1
|
Nian Z, Lin Y, Tang W, Quan C, Wen J, Jin X, Zhang Z, Mao L. Effects of fish oil intervention on type 2 diabetes early risk novel biomarkers in healthy middle-aged and elderly adults: a double-blind randomized controlled trial. Food Funct 2025. [PMID: 40356575 DOI: 10.1039/d5fo01018g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Objective: Recent studies on type 2 diabetes (T2D) have identified several novel biomarkers that demonstrate greater stability compared to traditional blood glucose indicators. This trial aimed to investigate the effect of fish oil intervention on these T2D early risk novel biomarkers. Methods: We conducted a 12-week double-blind randomized controlled trial, the healthy middle-aged and elderly participants over 40 years old were randomly divided into the control group, fish oil group 1 (FO1), fish oil group 2 (FO2), and fish oil group 3 (FO3), with each FO group receiving 0.31, 0.62, and 1.24 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. The control group abstained from consuming any fish oil supplements. At week 12, serum samples were collected and compared with the control group to explore the effects of different doses on serum n-3 polyunsaturated fatty acids (PUFAs) and T2D early risk novel biomarkers. Results: A total of 240 participants were recruited into this double-blind randomized controlled trial, and 201 finally completed the intervention trial, including 57 males and 144 females. The results indicate that after controlling for relevant confounders, a 12-week fish oil intervention dose-dependently increased serum EPA and DHA, while decreasing fasting insulin (FINS), HOMA-IR index (P < 0.01). Concurrently, fasting blood glucose (FBG) exhibited a downward trend across all groups, with significant differences compared with the baseline (P < 0.01); mannan-binding lectin serine protease 1 (MASP1), UA to high-density lipoprotein cholesterol (HDL-C) ratio (UHR) and lipid-related indices in various groups also demonstrated a decreasing trend, with significant differences compared with the baseline (P < 0.05). Conclusion: Moderate supplementation with fish oil may diminish the early risk of T2D in healthy middle-aged and elderly adults by enhancing insulin sensitivity, and maintaining insulin homeostasis.
Collapse
Affiliation(s)
- Zhaoyang Nian
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Yuting Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Wei Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Chunxia Quan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Jing Wen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Xinqian Jin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| |
Collapse
|
2
|
Packard CJ, Pirillo A, Tsimikas S, Ference BA, Catapano AL. Exploring apolipoprotein C-III: pathophysiological and pharmacological relevance. Cardiovasc Res 2024; 119:2843-2857. [PMID: 38039351 PMCID: PMC11484501 DOI: 10.1093/cvr/cvad177] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 12/03/2023] Open
Abstract
The availability of pharmacological approaches able to effectively reduce circulating LDL cholesterol (LDL-C) has led to a substantial reduction in the risk of atherosclerosis-related cardiovascular disease (CVD). However, a residual cardiovascular (CV) risk persists in treated individuals with optimal levels of LDL-C. Additional risk factors beyond LDL-C are involved, and among these, elevated levels of triglycerides (TGs) and TG-rich lipoproteins are causally associated with an increased CV risk. Apolipoprotein C-III (apoC-III) is a key regulator of TG metabolism and hence circulating levels through several mechanisms including the inhibition of lipoprotein lipase activity and alterations in the affinity of apoC-III-containing lipoproteins for both the hepatic receptors involved in their removal and extracellular matrix in the arterial wall. Genetic studies have clarified the role of apoC-III in humans, establishing a causal link with CVD and showing that loss-of-function mutations in the APOC3 gene are associated with reduced TG levels and reduced risk of coronary heart disease. Currently available hypolipidaemic drugs can reduce TG levels, although to a limited extent. Substantial reductions in TG levels can be obtained with new drugs that target specifically apoC-III; these include two antisense oligonucleotides, one small interfering RNA and an antibody.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Milan, Italy
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Alberico L Catapano
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
3
|
