1
|
Hegele RA. What is the phenotype of heterozygous lipoprotein lipase deficiency? Curr Opin Lipidol 2025; 36:96-103. [PMID: 40223670 PMCID: PMC11888829 DOI: 10.1097/mol.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
PURPOSE OF REVIEW Genetic testing of patients with severe hypertriglyceridemia often identifies a single heterozygous pathogenic variant in the LPL gene. The complex and variable phenotype associated with this genotype is the topic of this review. RECENT FINDINGS Previous research showed that heterozygosity for lipoprotein lipase deficiency is associated with reduced but variable post heparin lipolytic activity alongside inconsistent plasma lipid phenotypes ranging from normal to mild-to-moderate to severe hypertriglyceridemia. Recent research confirms and extends these observations, showing that a heterozygous individual can express a highly variable phenotype over time, depending on the presence of secondary factors. About 10% (range 8-20%) of patients with severe hypertriglyceridemia or multifactorial chylomicronemia syndrome are heterozygous for a rare pathogenic LPL variant, and a clinically relevant minority of these has recalcitrant or sustained hypertriglyceridemia. SUMMARY Heterozygosity for lipoprotein lipase deficiency predisposes to hypertriglyceridemia, which is sometimes severe depending on secondary factors, but is typically quite responsive to routine interventions such as diet, lifestyle and existing lipid-lowering therapies. However, many heterozygotes for pathogenic variants in LPL have completely normal plasma lipids.
Collapse
Affiliation(s)
- Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Dakal TC, Xiao F, Bhusal CK, Sabapathy PC, Segal R, Chen J, Bai X. Lipids dysregulation in diseases: core concepts, targets and treatment strategies. Lipids Health Dis 2025; 24:61. [PMID: 39984909 PMCID: PMC11843775 DOI: 10.1186/s12944-024-02425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 02/23/2025] Open
Abstract
Lipid metabolism is a well-regulated process essential for maintaining cellular functions and energy homeostasis. Dysregulation of lipid metabolism is associated with various conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. This review explores the mechanisms underlying lipid metabolism, emphasizing the roles of key lipid species such as triglycerides, phospholipids, sphingolipids, and sterols in cellular physiology and pathophysiology. It also examines the genetic and environmental factors contributing to lipid dysregulation and the challenges of diagnosing and managing lipid-related disorders. Recent advancements in lipid-lowering therapies, including PCSK9 inhibitors, ezetimibe, bempedoic acid, and olpasiran, provide promising treatment options. However, these advancements are accompanied by challenges related to cost, accessibility, and patient adherence. The review highlights the need for personalized medicine approaches to address the interplay between genetics and environmental factors in lipid metabolism. As lipidomics and advanced diagnostic tools continue to progress, a deeper understanding of lipid-related disorders could pave the way for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, 313001, India
| | - Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Chandra Kanta Bhusal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Rakesh Segal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Xiaodong Bai
- Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Alshuweishi Y, Almufarrih AA, Abudawood A, Alfayez D, Alkhowaiter AY, AlSudais H, Almuqrin AM. Patterns of Lipid Abnormalities in Obesity: A Comparative Analysis in Normoglycemic and Prediabetic Obese Individuals. J Pers Med 2024; 14:980. [PMID: 39338234 PMCID: PMC11432951 DOI: 10.3390/jpm14090980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Obesity is a growing global health concern, often accompanied by dyslipidemia, contributing to cardiovascular risk. Understanding the patterns of dyslipidemia in different glycemic states is crucial for targeted interventions. This study compares dyslipidemia patterns in normoglycemic and prediabetic obesity to improve clinical management strategies. Methods: The study analyzed the complete lipid profiles of 138 subjects, comparing the medians, prevalence, diagnostic performance, and risk assessment of each lipid parameter across 54 non-obese (NO), 44 normoglycemic obese (NG-OB), and 40 pre-diabetic obese (PreDM-OB) groups. Results: Elevated total cholesterol (TC) and low-density lipoprotein (LDL) were the most prevalent forms of dyslipidemia observed in obesity (45.35% and 43.53%, respectively). Stratification by glycemic status revealed that triglyceride (TG) levels were elevated in both the NG-OB and PreDM-OB groups, with a more marked increase in the latter group (73.07 mg/dL vs. 97.87 mg/dL vs. 121.8 mg/dL, respectively). Elevated LDL showed better diagnostic performance and higher odds ratios (OR) in the NG-OB group (AUC = 0.660, p = 0.006; OR = 2.78, p = 0.022). Conversely, low high-density lipoprotein (HDL) was more common and exhibited significant diagnostic performance, with higher OR values in the PreDM-OB group (AUC = 0.687, p = 0.002; OR = 3.69, p = 0.018). Importantly, all lipid ratios were elevated in obesity, with TC/HDL showing the highest predictive ability for prediabetes (AUC = 0.7491, p < 0.001). Conclusions: These findings revealed unique and common lipid abnormalities in normoglycemic and prediabetic obesity. Future research should explore the effects of targeted lipid management on obesity-associated complications.
