1
|
Liu YN, Wang QW, Lu SY, Shen W, Guo C, Xing Z, Li C, Sun S, Sui SF, Mi S, Gage FH, Yao J. Synaptotagmin-7 deficit causes insulin hypoactivity and contributes to behavioral alterations in mice. iScience 2025; 28:112354. [PMID: 40330888 PMCID: PMC12053657 DOI: 10.1016/j.isci.2025.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Synaptotagmin-7 (Syt7) KO mice show diurnal fluctuations of mania- and depression-like behavioral abnormalities. Although GluN2B-NMDAR hypoactivity has been shown to be involved in the induction of mania-like behaviors of the Syt7 KO mice in the dark phase, the reasons for the depression-like behaviors in the light phase and behavioral fluctuation remain unknown. Here, we show that bipolar I disorder (BDI)-patient-induced pluripotent stem cell (iPSC)-derived islet-like organoids exhibited Syt7-dependent insulin secretion defects; moreover, Syt7-deficiency-induced insulin hyposecretion generated depression-like behaviors in Syt7 KO mice in the light phase. Furthermore, pancreatic insulin secretion and neuronal activity showed opposite diurnal patterns, in which the Syt7-deficiency-induced disequilibrium induced periodic antagonistic shifts in the mania- and depression-like behaviors. Finally, using RNA sequencing (RNA-seq) analysis, we explored downstream pathways that might underlie the diurnal fluctuation of behaviors. Therefore, Syt7-deficiency-induced insulin hypoactivity contributed to light-phase depression-like behaviors and diurnal behavioral fluctuations in the mice.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiu-Wen Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China
- Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shen
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chongye Guo
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhikai Xing
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangli Mi
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jun Yao
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Putranto R, Setiati S, Nasrun MW, Witjaksono F, Immanuel S, Subekti I, Harimurti K, Siswanto A, Shatri H, Suwarto S, Megantara MA. Effects of cholecalciferol supplementation on depressive symptoms, C-peptide, serotonin, and neurotrophin-3 in type 2 diabetes mellitus: A double-blind, randomized, placebo-controlled trial. NARRA J 2024; 4:e1342. [PMID: 39816051 PMCID: PMC11731796 DOI: 10.52225/narra.v4i3.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 01/18/2025]
Abstract
The coexistence of depression and type 2 diabetes mellitus (T2DM) can significantly worsen disease prognosis and lower quality of life. Emerging evidence suggests that vitamin D deficiency contributes to the progression of T2DM and is closely associated with the development of depression. The aim of this study was to investigate the effects of cholecalciferol on depression in patients with T2DM, exploring its mechanisms by analyzing its impact on C-peptide, serotonin, and neurotrophin-3 levels. A double-blind, randomized, placebo-controlled clinical trial was conducted at Cipto Mangunkusumo General Hospital, Jakarta, Indonesia, from April 2021 to September 2022. Patients with T2DM and depressive symptoms were randomly assigned to two groups: received 4000 IU of cholecalciferol daily and received a placebo for 12 weeks. Depression was assessed using the Beck Depression Inventory-II (BDI-II) before and 12 weeks after the intervention. The levels of C-peptide, serotonin, and neurotrophin-3 were measured at the end of the fourth week of intervention using the enzyme-linked immunosorbent assay (ELISA) method. Between-group comparisons were made using independent Student t- tests and Mann-Whitney U tests. Paired Student t-tests or Wilcoxon tests were applied for within-group comparisons between pre- and post-intervention. A total of 70 T2DM patients with depression were included in this study, comprising 38 patients in the cholecalciferol group and 32 in the placebo group. C-peptide levels increased significantly in the cholecalciferol group compared to the placebo group (p = 0.006). No significant differences were observed in serotonin and NT-3 levels between the cholecalciferol group compared to the placebo group. The cholecalciferol group had a significantly greater reduction in BDI-II scores compared to the placebo group (p < 0.001). This trial highlights that taking cholecalciferol might help ease mild to moderate depression symptoms in patients with T2DM by enhancing c-peptide levels, though its effects on serotonin and neurotrophin-3 are still unclear.