Syed-Abdul MM, Tian L, Lewis GF. Unanticipated Enhancement of Intestinal TG Output by Apoc3 ASO Inhibition. Arterioscler Thromb Vasc Biol 2023; 43:2133-2142. [PMID: 37675633 DOI: 10.1161/atvbaha.123.319765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND The objective of this study was to investigate whether apoC3 (apolipoprotein C3) inhibition with an antisense oligonucleotide (ASO) modulates intestinal triglyceride secretion. METHODS Sprague-Dawley rats were treated with subcutaneous injections of apoC3 ASO 25 mg/kg twice weekly or inactive ASO for 4 weeks before the assessment of lymph flow, triglyceride and apoB48 (apolipoprotein B48) appearance in the lymph. Rats were surgically implanted with catheters in the mesenteric lymph duct and duodenum. Following an overnight fast, an intraduodenal lipid bolus (1.5-mL intralipid) was administered. Lymph fluid was collected for the following 4 hours to compare effects on lymph flow, lymph triglyceride and apoB48 concentration, and secretion. To assess suppression of apoC3 expression and protein abundance by apoC3 ASO compared with inactive ASO (placebo), intestinal and hepatic tissues were collected from a subset of animals before (fasting) and after an enteral lipid bolus (post-lipid). RESULTS ApoC3 ASO significantly reduced apoC3 mRNA expression in the liver compared with inactive ASO (fasting: 42%, P=0.0048; post-lipid: 66%, P<0.001) and in the duodenum (fasting: 29%, P=0.0424; post-lipid: 53%, P=0.0120). As expected, plasma triglyceride also decreased significantly (fasting: 74%, P<0.001; post-lipid: 33%, P=0.0276). Lymph flow and cumulative lymph volume remained unchanged following apoC3 ASO therapy; however, lymph triglyceride, but not apoB48 output, increased by 38% (ANOVA, P<0.001). Last, no changes were observed in stool triglyceride, intestinal fat (quantified via oil red O staining), and expression of mRNAs involved in triglyceride synthesis, lipid droplet formation, and chylomicron transport and secretion. CONCLUSIONS Despite the marked reduction in plasma triglyceride concentration that occurs with apoC3 ASO inhibition, intestinal triglyceride output surprisingly increased rather than decreased. These data demonstrate that the reduction of intestinal triglyceride output does not contribute to the potent plasma triglyceride-lowering observed with this novel therapy for hypertriglyceridemia. Further studies are required to explore the mechanism of this intestinal effect.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, ON, Canada
| | - Lili Tian
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, ON, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, ON, Canada
| |
Collapse
|
4
|
Dedousis N, Teng L, Kanshana JS, Kohan AB. A single-day mouse mesenteric lymph surgery in mice: an updated approach to study dietary lipid absorption, chylomicron secretion, and lymphocyte dynamics. J Lipid Res 2022; 63:100284. [PMID: 36152881 PMCID: PMC9646667 DOI: 10.1016/j.jlr.2022.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
The intestine plays a crucial role in regulating whole-body lipid metabolism through its unique function of absorbing dietary fat. In the small intestine, absorptive epithelial cells emulsify hydrophobic dietary triglycerides (TAGs) prior to secreting them into mesenteric lymphatic vessels as chylomicrons. Except for short- and medium-chain fatty acids, which are directly absorbed from the intestinal lumen into portal vasculature, the only way for an animal to absorb dietary TAG is through the chylomicron/mesenteric lymphatic pathway. Isolating intestinal lipoproteins, including chylomicrons, is extremely difficult in vivo because of the dilution of postprandial lymph in the peripheral blood. In addition, once postprandial lymph enters the circulation, chylomicron TAGs are rapidly hydrolyzed. To enhance isolation of large quantities of pure postprandial chylomicrons, we have modified the Tso group's highly reproducible gold-standard double-cannulation technique in rats to enable single-day surgery and lymph collection in mice. Our technique has a significantly higher survival rate than the traditional 2-day surgical model and allows for the collection of greater than 400 μl of chylous lymph with high postprandial TAG concentrations. Using this approach, we show that after an intraduodenal lipid bolus, the mesenteric lymph contains naïve CD4+ T-cell populations that can be quantified by flow cytometry. In conclusion, this experimental approach represents a quantitative tool for determining dietary lipid absorption, intestinal lipoprotein dynamics, and mesenteric immunity. Our model may also be a powerful tool for studies of antigens, the microbiome, pharmacokinetics, and dietary compound absorption.