Collapse
Affiliation(s)
- Yazeed Alshuweishi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdulmalik A Almufarrih
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Arwa Abudawood
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Dalal Alfayez
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Abdullah Y Alkhowaiter
- King Salman Center for Kidney Diseases, Riyadh Second Health Cluster, Ministry of Health, Riyadh 14214, Saudi Arabia
| | - Hamood AlSudais
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdulaziz M Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
4
|
Gilliland T, Dron JS, Selvaraj MS, Trinder M, Paruchuri K, Urbut SM, Haidermota S, Bernardo R, Uddin MM, Honigberg MC, Peloso GM, Natarajan P. Genetic Architecture and Clinical Outcomes of Combined Lipid Disturbances. Circ Res 2024; 135:265-276. [PMID: 38828614 PMCID: PMC11223949 DOI: 10.1161/circresaha.123.323973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Dyslipoproteinemia often involves simultaneous derangements of multiple lipid traits. We aimed to evaluate the phenotypic and genetic characteristics of combined lipid disturbances in a general population-based cohort. METHODS Among UK Biobank participants without prevalent coronary artery disease, we used blood lipid and apolipoprotein B concentrations to ascribe individuals into 1 of 6 reproducible and mutually exclusive dyslipoproteinemia subtypes. Incident coronary artery disease risk was estimated for each subtype using Cox proportional hazards models. Phenome-wide analyses and genome-wide association studies were performed for each subtype, followed by in silico causal gene prioritization and heritability analyses. Additionally, the prevalence of disruptive variants in causal genes for Mendelian lipid disorders was assessed using whole-exome sequence data. RESULTS Among 450 636 UK Biobank participants: 63 (0.01%) had chylomicronemia; 40 005 (8.9%) had hypercholesterolemia; 94 785 (21.0%) had combined hyperlipidemia; 13 998 (3.1%) had remnant hypercholesterolemia; 110 389 (24.5%) had hypertriglyceridemia; and 49 (0.01%) had mixed hypertriglyceridemia and hypercholesterolemia. Over a median (interquartile range) follow-up of 11.1 (10.4-11.8) years, incident coronary artery disease risk varied across subtypes, with combined hyperlipidemia exhibiting the largest hazard (hazard ratio, 1.92 [95% CI, 1.84-2.01]; P=2×10-16), even when accounting for non-HDL-C (hazard ratio, 1.45 [95% CI, 1.30-1.60]; P=2.6×10-12). Genome-wide association studies revealed 250 loci significantly associated with dyslipoproteinemia subtypes, of which 72 (28.8%) were not detected in prior single lipid trait genome-wide association studies. Mendelian lipid variant carriers were rare (2.0%) among individuals with dyslipoproteinemia, but polygenic heritability was high, ranging from 23% for remnant hypercholesterolemia to 54% for combined hyperlipidemia. CONCLUSIONS Simultaneous assessment of multiple lipid derangements revealed nuanced differences in coronary artery disease risk and genetic architectures across dyslipoproteinemia subtypes. These findings highlight the importance of looking beyond single lipid traits to better understand combined lipid and lipoprotein phenotypes and implications for disease risk.
