and/or genetic diagnosis of heterozygous or homozygous FH. A novel bespoke electronic platform and FH Data Warehouse will be developed to allow secure data sharing, validation, cleaning, pooling, harmonisation and analysis irrespective of the source or format. Standard statistical procedures will allow us to investigate cross-sectional associations, patterns of real-world practice, trends over time, and analyse risk and outcomes (e.g. cardiovascular outcomes, all-cause death), accounting for potential confounders and subgroup effects. CONCLUSIONS The EAS FHSC represents an excellent opportunity to integrate individual efforts across the world to tackle the global burden of FH. The information garnered from the registry will help reduce gaps in knowledge, inform best practices, assist in clinical trials design, support clinical guidelines and policies development, and ultimately improve the care of FH patients.
Collapse
Affiliation(s)
| | - Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), School of Public Health, Imperial College London, London, UK.
| | - Asif Akram
- Global eHealth Unit, School of Public Health, Imperial College London, London, UK; Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Della Cole
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, UK
| | - Gerald F Watts
- Cardiovascular Medicine, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Frederick J Raal
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Handrean Soran
- University Department of Medicine, Central Manchester University Hospitals, Manchester, UK
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Ceitec, Masaryk University, Brno, Czech Republic
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon
| | | | - Fahad Alnouri
- Cardiovascular Prevention and Rehabilitation Unit, Prince Sultan Cardiac Centre Riyadh, Riyadh, Saudi Arabia
| | - Rodrigo Alonso
- Lipid Clinic, Department of Nutrition, Clínica Las Condes, Santiago de Chile, Chile
| | | | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Martin P Bogsrud
- National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Norway
| | - Mafalda Bourbon
- Instituto Nacional de Saúde Doutor Ricardo Jorge and Biosystems & Integrative Sciences Institute (BioISI), Universidade de Lisboa, Portugal
| | - Eric Bruckert
- Endocrinologie, métabolisme et prévention cardiovasculaire, Institut E3M et IHU cardiométabolique (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Josip Car
- Global eHealth Unit, School of Public Health, Imperial College London, London, UK; Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard Ceska
- Charles University in Prague, Prague, Czech Republic
| | - Pablo Corral
- FASTA University, School of Medicine, Mar del Plata, Argentina
| | | | - Hans Dieplinger
- Austrian Atherosclerosis Society, c/o Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Can T Do
- Vietnam Heart Institute, Bach Mai Hospital, Hanoi, Viet Nam
| | - Ronen Durst
- Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Marat V Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia
| | - Zlatko Fras
- University Medical Centre Ljubljana, Division of Medicine, Preventive Cardiology Unit, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor Babes din Timisoara, Romania
| | - Isabel M Gaspar
- Medical Genetics Department, Centro Hospitalar de Lisboa Ocidental and Genetics Laboratory, Lisbon Medical School, University of Lisbon, Portugal
| | | | - Mariko Harada-Shiba
- National Cerebral and Cardiovascular Centre Research Institute, Osaka, Japan
| | - Lixin Jiang
- National Clinical Research Centre of Cardiovascular Diseases, Fuwai Hospital, National Centre for Cardiovascular Diseases, Beijing, China
| | - Meral Kayikcioglu
- Ege University Medical School, Department of Cardiology, Izmir, Turkey
| | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore
| | - Gustavs Latkovskis
- Research Institute of Cardiology and Regenerative Therapy, Faculty of Medicine, University of Latvia, Paul Stradins Clinical University Hospital, Riga, Latvia
| | | | | | - Jie Lin
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nan Lin
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), School of Public Health, Imperial College London, London, UK
| | | | | | - A David Marais
- University of Cape Town and National Health Laboratory Service, South Africa
| | - Winfried März
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - André R Miserez
- Diagene GmbH, Research Institute, Reinach, Switzerland; Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Olena Mitchenko
- Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Ukraine
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Lennart Nilsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Børge G Nordestgaard
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - György Paragh
- Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Zaneta Petrulioniene