Collapse
Affiliation(s)
- Nikolaos Dedousis
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Lihong Teng
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jitendra S Kanshana
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alison B Kohan
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Lee HC, Akhmedov A, Chen CH. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Front Cardiovasc Med 2022; 9:993633. [PMID: 36267630 PMCID: PMC9577298 DOI: 10.3389/fcvm.2022.993633] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Very-low-density lipoprotein (VLDL) is the only lipoprotein containing apolipoprotein B that is secreted from the liver, where VLDL is assembled from apolipoproteins, cholesterol, and triglycerides. The primary function of VLDL is to transport cholesterol and other lipids to organs and cells for utilization. Apart from its role in normal biologic processes, VLDL is also known to contribute to the development of atherosclerotic cardiovascular disease. Large VLDL particles, which are subclassified according to their size by nuclear magnetic resonance spectrometry, are significantly correlated not only with atherosclerosis, but also with insulin resistance and diabetes incidence. VLDL can also be subclassified according to surface electrical charge by using anion-exchange chromatography. The most electronegative VLDL subclass is highly cytotoxic to endothelial cells and may contribute to coronary heart disease. In addition, electronegative VLDL contributes to the development of atrial remodeling, especially in patients with metabolic syndrome, which is an established risk factor for atrial fibrillation. In this review, we focus on the VLDL subclasses that are associated with apolipoprotein alterations and are involved in cardiometabolic disease. The postprandial enhancement of VLDL’s pathogenicity is a critical medical issue, especially in patients with metabolic syndrome. Therefore, the significance of the postprandial modification of VLDL’s chemical and functional properties is extensively discussed.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan,Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States,*Correspondence: Chu-Huang Chen,
| |
Collapse
|
6
|
de la Parra Soto LG, Gutiérrez-Uribe JA, Sharma A, Ramírez-Jiménez AK. Is Apo-CIII the new cardiovascular target? An analysis of its current clinical and dietetic therapies. Nutr Metab Cardiovasc Dis 2022; 32:295-308. [PMID: 34895805 DOI: 10.1016/j.numecd.2021.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022]
Abstract
AIMS Recently, Apolipoprotein CIII (Apo-CIII) has gained remarkable attention since its overexpression has been strongly correlated to cardiovascular disease (CVD) occurrence. The aim of this review was to summarize the latest findings of Apo-CIII as a CVDs and diabetes risk factor, as well as the plausible mechanisms involved in the development of these pathologies, with particular emphasis on current clinical and dietetic therapies. DATA SYNTHESIS Apo-CIII is a small protein (∼8.8 kDa) that, among other functions, inhibits lipoprotein lipase, a key enzyme in lipid metabolism. Apo-CIII plays a fundamental role in the physiopathology of atherosclerosis, type-1, and type-2 diabetes. Apo-CIII has become a potential clinical target to tackle these multifactorial diseases. Dietetic (omega-3 fatty acids, stanols, polyphenols, lycopene) and non-dietetic (fibrates, statins, and antisense oligonucleotides) therapies have shown promising results to regulate Apo-CIII and triglyceride levels. However, more information from clinical trials is required to validate it as a new target for atherosclerosis and diabetes types 1 and 2. CONCLUSIONS There are still several pathways involving Apo-CIII regulation that might be affected by bioactive compounds that need further research. The mechanisms that trigger metabolic responses following bioactive compounds consumption are mainly related to higher LPL expression and PPARα activation, although the complete pathways are yet to be elucidated.
Collapse
Affiliation(s)
- Lorenzo G de la Parra Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Janet A Gutiérrez-Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González, No. 500, Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
7
|
Goyal A, Tanwar B, Kumar Sihag M, Sharma V. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chem 2021; 373:131459. [PMID: 34731811 DOI: 10.1016/j.foodchem.2021.131459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Sacha inchi (Plukenetia volubilis) (SI) is an oleaginous plant producing oil and protein-rich seeds. It has been cultivated for centuries and is native to the tropical rainforest of the Amazon region of South America including parts of Peru and northwestern Brazil. At present, SI seeds are emerging as a potential source of macro- and micronutrients, α-linolenic acid and phytochemicals. This review attempts to elucidate the nutrients, phytonutrients, safety, toxicity, health benefits and food applications of SI seed. Recent scientific studies have associated the consumption of SI seed/oil with reduced risk of chronic inflammatory diseases. However, lack of awareness and in-depth understanding has resulted in it being neglected both at the consumer and industrial level. In all, SI is an underutilized and undervalued oleaginous crop which not only has the potential to mitigate food and nutritional insecurity but also offers humongous opportunities for the development of novel value-added food products.
Collapse
Affiliation(s)
- Ankit Goyal
- Department of Dairy Chemistry, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Beenu Tanwar
- Department of Dairy Technology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India.
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, India.
| |
Collapse
|
8
|
Abstract
Triglycerides are critical lipids as they provide an energy source that is both compact and efficient. Due to its hydrophobic nature triglyceride molecules can pack together densely and so be stored in adipose tissue. To be transported in the aqueous medium of plasma, triglycerides have to be incorporated into lipoprotein particles along with other components such as cholesterol, phospholipid and associated structural and regulatory apolipoproteins. Here we discuss the physiology of normal triglyceride metabolism, and how impaired metabolism induces hypertriglyceridemia and its pathogenic consequences including atherosclerosis. We also discuss established and novel therapies to reduce triglyceride-rich lipoproteins.
Collapse
|
9
|
Application of marine natural products in drug research. Bioorg Med Chem 2021; 35:116058. [PMID: 33588288 DOI: 10.1016/j.bmc.2021.116058] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
New diseases are emerging as the environment changes, so drug manufacturers are always on the lookout for new resources to develop effective and safe drugs. In recent years, many bioactive substances have been produced in the marine environment, which represents an alternative resource for new drugs used to combat major diseases such as cancer or inflammation. Many marine-derived medicinal substances are in preclinical or early stage of clinical development, and some marine drugs have been put on the market, such as ET743 (Yondelis®). This review presents the sources, activities, mechanisms of action and syntheses of bioactive substances based on marine natural products in clinical trials and on the market, which is helpful to understand the progress of drug research by application of marine natural products.