Collapse
Affiliation(s)
- Rudi Putranto
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Siti Setiati
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Martina W. Nasrun
- Department of Psychiatry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Psychiatry, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Fiastuti Witjaksono
- Department of Clinical Nutrition, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Clinical Nutrition, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Suzanna Immanuel
- Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Clinical Pathology, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Imam Subekti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Agus Siswanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Internal Medicine, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Hamzah Shatri
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Suhendro Suwarto
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | |
Collapse
|
3
|
Khawagi WY, Al-Kuraishy HM, Hussein NR, Al-Gareeb AI, Atef E, Elhussieny O, Alexiou A, Papadakis M, Jabir MS, Alshehri AA, Saad HM, Batiha GES. Depression and type 2 diabetes: A causal relationship and mechanistic pathway. Diabetes Obes Metab 2024; 26:3031-3044. [PMID: 38802993 DOI: 10.1111/dom.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.
Collapse
Affiliation(s)
- Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Nawar R Hussein
- College of Pharmacy, Pharmacology Department, Al-Farahidi University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Esraa Atef
- Respiratory Therapy Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University Chandigarh-Ludhiana Highway, Mohali, India
- Department of Research and Development, Funogen, Athens, Greece
- Department of Research and Development, AFNP Med, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Majid S Jabir
- Applied Science Department, University of Technology, Baghdad, Iraq
| | - Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Zhang J, Sun R, Cai Y, Peng B, Yang X, Gao K. Efficacy and Safety of Antidiabetic Agents for Major Depressive Disorder and Bipolar Depression: A Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Trials. J Clin Med 2024; 13:1172. [PMID: 38398483 PMCID: PMC10889473 DOI: 10.3390/jcm13041172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to determine the efficacy and safety of antidiabetic agents in the treatment of major depressive disorder and bipolar depression. METHODS Randomized controlled trials (RCTs) of antidiabetic agents in major depressive disorder or bipolar depression were searched in three electronic databases and three clinical trial registry websites from their inception up to October 2023. The differences in changes in the depression rating scale scores from baseline to endpoint or pre-defined sessions, response rate, remission rate, rate of side effects and dropout rate between antidiabetic agents and placebo were meta-analyzed. RESULTS Six RCTs involving 399 participants were included in the final meta-analysis, which did not find that antidiabetics outperformed the placebo in reducing depressive symptoms. The standardized mean difference (SMD) in the depression scores from baseline to endpoint was 0.25 (95% CI -0.1, 0.61). However, a subgroup analysis found a significant difference between antidiabetics and placebos in reducing depressive symptoms in Middle Eastern populations, with an SMD of 0.89 (95% CI 0.44, 1.34). CONCLUSIONS The current meta-analysis does not support the efficacy of antidiabetics being superior to the placebo in the treatment of unipolar and bipolar depression. However, a subgroup analysis indicates that patients from the Middle East may benefit from adding an antidiabetic medication to their ongoing medication(s) for their depression. Larger studies with good-quality study designs are warranted.
Collapse
Affiliation(s)
- Jian Zhang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China; (J.Z.)
- Mood Disorders Program, Department of Psychiatry, University Hospitals Cleveland Medical Center, 10524 Euclid Ave, 12th Floor, Cleveland, OH 44106, USA
| | - Rongyi Sun
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yang Cai
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bo Peng
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China; (J.Z.)
| | - Xi Yang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China; (J.Z.)