- Vilnius University Santariskiu Hospital, Centre of Cardiology and Angiology, Vilnius, Lithuania
| | | | - Željko Reiner
- Department for Metabolic Diseases, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Croatia
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lourdes E Santos
- Cardinal Santos Medical Centre, University of the Philippines - Philippine General Hospital (UP-PGH), Philippines
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Munich Heart Alliance, Germany
| | | | - M Naceur Slimane
- Research Unit on Dyslipidaemia and Atherosclerosis, Faculty of Medicine of Monastir, Tunisia
| | - Mario Stoll
- Cardiovascular Genetic Laboratory, Cardiovascular Health Commission, Montevideo, Uruguay
| | - Ta-Chen Su
- Department of Internal Medicine and Cardiovascular Centre, National Taiwan University Hospital, Taipei, Taiwan
| | - Andrey Susekov
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Postgraduate Education, Ministry of Health of Russian Federation, Russia
| | - Myra Tilney
- Faculty of Medicine & Surgery, Medical School, Mater Dei Hospital, University of Malta, Malta
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | | | - Branislav Vohnout
- Coordination Centre for Familial Hyperlipoproteinemias, Institute of Nutrition, FOZOS, Slovak Medical University, Department of Epidemiology, School of Medicine, Comenius University, Bratislava, Slovakia
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Shizuya Yamashita
- Rinku General Medical Centre and Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), School of Public Health, Imperial College London, London, UK
| |
Collapse
|
45
|
The use of targeted exome sequencing in genetic diagnosis of young patients with severe hypercholesterolemia. Sci Rep 2016; 6:36823. [PMID: 27830735 PMCID: PMC5103295 DOI: 10.1038/srep36823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder. Although genetic testing is an important tool for detecting FH-causing mutations in patients, diagnostic methods for young patients with severe hypercholesterolemia are understudied. This study compares the target exome sequencing (TES) technique with the DNA resequencing array technique on young patients with severe hypercholesterolemia. A total of 20 unrelated patients (mean age 14.8 years) with total cholesterol > 10 mmol/L were included. 12 patient samples were processed by DNA resequencing array, 14 patient samples were processed by TES, and 6 patient samples were processed by both methods. Functional characterization of novel mutations was performed by flow cytometry. The mutation detection rate (MDR) of DNA resequencing array was 75%, while the MDR of TES was 100%. A total of 27 different mutations in the LDLR were identified, including 3 novel mutations and 8 mutations with previously unknown pathogenicity. Functional characterization of c.673delA, c.1363delC, p.Leu575Phe and p.Leu582Phe variants found that all of them are pathogenic. Additionally, 7 patients were diagnosed with Heterozygous FH (HeFH) in which lipid levels were significantly higher than common HeFH patients. This data indicates that TES is a very efficient tool for genetic diagnosis in young patients with severe hypercholesterolemia.
Collapse
|
46
|
Santos RD, Gidding SS, Hegele RA, Cuchel MA, Barter PJ, Watts GF, Baum SJ, Catapano AL, Chapman MJ, Defesche JC, Folco E, Freiberger T, Genest J, Hovingh GK, Harada-Shiba M, Humphries SE, Jackson AS, Mata P, Moriarty PM, Raal FJ, Al-Rasadi K, Ray KK, Reiner Z, Sijbrands EJG, Yamashita S. Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol 2016; 4:850-61. [PMID: 27246162 DOI: 10.1016/s2213-8587(16)30041-9] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Familial hypercholesterolaemia is common in individuals who had a myocardial infarction at a young age. As many as one in 200 people could have heterozygous familial hypercholesterolaemia, and up to one in 300 000 individuals could be homozygous. The phenotypes of heterozygous and homozygous familial hypercholesterolaemia overlap considerably; the response to treatment is also heterogeneous. In this Review, we aim to define a phenotype for severe familial hypercholesterolaemia and identify people at highest risk for cardiovascular disease, based on the concentration of LDL cholesterol in blood and individuals' responsiveness to conventional lipid-lowering treatment. We assess the importance of molecular characterisation and define the role of other cardiovascular risk factors and advanced subclinical coronary atherosclerosis in risk stratification. Individuals with severe familial hypercholesterolaemia might benefit in particular from early and more aggressive cholesterol-lowering treatment (eg, with PCSK9 inhibitors). In addition to better tailored therapy, more precise characterisation of individuals with severe familial hypercholesterolaemia could improve resource use.