Collapse
|
10
|
Guan Y, Hou X, Tian P, Ren L, Tang Y, Song A, Zhao J, Gao L, Song G. Elevated Levels of Apolipoprotein CIII Increase the Risk of Postprandial Hypertriglyceridemia. Front Endocrinol (Lausanne) 2021; 12:646185. [PMID: 33967959 PMCID: PMC8103209 DOI: 10.3389/fendo.2021.646185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To investigate possible mechanisms of postprandial hypertriglyceridemia (PPT), we analyzed serum lipid and apolipoprotein (Apo) AI, B, CII and CIII levels before and after a high-fat meal. METHODS The study has been registered with the China Clinical Trial Registry (registration number:ChiCTR1800019514; URL: http://www.chictr.org.cn/index.aspx). We recruited 143 volunteers with normal fasting triglyceride (TG) levels. All subjects consumed a high-fat test meal. Venous blood samples were obtained during fasting and at 2, 4, and 6 hours after the high-fat meal. PPT was defined as TG ≥2.5 mmol/L any time after the meal. Subjects were divided into two groups according to the high-fat meal test results: postprandial normal triglyceride (PNT) and PPT. We compared the fasting and postprandial lipid and ApoAI, ApoB, ApoCII and ApoCIII levels between the two groups. RESULTS Significant differences were found between the groups in fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), TG, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), TG-rich lipoprotein remnants (TRLRs), ApoB, ApoCIII, ApoAI/ApoB and ApoCII/ApoCIII. The insulin, HOMA-IR, TG, TC, LDL-C, non-HDL-C, TRLRs, ApoB, ApoCIII and ApoCII/ApoCIII values were higher in the PPT group, while the ApoAI/ApoB ratio was higher in the PNT group. The postprandial TG level peaked in the PNT group 2 hours after the meal but was significantly higher in the PPT group and peaked at 4 hours. TRLRs gradually increased within 6 hours after the high-fat meal in both groups. The area under the curve (AUC) of TG and TRLRs and the AUC increment were higher in the PPT group (P < 0.001). ApoCIII peaked in the PNT group 2 hours after the meal and gradually decreased. ApoCIII gradually increased in the PPT group within 6 hours after the meal, exhibiting a greater AUC increment (P < 0.001). Fasting ApoCIII was positively correlated with age, systolic and diastolic blood pressure, body mass index (BMI), waist circumference, TC, TG, LDL-C, non-HDL-C, TRLRs, and ApoB (P<0.05). ApoCIII was an independent risk factor of PPT after adjustment for BMI, waist circumference, TC, LDL-C, and ApoB (P < 0.001, OR=1.188). CONCLUSIONS Elevated ApoCIII levels may cause PPT.
Collapse
Affiliation(s)
- Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Peipei Tian
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yong Tang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - An Song
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Guangyao Song,
| |
Collapse
|
11
|
Schiano E, Annunziata G, Ciampaglia R, Iannuzzo F, Maisto M, Tenore GC, Novellino E. Bioactive Compounds for the Management of Hypertriglyceridemia: Evidence From Clinical Trials and Putative Action Targets. Front Nutr 2020; 7:586178. [PMID: 33330588 PMCID: PMC7734325 DOI: 10.3389/fnut.2020.586178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hypertriglyceridemia refers to the presence of elevated concentrations of triglycerides (TG) in the bloodstream (TG >200 mg/dL). This lipid alteration is known to be associated with an increased risk of atherosclerosis, contributing overall to the onset of atherosclerotic cardiovascular disease (CVD). Guidelines for the management of hypertriglyceridemia are based on both lifestyle intervention and pharmacological treatment, but poor adherence, medication-related costs and side effects can limit the success of these interventions. For this reason, the search for natural alternative approaches to reduce plasma TG levels currently represents a hot research field. This review article summarizes the most relevant clinical trials reporting the TG-reducing effect of different food-derived bioactive compounds. Furthermore, based on the evidence obtained from in vitro studies, we provide a description and classification of putative targets of action through which several bioactive compounds can exert a TG-lowering effect. Future research may lead to investigations of the efficacy of novel nutraceutical formulations consisting in a combination of bioactive compounds which contribute to the management of plasma TG levels through different action targets.