| | - Keming Gao
- Mood Disorders Program, Department of Psychiatry, University Hospitals Cleveland Medical Center, 10524 Euclid Ave, 12th Floor, Cleveland, OH 44106, USA
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
6
|
Watson K, Akil H, Rasgon N. Toward a Precision Treatment Approach for Metabolic Depression: Integrating Epidemiology, Neuroscience, and Psychiatry. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:623-631. [PMID: 37881556 PMCID: PMC10593951 DOI: 10.1016/j.bpsgos.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023] Open
Abstract
Background Individuals with comorbid major depressive disorder and type 2 diabetes represent an important subgroup of patients for whom conventional treatment may be insufficient. A precision treatment approach that addresses insulin resistance with an outcome of a positive response to antidepressants may prove beneficial. Methods This study utilized an emulated target trial on a large dataset from the Optum Clinformatics Data Mart Database. We evaluated the effect of adjuvant pioglitazone, an insulin-sensitizing drug, on antidepressant response among 4696 people with type 2 diabetes, comparing it with DPP4 (dipeptidyl peptidase-4) inhibitors (non-insulin-sensitizing). An additional analysis involving 6518 participants was conducted to assess the efficacy of pioglitazone versus sulfonylureas. Results The instrumental variable analysis indicated that the initiation of an antidepressant with pioglitazone was superior to DPP4 inhibitors in terms of antidepressant response, with fewer treatment shifts and/or additions of new antidepressant or antipsychotic over a 1-year period. This result was consistent when pioglitazone was compared with sulfonylureas in a supplemental analysis. Conclusions Our findings suggest that pioglitazone may be more effective than DPP4 inhibitors or sulfonylureas in enhancing antidepressant response among people with comorbid major depressive disorder and type 2 diabetes. This provides a strong case for the use of pioglitazone in patients with these conditions, emphasizing the potential of precision medicine strategies. The results should be interpreted with caution due to inherent limitations associated with observational data.
Collapse
Affiliation(s)
- Kathleen Watson
- Center for Neuroscience in Women’s Health, Stanford University, Palo Alto, California
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Natalie Rasgon
- Center for Neuroscience in Women’s Health, Stanford University, Palo Alto, California
| |
Collapse
|
7
|
Possidente C, Fanelli G, Serretti A, Fabbri C. Clinical insights into the cross-link between mood disorders and type 2 diabetes: A review of longitudinal studies and Mendelian randomisation analyses. Neurosci Biobehav Rev 2023; 152:105298. [PMID: 37391112 DOI: 10.1016/j.neubiorev.2023.105298] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Mood disorders and type 2 diabetes mellitus (T2DM) are prevalent conditions that often co-occur. We reviewed the available evidence from longitudinal and Mendelian randomisation (MR) studies on the relationship between major depressive disorder (MDD), bipolar disorder and T2DM. The clinical implications of this comorbidity on the course of either condition and the impact of antidepressants, mood stabilisers, and antidiabetic drugs were examined. Consistent evidence indicates a bidirectional association between mood disorders and T2DM. T2DM leads to more severe depression, whereas depression is associated with more complications and higher mortality in T2DM. MR studies demonstrated a causal effect of MDD on T2DM in Europeans, while a suggestive causal association in the opposite direction was found in East Asians. Antidepressants, but not lithium, were associated with a higher T2DM risk in the long-term, but confounders cannot be excluded. Some oral antidiabetics, such as pioglitazone and liraglutide, may be effective on depressive and cognitive symptoms. Studies in multi-ethnic populations, with a more careful assessment of confounders and appropriate power, would be important.
Collapse
Affiliation(s)
- Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
9
|
Gao W, Deng Z, Cai X, Zhang D, Xiao H, Zhang X. Clinical correlates and metabolic indicators of elevated fasting glucose in overweight/obese Chinese Han patients with first-episode and drug-naive major depressive disorder. Front Endocrinol (Lausanne) 2023; 14:1102670. [PMID: 37008928 PMCID: PMC10057961 DOI: 10.3389/fendo.2023.1102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Overweight/obese major depressive disorder (MDD) patients have a high probability of developing glucose metabolism disorders; however, the results are inconsistent due to the confounding variables involved in the studies. The purpose of this study was to explore the prevalence and risk factors for elevated fasting glucose in Chinese Han patients with overweight/obese first-episode and drug naïve (FEDN) MDD. METHODS The study used a cross-sectional design and recruited 1718 FEDN MDD patients between the ages of 18 and 60 years. Socio-demographic information, anthropometric data, and biochemical parameters were collected. The 17-item Hamilton Assessment Scale for Depression (HAMD), the 14-item Hamilton Anxiety Scale (HAMA), and the Positive and Negative Syndrome Scale (PANSS) positive subscale were used to assess symptoms of all patients. RESULTS MDD patients with elevated fasting glucose had higher TSH, TPOAb, TC, TG, LDL-C, systolic and diastolic blood pressure levels than those with normal fasting glucose. Logistic regression analysis showed that age, TSH, TgAb, TPOA, and TG were related factors for elevated fasting glucose, while TSH and combination all these five parameters had the potential to differentiate between patients with elevated fasting glucose and those with normal fasting glucose. Multifactorial regression analysis showed that TSH, TG, and LDL-C were independently associated with elevated fasting glucose. CONCLUSION Our findings suggest a high prevalence of elevated fasting glucose in overweight/obese FEDN MDD patients. Several clinically relevant factors and metabolic parameters are associated with elevated fasting glucose in overweight/obese FEDN MDD patients. LIMITATION Due to the cross-sectional design, no causal relationship could be derived.