Collapse
Affiliation(s)
- Thomas Gilliland
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Mark Trinder
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC
| | - Kaavya Paruchuri
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sarah M. Urbut
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sara Haidermota
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Rachel Bernardo
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Md Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
5
|
Hegele RA. Combined Lipid Disturbances: More Than the Sum of Their Parts? Circ Res 2024; 135:277-279. [PMID: 38963872 DOI: 10.1161/circresaha.124.324793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Affiliation(s)
- Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
7
|
Kirkpatrick CF, Sikand G, Petersen KS, Anderson CAM, Aspry KE, Bolick JP, Kris-Etherton PM, Maki KC. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J Clin Lipidol 2023; 17:428-451. [PMID: 37271600 DOI: 10.1016/j.jacl.2023.05.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
Lifestyle habits can have a profound impact on atherosclerotic cardiovascular disease (ASCVD) risk. The National Lipid Association previously published recommendations for lifestyle therapies to manage dyslipidemia. This Clinical Perspective provides an update with a focus on nutrition interventions for the three most common dyslipidemias in adults: 1) low-density lipoprotein cholesterol (LDL-C) elevation; 2) triglyceride (TG) elevation, including severe hypertriglyceridemia with chylomicronemia; and 3) combined dyslipidemia, with elevations in both LDL-C and TG levels. Lowering LDL-C and non-high-density lipoprotein cholesterol are the primary objectives for reducing ASCVD risk. With severe TG elevation (≥500 mg/dL), the primary objective is to prevent pancreatitis and ASCVD risk reduction is secondary. Nutrition interventions that lower LDL-C levels include reducing cholesterol-raising fatty acids and dietary cholesterol, as well as increasing intakes of unsaturated fatty acids, plant proteins, viscous fibers, and reducing adiposity for patients with overweight or obesity. Selected dietary supplements may be employed as dietary adjuncts. Nutrition interventions for all patients with elevated TG levels include restricting intakes of alcohol, added sugars, and refined starches. Additional lifestyle factors that reduce TG levels are participating in daily physical activity and reducing adiposity in patients with overweight or obesity. For patients with severe hypertriglyceridemia, an individualized approach is essential. Nutrition interventions for addressing concurrent elevations in LDL-C and TG include a combination of the strategies described for lowering LDL-C and TG. A multidisciplinary approach is recommended to facilitate success in making and sustaining dietary changes and the assistance of a registered dietitian nutritionist is highly recommended.
Collapse
Affiliation(s)
- Carol F Kirkpatrick
- Midwest Biomedical Research, Addison, IL, USA; Kasiska Division of Health Sciences, Idaho State University, Pocatello, ID, USA
| | - Geeta Sikand
- University of California Irvine Heart Disease Prevention Program, Irvine, CA, USA
| | | | - Cheryl A M Anderson
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Karen E Aspry
- Lifespan Cardiovascular Institute, and Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, USA; Indiana University School of Public Health-Bloomington, Bloomington, IN, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Combined hyperlipidemia is the most common lipid disorder and is strongly polygenic. Given its prevalence and associated risk for atherosclerotic cardiovascular disease, this review describes the potential for utilizing polygenic risk scores for risk prediction and management of combined hyperlipidemia. RECENT FINDINGS Different diagnostic criteria have led to inconsistent prevalence estimates and missed diagnoses. Given that individuals with combined hyperlipidemia have risk estimates for incident coronary artery disease similar to individuals with familial hypercholesterolemia, early identification and therapeutic management of those affected is crucial. With diagnostic criteria including traits such apolipoprotein B, low-density lipoprotein cholesterol, and triglyceride, polygenic risk scores for these traits strongly associate with combined hyperlipidemia and could be used in combination for clinical risk prediction models and developing specific treatment plans for patients. SUMMARY Polygenic risk scores are effective tools in risk prediction of combined hyperlipidemia, can provide insight into disease pathophysiology, and may be useful in managing and guiding treatment plans for patients. However, efforts to ensure equitable polygenic risk score performance across different genetic ancestry groups is necessary before clinical implementation in order to prevent the exacerbation of racial disparities in the clinic.