Collapse
Affiliation(s)
| | | | | | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
D'Erasmo L, Di Costanzo A, Gallo A, Bruckert E, Arca M. ApoCIII: A multifaceted protein in cardiometabolic disease. Metabolism 2020; 113:154395. [PMID: 33058850 DOI: 10.1016/j.metabol.2020.154395] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 01/15/2023]
Abstract
ApoCIII has a well-recognized role in triglyceride-rich lipoproteins metabolism. A considerable amount of data has clearly highlighted that high levels of ApoCIII lead to hypertriglyceridemia and, thereby, may influence the risk of cardiovascular disease. However, recent findings indicate that ApoCIII might also act beyond lipid metabolism. Indeed, ApoCIII has been implicated in other physiological processes such as glucose homeostasis, monocyte adhesion, activation of inflammatory pathways, and modulation of the coagulation cascade. As the inhibition of ApoCIII is emerging as a new promising therapeutic strategy, the complete understanding of multifaceted pathophysiological role of this apoprotein may be relevant. Therefore, the purpose of this work is to review available evidences not only related to genetics and biochemistry of ApoCIII, but also highlighting the role of this apoprotein in triglyceride and glucose metabolism, in the inflammatory process and coagulation cascade as well as in cardiovascular disease.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy; Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University Paris, France.
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy.
| | - Antonio Gallo
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University Paris, France
| | - Eric Bruckert
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University Paris, France
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
13
|
Olivieri O, Speziali G, Castagna A, Pattini P, Udali S, Pizzolo F, Liesinger L, Gindlhuber J, Tomin T, Schittmayer M, Birner-Gruenberger R, Cecconi D, Girelli D, Friso S, Martinelli N. The Positive Association between Plasma Myristic Acid and ApoCIII Concentrations in Cardiovascular Disease Patients Is Supported by the Effects of Myristic Acid in HepG2 Cells. J Nutr 2020; 150:2707-2715. [PMID: 32710763 DOI: 10.1093/jn/nxaa202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the settings of primary and secondary prevention for coronary artery disease (CAD), a crucial role is played by some key molecules involved in triglyceride (TG) metabolism, such as ApoCIII. Fatty acid (FA) intake is well recognized as a main determinant of plasma lipids, including plasma TG concentration. OBJECTIVES The aim was to investigate the possible relations between the intakes of different FAs, estimated by their plasma concentrations, and circulating amounts of ApoCIII. METHODS Plasma samples were obtained from 1370 subjects with or without angiographically demonstrated CAD (mean ± SD age: 60.6 ± 11.0 y; males: 75.8%; BMI: 25.9 ± 4.6 kg/m2; CAD: 73.3%). Plasma lipid, ApoCIII, and FA concentrations were measured. Data were analyzed by regression models adjusted for FAs and other potential confounders, such as sex, age, BMI, diabetes, smoking, and lipid-lowering therapies. The in vitro effects of FAs were tested by incubating HepG2 hepatoma cells with increasing concentrations of selected FAs, and the mRNA and protein contents in the cells were quantified by real-time RT-PCR and LC-MS/MS analyses. RESULTS Among all the analyzed FAs, myristic acid (14:0) showed the most robust correlations with both TGs (R = 0.441, P = 2.6 × 10-66) and ApoCIII (R = 0.327, P = 1.1 × 10-31). By multiple regression analysis, myristic acid was the best predictor of both plasma TG and ApoCIII variability. Plasma TG and ApoCIII concentrations increased progressively at increasing concentrations of myristic acid, independently of CAD diagnosis and gender. Consistent with these data, in the in vitro experiments, an ∼2-fold increase in the expression levels of the ApoCIII mRNA and protein was observed after incubation with 250 μM myristic acid. A weaker effect (∼30% increase) was observed for palmitic acid, whereas incubation with oleic acid did not affect ApoCIII protein or gene expression. CONCLUSIONS Plasma myristic acid is associated with increased ApoCIII concentrations in cardiovascular patients. In vitro experiments indicated that myristic acid stimulates ApoCIII expression in HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Udali
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Juergen Gindlhuber
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | | |
Collapse
|
14
|
Abstract
The effect of dietary fats on cardiometabolic diseases, including cardiovascular diseases and type 2 diabetes mellitus, has generated tremendous interest. Many earlier investigations focused on total fat and conventional fat classes (such as saturated and unsaturated fats) and their influence on a limited number of risk factors. However, dietary fats comprise heterogeneous molecules with diverse structures, and growing research in the past two decades supports correspondingly complex health effects of individual dietary fats. Moreover, health effects of dietary fats might be modified by additional factors, such as accompanying nutrients and food-processing methods, emphasizing the importance of the food sources. Accordingly, the rapidly increasing scientific findings on dietary fats and cardiometabolic diseases have generated debate among scientists, caused confusion for the general public and present challenges for translation into dietary advice and policies. This Review summarizes the evidence on the effects of different dietary fats and their food sources on cell function and on risk factors and clinical events of cardiometabolic diseases. The aim is not to provide an exhaustive review but rather to focus on the most important evidence from randomized controlled trials and prospective cohort studies and to highlight current areas of controversy and the most relevant future research directions for understanding how to improve the prevention and management of cardiometabolic diseases through optimization of dietary fat intake.