Collapse
Affiliation(s)
- Wenqi Gao
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhang
- Woman Healthcare Department for Community, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiangyang Zhang, ; Han Xiao,
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xiangyang Zhang, ; Han Xiao,
| |
Collapse
|
10
|
Abstract
Obsessive-compulsive disorder (OCD) has a bidirectional relationship with metabolic disorders. The purposes of this review are to decipher the links between OCD and metabolic disorders and to explore the etiological mechanism of OCD in metabolism, which may aid in early identification of and tailored interventions for OCD and metabolic disorders.
Collapse
|
11
|
Toba-Oluboka T, Vochosková K, Hajek T. Are the antidepressant effects of insulin-sensitizing medications related to improvements in metabolic markers? Transl Psychiatry 2022; 12:469. [PMID: 36347837 PMCID: PMC9643486 DOI: 10.1038/s41398-022-02234-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-sensitizing medications were originally used in psychiatric practice to treat weight gain and other metabolic side effects that accompany the use of mood stabilizers, antipsychotics, and some antidepressants. However, in recent studies these medications have been shown to cause improvement in depressive symptoms, creating a potential new indication outside of metabolic regulation. However, it is still unclear whether the antidepressant properties of these medications are associated with improvements in metabolic markers. We performed a systematic search of the literature following PRISMA guidelines of studies investigating antidepressant effects of insulin-sensitizing medications. We specifically focused on whether any improvements in depressive symptoms were connected to the improvement of metabolic dysfunction. Majority of the studies included in this review reported significant improvement in depressive symptoms following treatment with insulin-sensitizing medications. Nine out of the fifteen included studies assessed for a correlation between improvement in symptoms and changes in metabolic markers and only two of the nine studies found such association, with effect sizes ranging from R2 = 0.26-0.38. The metabolic variables, which correlated with improvements in depressive symptoms included oral glucose tolerance test, fasting plasma glucose and glycosylated hemoglobin following treatment with pioglitazone or metformin. The use of insulin-sensitizing medications has a clear positive impact on depressive symptoms. However, it seems that the symptom improvement may be unrelated to improvement in metabolic markers or weight. It is unclear which additional mechanisms play a role in the observed clinical improvement. Some alternative options include inflammatory, neuroinflammatory changes, improvements in cognitive functioning or brain structure. Future studies of insulin-sensitizing medications should measure metabolic markers and study the links between changes in metabolic markers and changes in depression. Additionally, it is important to use novel outcomes in these studies, such as changes in cognitive functioning and to investigate not only acute, but also prophylactic treatment effects.