Collapse
Affiliation(s)
- Jacqueline S Dron
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Ryan A, Simpson WG, Twomey P. Hypertriglyceridaemia: a commentary. J Clin Pathol 2023; 76:2-4. [PMID: 36167730 DOI: 10.1136/jcp-2022-208513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Aidan Ryan
- Chemical Pathology, Cork University Hospital, Cork, Ireland.,Pathology, School of Medicine, University College Cork, Cork, Ireland
| | - William G Simpson
- Clinical Biochemistry, Aberdeen Royal Infirmary and the University of Aberdeen, Aberdeen, UK
| | - Patrick Twomey
- St Vincent's University Hospital Department of Pathology and Laboratory Medicine Clinical Biochemistry, Dublin, Ireland .,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
A randomized clinical efficacy trial of Hehui capsule against hyperlipidemia. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Berberich AJ, Hegele RA. Genetic testing in dyslipidaemia: An approach based on clinical experience. Best Pract Res Clin Endocrinol Metab 2022; 37:101720. [PMID: 36682941 DOI: 10.1016/j.beem.2022.101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used DNA sequencing in our lipid clinic for >20 years. Dyslipidaemia is typically ascertained biochemically. For moderate deviations in the lipid profile, the etiology is often a combination of a polygenic susceptibility component plus secondary non-genetic factors. For severe dyslipidaemia, a monogenic etiology is more likely, although a discrete single-gene cause is frequently not found. A severe phenotype can also result from strong polygenic predisposition that is aggravated by secondary factors. A young age of onset plus a family history of dyslipidaemia or atherosclerotic cardiovascular disease can suggest a monogenic etiology. With severe dyslipidaemia, clinical examination focuses on detecting manifestations of monogenic syndromic conditions. For all patients with dyslipidaemia, secondary causes must be ruled out. Here we describe an experience-based practical approach to genetic testing of patients with severe deviations of low-density lipoprotein, triglycerides, high-density lipoprotein and also combined hyperlipidaemia and dysbetalipoproteinemia.
Collapse
Affiliation(s)
- Amanda J Berberich
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON, N6A 5C1, Canada; Western University, Division of Endocrinology & Metabolism, St. Joseph's Hospital, 268 Grosvenor Street, London, Ontario, Canada.
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON, N6A 5C1, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| |
Collapse
|
12
|
Glavinovic T, Thanassoulis G, de Graaf J, Couture P, Hegele RA, Sniderman AD. Physiological Bases for the Superiority of Apolipoprotein B Over Low-Density Lipoprotein Cholesterol and Non-High-Density Lipoprotein Cholesterol as a Marker of Cardiovascular Risk. J Am Heart Assoc 2022; 11:e025858. [PMID: 36216435 PMCID: PMC9673669 DOI: 10.1161/jaha.122.025858] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2019, the European Society of Cardiology/European Atherosclerosis Society stated that apolipoprotein B (apoB) was a more accurate marker of cardiovascular risk than low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol. Since then, the evidence has continued to mount in favor of apoB. This review explicates the physiological mechanisms responsible for the superiority of apoB as a marker of the cardiovascular risk attributable to the atherogenic apoB lipoprotein particles chylomicron remnants, very low-density lipoprotein, and low-density lipoprotein particles. First, the nature and relative numbers of these different apoB particles will be outlined. This will make clear why low-density lipoprotein particles are almost always the major determinants of cardiovascular risk and why the concentrations of triglycerides and LDL-C may obscure this relation. Next, the mechanisms that govern the number of very low-density lipoprotein and low-density lipoprotein particles will be outlined because, except for dysbetalipoproteinemia, the total number of apoB particles determines cardiovascular risk, Then, the mechanisms that govern the cholesterol mass within very low-density lipoprotein and low-density lipoprotein particles will be reviewed because these are responsible for the discordance between the mass of cholesterol within apoB particles, measured either as LDL-C or non-high-density lipoprotein cholesterol, and the number of apoB particles measured as apoB, which creates the superior predictive power of apoB over LDL-C and non-high-density lipoprotein cholesterol. Finally, the major apoB dyslipoproteinemias will be briefly outlined. Our objective is to provide a physiological framework for health care givers to understand why apoB is a more accurate marker of cardiovascular risk than LDL-C or non-high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Tamara Glavinovic