Collapse
|
15
|
Florentin M, Kostapanos MS, Anagnostis P, Liamis G. Recent developments in pharmacotherapy for hypertriglyceridemia: what's the current state of the art? Expert Opin Pharmacother 2020; 21:107-120. [PMID: 31738617 DOI: 10.1080/14656566.2019.1691523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Introduction: Hypertriglyceridemia is associated with both the development of cardiovascular disease (CVD) when mild-to-moderate and high risk of pancreatitis when more severe. The residual CVD risk after low-density lipoprotein cholesterol (LDL-C) lowering is, in part, attributed to high triglyceride (TG) levels. Therefore, there appears to be a need for effective TG-lowering agents.Areas covered: This review presents the most recent advances in hypertriglyceridemia treatment; specifically, it discusses the results of clinical trials and critically comments on apolipoprotein C-III inhibitors, angiopoietin-like 3 inhibitors, alipogene tiparvovec, pradigastat, pemafibrate and novel formulations of omega-3 fatty acids.Expert opinion: In the era of extreme lowering of LDL-C levels with several agents, there seems to be space for novel therapeutic options to combat parameters responsible for residual CVD risk, among which are elevated TGs. Furthermore, a significant number of individuals have very high TG levels and encounter the risk of acute pancreatitis. The most recently developed TG-lowering drugs appear to have a role in both conditions; the choice is mainly based on baseline TG levels. Dyslipidemia guidelines are likely to change in the near future to include some of these agents. Of course, long-term data regarding their safety and efficacy in terms of CVD outcomes and pancreatitis are warranted.
Collapse
Affiliation(s)
- Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Michael S Kostapanos
- Lipid clinic, Department of General Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Panagiotis Anagnostis
- Unit of reproductive endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
16
|
Borén J, Packard CJ, Taskinen MR. The Roles of ApoC-III on the Metabolism of Triglyceride-Rich Lipoproteins in Humans. Front Endocrinol (Lausanne) 2020; 11:474. [PMID: 32849270 PMCID: PMC7399058 DOI: 10.3389/fendo.2020.00474] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. It is well-established based on evidence accrued during the last three decades that high plasma concentrations of cholesterol-rich atherogenic lipoproteins are causatively linked to CVD, and that lowering these reduces atherosclerotic cardiovascular events in humans (1-9). Historically, most attention has been on low-density lipoproteins (LDL) since these are the most abundant atherogenic lipoproteins in the circulation, and thus the main carrier of cholesterol into the artery wall. However, with the rise of obesity and insulin resistance in many populations, there is increasing interest in the role of triglyceride-rich lipoproteins (TRLs) and their metabolic remnants, with accumulating evidence showing they too are causatively linked to CVD. Plasma triglyceride, measured either in the fasting or non-fasting state, is a useful index of the abundance of TRLs and recent research into the biology and genetics of triglyceride heritability has provided new insight into the causal relationship of TRLs with CVD. Of the genetic factors known to influence plasma triglyceride levels variation in APOC3- the gene for apolipoprotein (apo) C-III - has emerged as being particularly important as a regulator of triglyceride transport and a novel therapeutic target to reduce dyslipidaemia and CVD risk (10).
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Jan Borén
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Rhainds D, Brodeur MR, Tardif JC. Investigational drugs in development for hypertriglyceridemia: a coming-of-age story. Expert Opin Investig Drugs 2019; 28:1059-1079. [PMID: 31752565 DOI: 10.1080/13543784.2019.1696772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Elevated triglyceride (TG) level is a prevalent condition in the general population and in patients with cardiovascular (CV) risk even under statin therapy. Severe hypertriglyceridemia (HTG) puts patients at risk for acute pancreatitis. Several TG-lowering drugs failed in clinical trials, but subgroup analyses suggest that high-risk patients, such as those with atherogenic dyslipidemia or diabetes, benefit from TG lowering.Areas covered: We review advances for TG-lowering drugs in clinical development. These include selective PPARα modulators, omega-3 fatty acid formulations that have been approved for severe HTG, and inhibitors of apolipoprotein C-III, angiopoietin-like-3 or microsomal transfer protein. Lessons learned from the success of the phase 3 trial REDUCE-IT with high-dose icosapent ethyl are also reviewed.Expert opinion: We believe that TG-lowering therapies are coming of age as they will allow to treat patients with high CV risk and moderate HTG, including T2D subjects, as well as patients with severe HTG or even homozygous familial hypercholesterolemia, all of which being 'optimally' treated with a statin. More studies on the impact of therapy on quality of life in patients with severe HTG should be conducted with the help of patient registries.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute Research Center, Montreal Heart Institute, Montreal, Canada
| | - Mathieu R Brodeur
- Montreal Heart Institute Research Center, Montreal Heart Institute, Montreal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
18
|
Abstract
Purpose of Review Apolipoprotein C-III (apoC-III) is known to inhibit lipoprotein lipase (LPL) and function as an important regulator of triglyceride metabolism. In addition, apoC-III has also more recently been identified as an important risk factor for cardiovascular disease. This review summarizes the mechanisms by which apoC-III induces hypertriglyceridemia and promotes atherogenesis, as well as the findings from recent clinical trials using novel strategies for lowering apoC-III. Recent Findings Genetic studies have identified subjects with heterozygote loss-of-function (LOF) mutations in APOC3, the gene coding for apoC-III. Clinical characterization of these individuals shows that the LOF variants associate with a low-risk lipoprotein profile, in particular reduced plasma triglycerides. Recent results also show that complete deficiency of apoC-III is not a lethal mutation and is associated with very rapid lipolysis of plasma triglyceride-rich lipoproteins (TRL). Ongoing trials based on emerging gene-silencing technologies show that intervention markedly lowers apoC-III levels and, consequently, plasma triglyceride. Unexpectedly, the evidence points to apoC-III not only inhibiting LPL activity but also suppressing removal of TRLs by LPL-independent pathways. Summary Available data clearly show that apoC-III is an important cardiovascular risk factor and that lifelong deficiency of apoC-III is cardioprotective. Novel therapies have been developed, and results from recent clinical trials indicate that effective reduction of plasma triglycerides by inhibition of apoC-III might be a promising strategy in management of severe hypertriglyceridemia and, more generally, a novel approach to CHD prevention in those with elevated plasma triglyceride.