Collapse
Affiliation(s)
- Temi Toba-Oluboka
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Kristýna Vochosková
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XCharles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. .,National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
12
|
Martins LB, Braga Tibães JR, Berk M, Teixeira AL. Diabetes and mood disorders: shared mechanisms and therapeutic opportunities. Int J Psychiatry Clin Pract 2022; 26:183-195. [PMID: 34348557 DOI: 10.1080/13651501.2021.1957117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this manuscript is to provide a comprehensive and critical overview of the current evidence on the association between Diabetes mellitus (DM) and mood disorders [i.e., Major depressive disorder (MDD) and bipolar disorder (BD)], and therapeutic opportunities. METHODS We searched in MEDLINE (via Ovid) for placebo-controlled clinical trials published in the last 20 years that assessed drug repurposing approaches for the treatment of DM or mood disorders. RESULTS We found seven studies that aimed to verify the effects of antidepressants in patients diagnosed with DM, and eight studies that tested the effect of antidiabetic drugs in patients diagnosed with MDD or BD. Most studies published in the last two decades did not report a positive effect of antidepressants on glycemic control in patients with DM. On the other hand, antidiabetic drugs seem to have a positive effect on the treatment of MDD and BD. CONCLUSIONS While effect of antidepressants on glycemic control in patients with DM is still controversial, the use of antidiabetic drugs may be a promising strategy for patients with MDD or BD. Prospective studies are still needed.Key pointsMood disorders in patients with DM affect glycemic control, potentially increasing mortality risk.The effect of antidepressants on glycemic control in patients with DM is still controversial. The coexistence of complicated DM and a mood disorders would require a careful, individualised, and comprehensive evaluation.Insulin resistance may increase the risk of depressive symptoms and is associated with worse outcomes in BD.The use antidiabetic drugs may be a promising strategy for patients with MDD or BD. However, prospective trials are needed to prove a potential antidepressant activity of antidiabetic drugs.
Collapse
Affiliation(s)
- Laís Bhering Martins
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.,Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jenneffer Rayane Braga Tibães
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Agricultural, Food and Nutritional Science, Division of Human Nutrition, University of Alberta, Edmonton, Canada
| | - Michael Berk
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Parkville, Australia.,Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.,Instituto de Ensino e Pesquisa, Belo Horizonte, Brazil
| |
Collapse
|
13
|
PPARγ Dysfunction in the Medial Prefrontal Cortex Mediates High-Fat Diet-Induced Depression. Mol Neurobiol 2022; 59:4030-4043. [DOI: 10.1007/s12035-022-02806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
|
14
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
15
|
Depression and obesity among females, are sex specificities considered? Arch Womens Ment Health 2021; 24:851-866. [PMID: 33880649 DOI: 10.1007/s00737-021-01123-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to systematically review the relationship of obesity-depression in the female sex. We carried out a systematic search (PubMed, MEDLINE, Embase) to quantify the articles (controlled trials and randomized controlled trials) regarding obesity and depression on a female population or a mixed sample. Successively, we established whether the sex specificities were studied by the authors and if they reported on collecting data regarding factors that may contribute to the evolution of obesity and depression and that could be responsible for the greater susceptibility of females to those conditions. After applying the inclusion and exclusion criteria, we found a total of 20 articles with a female sample and 54 articles with a mixed sample. More than half of all articles (51.35%, n = 38) evaluated the relationship between depression and obesity, but only 20 (27.03%) evaluated this relationship among females; still, 80% of those (n = 16) presented supporting results. However, few articles considered confounding factors related to female hormones (12.16%, n = 9) and none of the articles focused on factors responsible for the binomial obesity-depression in the female sex. The resulting articles also supported that depression (and related impairments) influencing obesity (and related impairments) is a two-way road. This systematic review supports the concurrency of obesity-depression in females but also shows how sex specificities are ultimately under-investigated. Female sex specificity is not being actively considered when studying the binomial obesity-depression, even within a female sample. Future studies should focus on trying to understand how the female sex and normal hormonal variations influence these conditions.