- Division of Nephrology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - George Thanassoulis
- Mike and Valeria Centre for Cardiovascular Prevention, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Jacqueline de Graaf
- University of Nijmegen Radboud University Medical CenterDepartment of General Internal MedicineNijmegenthe Netherlands
| | - Patrick Couture
- Université LavalCentre Hospitalier Universitaire de QuébecQuebecCanada
| | - Robert A. Hegele
- Robarts Research Institute and Department of Medicine, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Allan D. Sniderman
- Mike and Valeria Centre for Cardiovascular Prevention, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
13
|
Civeira F, Arca M, Cenarro A, Hegele RA. A mechanism-based operational definition and classification of hypercholesterolemia. J Clin Lipidol 2022; 16:813-821. [DOI: 10.1016/j.jacl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
|
14
|
Abstract
Lipid disorders involving derangements in serum cholesterol, triglycerides, or both are commonly encountered in clinical practice and often have implications for cardiovascular risk and overall health. Recent advances in knowledge, recommendations, and treatment options have necessitated an updated approach to these disorders. Older classification schemes have outlived their usefulness, yielding to an approach based on the primary lipid disturbance identified on a routine lipid panel as a practical starting point. Although monogenic dyslipidemias exist and are important to identify, most individuals with lipid disorders have polygenic predisposition, often in the context of secondary factors such as obesity and type 2 diabetes. With regard to cardiovascular disease, elevated low-density lipoprotein cholesterol is essentially causal, and clinical practice guidelines worldwide have recommended treatment thresholds and targets for this variable. Furthermore, recent studies have established elevated triglycerides as a cardiovascular risk factor, whereas depressed high-density lipoprotein cholesterol now appears less contributory than was previously believed. An updated approach to diagnosis and risk assessment may include measurement of secondary lipid variables such as apolipoprotein B and lipoprotein(a), together with selective use of genetic testing to diagnose rare monogenic dyslipidemias such as familial hypercholesterolemia or familial chylomicronemia syndrome. The ongoing development of new agents-especially antisense RNA and monoclonal antibodies-targeting dyslipidemias will provide additional management options, which in turn motivates discussion on how best to incorporate them into current treatment algorithms.
Collapse
Affiliation(s)
- Amanda J Berberich
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| | - Robert A Hegele
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| |
Collapse
|
15
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
16
|
Abstract
Hypertriglyceridemia is a common lipid disorder encountered in clinical practice. Plasma triglycerides are a marker for the concentration of triglycerides carried in chylomicrons and very low-density lipoprotein particles. A fasting triglyceride level <150 mg/dL is accepted widely as the upper limit of normal range. Guidelines for hypertriglyceridemia are variable without a global consensus on classification and goals for triglyceride levels. A general classification of hypertriglyceridemia is mild < 200 mg/dL, moderate = 200 to 500 mg/dL, moderate to severe = 500 to 1000 mg/dL, and severe > 1000 mg/dL. Because moderate hypertriglyceridemia does increase atherosclerotic cardiovascular disease risk, it is important to determine the underlying etiology to guide appropriate and timely management. This article provides stepwise recommendations on the diagnosis and management of moderate hypertriglyceridemia, based on 3 common scenarios encountered in clinical practice. Initial steps in management include evaluating for secondary contributors, especially diabetes mellitus. Based on patient characteristics, appropriate management decisions include lifestyle adjustments aimed at weight loss and decreasing alcohol consumption and use of statin and nonstatin therapies.