Collapse
Affiliation(s)
- Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of São Paulo Medical School Hospital, and Preventive Medicine Centre and Cardiology Program, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Samuel S Gidding
- Nemours Cardiac Center, A I DuPont Hospital for Children, Wilmington, DE, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, ON, Canada
| | - Marina A Cuchel
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip J Barter
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gerald F Watts
- Lipid Disorders Clinic, Royal Perth Hospital, The University of Western Australia, Perth, WA, Australia
| | - Seth J Baum
- Preventive Cardiology, Christine E Lynn Women's Health & Wellness Institute, Boca Raton Regional Hospital, Boca Raton, FL, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica, Milan, Italy
| | | | - Joep C Defesche
- University of Amsterdam, Academic Medical Center (AMC), Amsterdam, Netherlands
| | | | - Tomas Freiberger
- Molecular Genetics Lab, Centre for Cardiovascular Surgery and Transplantation, and Ceitec, Masaryk University, Brno, Czech Republic
| | - Jacques Genest
- McGill University Health Center, Royal Victoria Hospital, Montreal, QC, Canada
| | - G Kees Hovingh
- University of Amsterdam, Academic Medical Center (AMC), Amsterdam, Netherlands
| | - Mariko Harada-Shiba
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College of London, London, UK
| | - Ann S Jackson
- International Atherosclerosis Society, Houston, TX, USA
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Patrick M Moriarty
- Atherosclerosis and Lipoprotein-Apheresis Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Frederick J Raal
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Kausik K Ray
- School of Public Health, Imperial College London, London, UK
| | - Zelijko Reiner
- European Association for Cardiovascular Prevention and Rehabilitations, Zagreb, Croatia
| | | | | | | |
Collapse
|
47
|
Escate R, Padro T, Borrell-Pages M, Suades R, Aledo R, Mata P, Badimon L. Macrophages of genetically characterized familial hypercholesterolaemia patients show up-regulation of LDL-receptor-related proteins. J Cell Mol Med 2016; 21:487-499. [PMID: 27680891 PMCID: PMC5323824 DOI: 10.1111/jcmm.12993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a major risk for premature coronary heart disease due to severe long‐life exposure to high LDL levels. Accumulation of LDL in the vascular wall triggers atherosclerosis with activation of the innate immunity system. Here, we have investigated (i) gene expression of LDLR and LRPs in peripheral blood cells (PBLs) and in differentiated macrophages of young FH‐patients; and (ii) whether macrophage from FH patients have a differential response when exposed to high levels of atherogenic LDL. PBLs in young heterozygous genetically characterized FH patients have higher expression of LRP5 and LRP6 than age‐matched healthy controls or patients with secondary hypercholesterolaemia. LRP1 levels were similar among groups. In monocyte‐derived macrophages (MACs), LRP5 and LRP1 transcript levels did not differ between FHs and controls in resting conditions, but when exposed to agLDL, FH‐MAC showed a highly significant up‐regulation of LRP5, while LRP1 was unaffected. PBL and MAC cells from FH patients had significantly lower LDLR expression than control cells, independently of the lipid‐lowering therapy. Furthermore, exposure of FH‐MAC to agLDL resulted in a reduced expression of CD163, scavenger receptor with anti‐inflammatory and atheroprotective properties. In summary, our results show for first time that LRPs, active lipid‐internalizing receptors, are up‐regulated in innate immunity cells of young FH patients that have functional LDLR mutations. Additionally, their reduced CD163 expression indicates less atheroprotection. Both mechanisms may play a synergic effect on the onset of premature atherosclerosis in FH patients.