Collapse
|
16
|
Beheshti F, Hosseini M, Hashemzehi M, Soukhtanloo M, Asghari A. The effects of PPAR-γ agonist pioglitazone on anxiety and depression-like behaviors in lipopolysaccharide injected rats. TOXIN REV 2021; 40:1223-1232. [DOI: 10.1080/15569543.2019.1673425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Hashemzehi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Asghari
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Jones BDM, Farooqui S, Kloiber S, Husain MO, Mulsant BH, Husain MI. Targeting Metabolic Dysfunction for the Treatment of Mood Disorders: Review of the Evidence. Life (Basel) 2021; 11:819. [PMID: 34440563 PMCID: PMC8401631 DOI: 10.3390/life11080819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are often chronic with many patients not responding to available treatments. As these mood disorders are frequently associated with metabolic dysfunction, there has been increased interest in novel treatments that would target metabolic pathways. The objectives of this scoping review were to synthesize evidence on the impact on mood symptoms of lipid lowering agents and anti-diabetics drugs, while also reviewing current knowledge on the association between mood disorders and dyslipidemia or hyperglycemia. We propose that metabolic dysfunction is prevalent in both MDD and BD and it may contribute to the development of these disorders through a variety of pathophysiological processes including inflammation, brain structural changes, hormonal alterations, neurotransmitter disruptions, alteration on brain cholesterol, central insulin resistance, and changes in gut microbiota. Current evidence is conflicting on the use of statins, polyunsaturated fatty acids, thiazolidinediones, glucagon-like peptide agonists, metformin, or insulin for the treatment of MDD and BD. Given the paucity of high-quality randomized controlled trials, additional studies are needed before any of these medications can be repurposed in routine clinical practice. Future trials need to enrich patient recruitment, include evaluations of mechanism of action, and explore differential effects on specific symptom domains such as anhedonia, suicidality, and cognition.
Collapse
Affiliation(s)
- Brett D. M. Jones
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; (B.D.M.J.); (S.K.); (M.O.H.); (B.H.M.)
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Salman Farooqui
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Stefan Kloiber
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; (B.D.M.J.); (S.K.); (M.O.H.); (B.H.M.)
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Muhammad Omair Husain
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; (B.D.M.J.); (S.K.); (M.O.H.); (B.H.M.)
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Benoit H. Mulsant
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; (B.D.M.J.); (S.K.); (M.O.H.); (B.H.M.)
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| | - Muhammad Ishrat Husain
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; (B.D.M.J.); (S.K.); (M.O.H.); (B.H.M.)
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
| |
Collapse
|
18
|
Cosgrove KT, Kuplicki R, Savitz J, Burrows K, Simmons WK, Khalsa SS, Teague TK, Aupperle RL, Paulus MP. Impact of ibuprofen and peroxisome proliferator-activated receptor gamma on emotion-related neural activation: A randomized, placebo-controlled trial. Brain Behav Immun 2021; 96:135-142. [PMID: 34052365 PMCID: PMC8319138 DOI: 10.1016/j.bbi.2021.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen have shown initial promise in producing antidepressant effects. This is perhaps due to these drugs being peroxisome proliferator-activated receptor gamma (PPARγ) agonists, in addition to their inhibition of cyclooxygenase enzymes. Some, albeit mixed, evidence suggests that PPARγ agonists have antidepressant effects in humans and animals. This double-blind, placebo-controlled, pharmacologic functional magnetic resonance imaging (ph-fMRI) study aimed to elucidate the impact of ibuprofen on emotion-related neural activity and determine whether observed effects were due to changes in PPARγ gene expression. Twenty healthy volunteers completed an emotional face matching task during three fMRI sessions, conducted one week apart. Placebo, 200 mg, or 600 mg ibuprofen was administered 1 h prior to each scan in a pseudo-randomized order. Peripheral blood mononuclear cells were collected at each session to isolate RNA for PPARγ gene expression. At the doses used, ibuprofen did not significantly change PPARγ gene expression. Ibuprofen dose was associated with decreased blood oxygen level-dependent (BOLD) activation in the dorsolateral prefrontal cortex and fusiform gyrus during emotional face processing (faces-shapes). Additionally, PPARγ gene expression was associated with increased BOLD activation in the insula and transverse and superior temporal gyri (faces-shapes). No interaction effects between ibuprofen dose and PPARγ gene expression on BOLD activation were observed. Thus, results suggest that ibuprofen and PPARγ may have independent effects on emotional neurocircuitry. Future studies are needed to further delineate the roles of ibuprofen and PPARγ in exerting antidepressant effects in healthy as well as clinical populations.
Collapse
Affiliation(s)
- Kelly T. Cosgrove
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136,Department of Psychology, University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK 74136 USA.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK 74136 USA.