Collapse
Affiliation(s)
- Savitha Subramanian
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle WA, USA
| |
Collapse
|
17
|
Clark JR, Gemin M, Youssef A, Marcovina SM, Prat A, Seidah NG, Hegele RA, Boffa MB, Koschinsky ML. Sortilin enhances secretion of apolipoprotein(a) through effects on apolipoprotein B secretion and promotes uptake of lipoprotein(a). J Lipid Res 2022; 63:100216. [PMID: 35469919 PMCID: PMC9131257 DOI: 10.1016/j.jlr.2022.100216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Elevated plasma lipoprotein(a) (Lp(a)) is an independent, causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Lp(a) is formed in or on hepatocytes from successive noncovalent and covalent interactions between apo(a) and apoB, although the subcellular location of these interactions and the nature of the apoB-containing particle involved remain unclear. Sortilin, encoded by the SORT1 gene, modulates apoB secretion and LDL clearance. We used a HepG2 cell model to study the secretion kinetics of apo(a) and apoB. Overexpression of sortilin increased apo(a) secretion, while siRNA-mediated knockdown of sortilin expression correspondingly decreased apo(a) secretion. Sortilin binds LDL but not apo(a) or Lp(a), indicating that its effect on apo(a) secretion is likely indirect. Indeed, the effect was dependent on the ability of apo(a) to interact noncovalently with apoB. Overexpression of sortilin enhanced internalization of Lp(a), but not apo(a), by HepG2 cells, although neither sortilin knockdown in these cells or Sort1 deficiency in mice impacted Lp(a) uptake. We found several missense mutations in SORT1 in patients with extremely high Lp(a) levels; sortilin containing some of these mutations was more effective at promoting apo(a) secretion than WT sortilin, though no differences were found with respect to Lp(a) internalization. Our observations suggest that sortilin could play a role in determining plasma Lp(a) levels and corroborate in vivo human kinetic studies which imply that secretion of apo(a) and apoB are coupled, likely within the hepatocyte.
Collapse
Affiliation(s)
- Justin R Clark
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Matthew Gemin
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Annik Prat
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Nabil G Seidah
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Michael B Boffa
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Marlys L Koschinsky
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW : Familial combined hyperlipidemia (FCH), defined by concurrently elevated plasma triglyceride (TG) and low-density lipoprotein (LDL) cholesterol, has long been investigated to characterize its genetic basis. Despite almost half a century of searching, a single gene cause for the phenotype has not yet been identified. RECENT FINDINGS : Recent studies using next-generation genetic analytic methods confirm that FCH has a polygenic basis, with a clear large contribution from the accumulation of small-to-moderate effect common single nucleotide polymorphisms (SNPs) throughout the genome that is associated with raising TG, and probably also those raising LDL cholesterol. On the other hand, rare monogenic variants, such as those causing familial hypercholesterolemia, play a negligible role, if any. Genetic profiling suggests that patients with FCH and hypertriglyceridemia share a strong polygenic basis and show a similar profile of multiple TG-raising common SNPs. SUMMARY : Recent progress in genomics has shown that most if not all of the genetic susceptibility to FCH is polygenic in nature. Future research should include larger cohort studies, with wider ancestral diversity, ancestry-specific polygenic scores, and investigation of epigenetic and lifestyle factors to help further elucidate the causative agents at play in cases where the genetic etiology remains to be defined.
Collapse
Affiliation(s)
| | - Robert A Hegele
- Robarts Research Institute
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Xie C, Gao W, Li X, Luo S, Chye FY. Study on the hypolipidemic properties of garlic polysaccharide in vitro and in normal mice as well as its dyslipidemia amelioration in type2 diabetes mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Trinder M, Vikulova D, Pimstone S, Mancini GBJ, Brunham LR. Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis 2021; 340:35-43. [PMID: 34906840 DOI: 10.1016/j.atherosclerosis.