Collapse
|
19
|
Sahebkar A, Simental-Mendía LE, Mikhailidis DP, Pirro M, Banach M, Sirtori CR, Reiner Ž. Effect of omega-3 supplements on plasma apolipoprotein C-III concentrations: a systematic review and meta-analysis of randomized controlled trials. Ann Med 2018; 50:565-575. [PMID: 30102092 DOI: 10.1080/07853890.2018.1511919] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Apolipoprotein C-III (apo C-III) is a key regulator of triglycerides metabolism. The aim of this meta-analysis was to assess the effect of fish omega-3 polyunsaturated fatty acids (PUFAs) on apo C-III levels. METHODS Randomized placebo-controlled trials investigating the impact of omega-3 on apo C-III levels were searched in PubMed-Medline, SCOPUS, Web of Science and Google Scholar. A random-effects model and generic inverse variance method were used for quantitative data synthesis. Sensitivity analysis was conducted using the leave-one-out method. A weighted random-effects meta-regression was performed to evaluate the impact of potential confounders on glycemic parameters. RESULTS This meta-analysis comprising 2062 subjects showed a significant reduction of apo C-III concentrations following treatment with omega-3 (WMD: -22.18 mg/L, 95% confidence interval: -31.61, -12.75, p < .001; I2: 88.24%). Subgroup analysis showed a significant reduction of plasma apo C-III concentrations by eicosapentaenoic acid (EPA) ethyl esters but not omega-3 carboxylic acids or omega-3 ethyl esters. There was a greater apo C-III reduction with only EPA as compared with supplements containing EPA and docosahexaenoic acid (DHA) or only DHA. A positive association between the apo C-III-lowering effect of omega-3 with baseline apo C-III concentrations and treatment duration was found. CONCLUSIONS This meta-analysis has shown that omega-3 PUFAs might significantly decrease apo C-III. Key messages Omega-3 PUFA supplements significantly reduce apo C-III plasma levels, particularly in hypertriglyceridemic patients when applied in appropriate dose (more than 2 g/day) Triglyceride (TG)-lowering effect is achieved via peroxisome proliferator-activated receptors α Further studies should address the effect of omega-3 PUFAs alone or with other lipid-lowering drugs in order to provide a final answer whether apo C-III could be an important target for prevention of cardiovascular disease New apo C-III antisense oligonucleotide drug (Volanesorsen) showed to be promising in decreasing elevated TGs by reducing levels of apo C-III mRNA.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- a Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | | | - Dimitri P Mikhailidis
- c Department of Clinical Biochemistry, Royal Free Hospital Campus , University College London Medical School, University College London (UCL) , London , United Kingdom
| | - Matteo Pirro
- d Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine , University of Perugia , Perugia , Italy
| | - Maciej Banach
- e Department of Hypertension , WAM University Hospital in Lodz, Medical University of Lodz , Lodz , Poland.,f Polish Mother's Memorial Hospital Research Institute (PMMHRI) , Lodz , Poland
| | - Cesare R Sirtori
- g Centro Dislipidemie , A.S.S.T. Grande Ospedale Metropolitano Niguarda , Milan , Italy
| | - Željko Reiner
- h Department of Internal medicine, School of Medicine , University Hospital Center Zagreb, University of Zagreb , Zagreb , Croatia
| |
Collapse
|
20
|
Spahis S, Alvarez F, Ahmed N, Dubois J, Jalbout R, Paganelli M, Grzywacz K, Delvin E, Peretti N, Levy E. Non-alcoholic fatty liver disease severity and metabolic complications in obese children: impact of omega-3 fatty acids. J Nutr Biochem 2018; 58:28-36. [PMID: 29864682 DOI: 10.1016/j.jnutbio.2018.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
|
21
|
Abstract