Collapse
Affiliation(s)
- Rafael Escate
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | | | - Rosa Suades
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Rosa Aledo
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
48
|
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder that clinically leads to increased low density lipoprotein-cholesterol (LDL-C) levels. As a consequence, FH patients are at high risk for cardiovascular disease (CVD). Mutations are found in genes coding for the LDLR, apoB, and PCSK9, although FH cannot be ruled out in the absence of a mutation in one of these genes. It is pivotal to diagnose FH at an early age, since lipid lowering results in a decreased risk of cardiovascular complications especially if initiated early, but unfortunately FH is largely underdiagnosed. While a number of clinical criteria are available, identification of a pathogenic mutation in any of the three aforementioned genes is seen by many as a way to establish a definitive diagnosis of FH. It should be remembered that clinical treatment is based on LDL-C levels and not solely on presence or absence of genetic mutations as LDL-C is what drives risk. Traditionally, mutation detection has been done by means of dideoxy sequencing. However, novel molecular testing methods are gradually being introduced. These next generation sequencing-based methods are likely to be applied on broader scale once their efficacy and effect on cost are being established. Statins are the first-line therapy of choice for FH patients as they have been proven to reduce CVD risk across a range of conditions including hypercholesterolemia (though not specifically tested in FH). However, in a significant proportion of FH patients LDL-C goals are not met, despite the use of maximal statin doses and additional lipid-lowering therapies. This underlines the need for additional therapies, and inhibition of PCSK9 and CETP is among the most promising new therapeutic options. In this review, we aim to provide an overview of the latest information about the definition, diagnosis, screening, and current and novel therapies for FH.
Collapse
Affiliation(s)
- Merel L Hartgers
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Zafrir B, Shapira C, Lavie G, Halon DA, Flugelman MY. Identification and characterization of severe familial hypercholesterolemia in patients presenting for cardiac catheterization. J Clin Lipidol 2016; 10:1338-1343. [PMID: 27919350 DOI: 10.1016/j.jacl.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with severe familial hypercholesterolemia (FH) are often unrecognized despite typical presentation. The introduction of PCSK9 inhibitors opens new therapeutic options and emphasizes the need for identification of severe FH patients. OBJECTIVES The objective was identification, characterization, and management of severe FH patients by screening of cardiac catheterization (CC) database. METHODS Retrospective analysis of CC database from 2002 to mid-2015 was performed for low-density lipoprotein cholesterol (LDL-C) ≥130 mg/dL (n = 2383). Severe FH was diagnosed if any prior LDL-C was ≥280 mg/dL, excluding secondary causes. Peak/current LDL-C levels and lipid-lowering therapies were evaluated. Initial attempt was made to detect relatives with FH according to identifying data and age-dependent LDL-C cutoffs. RESULTS Severe FH was identified in 54 of initial 2382 patients with CC LDL-C ≥130 mg/dL. Mean age at cardiovascular disease diagnosis was 45 years. Peak LDL-C was 280 to 464 mg/dL (median, 322). Coronary artery bypass graft surgery was performed in 26 patients (48%) and redo coronary artery bypass graft surgery in 5 patients (9%). Risk factors included obesity (33%), hypertension (59%), smoking (33%), and diabetes (24%). LDL-C reduction ≥50% of peak value was achieved in 56%, LDL-C <130 mg/dL in 32%, and LDL-C <100 mg/dL in 17% of patients. High-intensity statin plus ezetimibe was prescribed for 67%, high-intensity statin alone for 24%, and other lipid-lowering therapies for 9% of patients. Treatment intensity was directly associated with attainment of LDL-C goals. Matching probands' surnames and place of residency with district health maintenance organization database has identified 161 additional individuals with possible FH; 58% were not treated with lipid-lowering drugs. CONCLUSIONS A simple algorithm for identification of patients with severe FH was implemented based on large catheterization and health maintenance organization databases and revealed patients with severe FH and coronary disease at a young age, with low attainment of cholesterol treatment goals. Screening existing cardiovascular databases of populations at risk will promote identification and management of severe FH patients and their affected family members.
Collapse
Affiliation(s)
- Barak Zafrir
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Chen Shapira
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit Health Services, Haifa and Western Galilee District, Israel
| | - Gil Lavie
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Medicine, Lady Davis Carmel Medical Center, Haifa, Israel
| | - David A Halon
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moshe Y Flugelman
- Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
50
|
Affiliation(s)
- Anne C Goldberg
- From Washington University School of Medicine, St. Louis, MO (A.C.G.); and A. I. DuPont Hospital for Children, Wilmington, DE (S.S.G.)
| | - Samuel S Gidding
- From Washington University School of Medicine, St. Louis, MO (A.C.G.); and A. I. DuPont Hospital for Children, Wilmington, DE (S.S.G.).
| |
Collapse
|