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Familial combined hyperlipidemia (FCHL) is one of the most common inherited lipid phenotypes, characterized by elevated plasma concentrations of apolipoprotein B-100 and triglycerides. The genetic inheritance of FCHL remains poorly understood. The goals of this study were to investigate the polygenetic architecture and cardiovascular risk associated with FCHL. METHODS AND RESULTS We identified individuals with an FCHL phenotype among 349,222 unrelated participants of European ancestry in the UK Biobank using modified versions of 5 different diagnostic criteria. The prevalence of the FCHL phenotype was 11.44% (n = 39,961), 5.01% (n = 17,485), 1.48% (n = 5,153), 1.10% (n = 3,838), and 0.48% (n = 1,688) according to modified versions of the Consensus Conference, Dutch, Mexico, Brunzell, and Goldstein criteria, respectively. We performed discovery, case-control genome-wide association studies for these different FCHL criteria and identified 175 independent loci associated with FCHL at genome-wide significance. We investigated the association of genetic and clinical risk with FCHL and found that polygenic susceptibility to hypercholesterolemia or hypertriglyceridemia and features of metabolic syndrome were associated with greater prevalence of FCHL. Participants with an FCHL phenotype had a similar risk of incident coronary artery disease compared to participants with monogenic familial hypercholesterolemia (adjusted hazard ratio vs controls [95% confidence interval]: 2.72 [2.31-3.21] and 1.90 [1.30-2.78]). CONCLUSIONS These results suggest that, rather than being a single genetic entity, the FCHL phenotype represents a polygenic susceptibility to dyslipidemia in combination with metabolic abnormalities. The cardiovascular risk associated with an FCHL phenotype is similar to that of monogenic familial hypercholesterolemia, despite being ∼5x more common.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Vikulova
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon Pimstone
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - G B John Mancini
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Choe HJ, Park S, Han KD, Moon MK, Koo BK. Contribution of hypertriglyceridemia to ischemic cardiovascular disease in Korean Women: A nationwide population-based study. J Clin Lipidol 2021; 16:83-93. [PMID: 34896034 DOI: 10.1016/j.jacl.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The independent effect of serum triglyceride levels on the development of ischemic cardiovascular disease (CVD) remains inconclusive, which might be due to heterogeneity among study populations. OBJECTIVE To evaluate the effect of triglyceride levels on ischemic CVD and mortality in Korean women, with stratification according to the menopausal status, diabetes mellitus, or low-density lipoprotein cholesterol levels (LDL-C). METHODS We retrospectively investigated Korean women aged 40-69 years who underwent health examination in 2009 and were followed up until 2018 using nationwide claim data. The subjects were divided according to triglyceride quartiles (Q): Q1 <70 mg/dL, Q2 71-99 mg/dL, Q3 100-142 mg/dL, and Q4 ≥143 mg/dL. The primary outcome was the incidence of CVD defined as a composite of myocardial infarction and ischemic stroke. RESULTS Among 2,208,347 women, primary outcome occurred in 62,255 (2.8%) subjects. As triglyceride levels increased, the event rate of primary outcome increased in both premenopausal and postmenopausal women in the fully adjusted model (hazard ratio [HR] per 1 Q, 1.10 [95% confidence interval (CI), 1.08-1.12] and 1.08 [95% CI, 1.07-1.09], respectively), which was maintained on further stratification according to diabetes or LDL-C (P<0.05 in all). Higher triglyceride levels were more significantly associated with the primary outcome, MI, and stroke risk among women with optimal non-high-density lipoprotein cholesterol levels (non-HDL-C) <130 mg/dL, but only weakly with stroke for women with non-optimal non-HDL-C. CONCLUSION Triglyceride is an independent prognosticator in the development of ischemic CVD in Korean women aged 40-69 years.
Collapse
Affiliation(s)
- Hun Jee Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - SangHyun Park
- Department of Medical Statistics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Kyung-Do Han
- Department of Medical Statistics, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Korea.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. Severe hypertriglyceridemia may sometimes be a monogenic condition. However, in the vast majority of patients, hypertriglyceridemia is due to the cumulative effect of multiple genetic risk variants along with lifestyle factors, medications, and disease conditions that elevate triglyceride levels. In this review, we will summarize recent progress in the understanding of the genetic basis of hypertriglyceridemia. RECENT FINDINGS More than 300 genetic loci have been identified for association with triglyceride levels in large genome-wide association studies. Studies combining the loci into polygenic scores have demonstrated that some hypertriglyceridemia phenotypes previously attributed to monogenic inheritance have a polygenic basis. The new genetic discoveries have opened avenues for the development of more effective triglyceride-lowering treatments and raised interest towards genetic screening and tailored treatments against hypertriglyceridemia. The discovery of multiple genetic loci associated with elevated triglyceride levels has led to improved understanding of the genetic basis of hypertriglyceridemia and opened new translational opportunities.
Collapse
Affiliation(s)
- Germán D. Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Malene Revsbech Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|