PURPOSE OF REVIEW Apolipoprotein (apo) C-III is a key player in triglyceride-rich lipoprotein metabolism and strongly associated with elevated plasma triglyceride levels. Several new studies added important insights on apoC-III and its physiological function confirming its promise as a valid therapeutic target. RECENT FINDINGS APOC3 is expressed in liver and intestine and regulates triglyceride-rich lipoprotein (TRL) catabolism and anabolism. The transcriptional regulation in both organs requires different regulatory elements. Clinical and preclinical studies established that apoC-III raises plasma triglyceride levels predominantly by inhibiting hepatic TRL clearance. Mechanistic insights into missense variants indicate accelerated renal clearance of apoC-III variants resulting in enhanced TRL catabolism. In contrast, an APOC3 gain-of-function variant enhances de novo lipogenesis and hepatic TRL production. Multiple studies confirmed the correlation between increased apoC-III levels and cardiovascular disease. This has opened up new therapeutic avenues allowing targeting of specific apoC-III properties in triglyceride metabolism. SUMMARY Novel in vivo models and APOC3 missense variants revealed unique mechanisms by which apoC-III inhibits TRL catabolism. Clinical trials with Volanesorsen, an APOC3 antisense oligonucleotide, report very promising lipid-lowering outcomes. However, future studies will need to address if acute apoC-III lowering will have the same clinical benefits as a life-long reduction.
Collapse
Affiliation(s)
- Bastian Ramms
- Department of Cellular and Molecular Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, San Diego, California, USA
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, San Diego, California, USA
| |
Collapse
|
22
|
Stroes ESG, Susekov AV, de Bruin TWA, Kvarnström M, Yang H, Davidson MH. Omega-3 carboxylic acids in patients with severe hypertriglyceridemia: EVOLVE II, a randomized, placebo-controlled trial. J Clin Lipidol 2017; 12:321-330. [PMID: 29289538 DOI: 10.1016/j.jacl.2017.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adult patients with severe hypertriglyceridemia (SHTG) are at increased risk of developing acute pancreatitis and cardiovascular disease. Omega-3 carboxylic acids (OM3-CA) are approved for treatment as an adjunct to diet to reduce triglyceride (TG) concentrations in patients with SHTG. OBJECTIVE The aim of the study was to assess efficacy and safety of the intermediate dose of OM3-CA (2 g daily), compared with olive oil 2 g daily, in reducing serum TG and lipid concentrations in patients with SHTG. METHODS A randomized, double-blind, olive oil-controlled, parallel-group trial involving 162 adults with qualifying serum TG concentrations of at least 500 mg/dL (5.65 mmol/L) and <2500 mg/dL (28.25 mmol/L; <2000 mg/dL [22.60 mmol/L] in Canada). The treatment period after randomization was 12 weeks. Blood samples for measurement of fasting serum lipid concentrations were taken at baseline, 6, 10, and 12 weeks. RESULTS Treatment with OM3-CA 2 g daily led to a significant reduction in TG concentrations (median of differences, -14.2% [95% confidence interval: -26.2%, -2.8%; P = .017]) and non-high-density lipoprotein cholesterol concentrations (median of differences, -9.0% [95% confidence interval: -14.8%, -2.8%; adjusted P = .018]) from baseline to the Week 12 endpoint, when compared with olive oil 2 g daily. These treatment effects were more pronounced in patients with qualifying TG concentrations >885 mg/dL (10 mmol/L). CONCLUSION An intermediate dose of OM3-CA (2 g daily) significantly lowers TG and non-high-density lipoprotein cholesterol concentrations in patients with SHTG and may benefit individuals at risk of acute pancreatitis and cardiovascular disease.
Collapse
Affiliation(s)
- Erik S G Stroes
- Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Andrey V Susekov
- Faculty of Clinical Pharmacology and Therapeutics, Academy for Postgraduate Continuous Medical Education, Moscow, Russia
| | | | | | - Hong Yang
- AstraZeneca Gothenburg, Mölndal, Sweden
| | - Michael H Davidson
- Corvidia Therapeutics, Waltham, MA, USA; University of Chicago Medical Center, Chicago, IL, USA.
| |
Collapse
|
23
|
Bhatnagar D. Dietary adherence and cardiovascular risk. Curr Opin Lipidol 2017; 28:214-215. [PMID: 28169871 DOI: 10.1097/mol.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Deepak Bhatnagar
- aDiabetes Centre, The Royal Oldham Hospital, Oldham bUniversity of Manchester cCentre for Endocrinology and Diabetes, University of Salford, Salford, Manchester, UK
| |
Collapse
|