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK 74136 USA.
| | - W. Kyle Simmons
- Center for Health Sciences, Oklahoma State University, 1013 E 66th Pl, Tulsa, OK 74136
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136,School of Community Medicine, University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104
| | - T. Kent Teague
- School of Community Medicine, University of Oklahoma, 4502 E. 41st St., Tulsa, OK, 74135
| | - Robin L. Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136,School of Community Medicine, University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104
| | - Martin P. Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136,School of Community Medicine, University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104
| |
Collapse
|
19
|
Rawlinson S, Andrews ZB. Hypothalamic insulin signalling as a nexus regulating mood and metabolism. J Neuroendocrinol 2021; 33:e12939. [PMID: 33634518 DOI: 10.1111/jne.12939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Insulin has long been known as a metabolic hormone critical in the treatment of diabetes for its peripheral effects on blood glucose. However, in the last 50 years, insulin has entered the realm of neuroendocrinology and many studies have described its function on insulin receptors in the brain in relation to both metabolic and mood disorders. Indeed, rodent models of impaired insulin signalling show signs of dysregulated energy and glucose homeostasis, as well as anxiety-like and depressive behaviours. Importantly, many metabolic diseases such as obesity and diabetes increase the risk of developing mood disorders; however, the brain mechanisms underlying the connection between metabolism and mood remain unresolved. We present the current literature on the importance of the insulin receptor with respect to regulating glucose and energy homeostasis and mood-related behaviours. Specifically, we hypothesise that the insulin receptor in the hypothalamus, classically known as the homeostatic centre of the brain, plays a causal role in linking metabolic and behavioural effects of insulin signalling. In this review, we discuss insulin signalling in the hypothalamus as a critical point of neural integration controlling metabolism and mood.
Collapse
Affiliation(s)
- Sasha Rawlinson
- Department of Physiology, Monash Biomedicine Discovery Institute Monash University, Clayton, VIC, Australia
| | - Zane B Andrews
- Department of Physiology, Monash Biomedicine Discovery Institute Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci 2021; 53:2870-2900. [PMID: 33529409 DOI: 10.1111/ejn.15136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.
Collapse
Affiliation(s)
- Rhea Subba
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Sandhir
- Dept. of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Surya Pratap Singh
- Dept. of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
21
|
Holsen LM, Huang G, Cherkerzian S, Aroner S, Loucks EB, Buka S, Handa RJ, Goldstein JM. Sex Differences in Hemoglobin A1c Levels Related to the Comorbidity of Obesity and Depression. J Womens Health (Larchmt) 2021; 30:1303-1312. [PMID: 33534642 DOI: 10.1089/jwh.2020.8467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Obesity (OB) and major depressive disorder (MDD) are chronic conditions associated with disease burden, and their comorbidity appears more common among women. Mechanisms linking these conditions may involve inflammatory and metabolic pathways. The goal of this study was to evaluate the impact of MDD on relationships between OB and cardiometabolic function, and sex differences therein. Materials and Methods: Adult offspring from the New England Family Studies (NEFS) were assessed at ages 39-50, including anthropometry, cardiometabolic profile assays, and metabolic syndrome. Individuals were grouped by body mass index (BMI) and MDD status: healthy weight with (n = 50) or without MDD (n = 95) and obese with (n = 79) or without MDD (n = 131). The interaction of (recurrent) MDD and BMI on cardiometabolic markers was tested using quantile regression models. Results: Participants with MDD exhibited significantly higher hemoglobin A1c (HbA1c) than those without MDD (5.60% vs. 5.35%, p < 0.05). Women with comorbid recurrent MDD and OB had higher HbA1c levels compared to obese women without MDD (5.75% vs. 5.44%, p < 0.05); an interaction between MDD and BMI status was not observed among men. Conclusions: We demonstrated sex differences in the interaction between BMI and recurrent MDD status on a primary biomarker for diabetes risk, suggesting a common metabolic pathway predisposing women to these comorbid conditions. Further investigation is needed to identify mechanisms that may lead to more effective, sex-dependent screening and therapies.
Collapse
Affiliation(s)
- Laura M Holsen
- Division of Women's Health, Department of Medicine, Boston, Massachusetts, USA.,Department of Psychiatry, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Huang
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Boston, Massachusetts, USA
| | - Sara Cherkerzian
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric B Loucks
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Steve Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Robert J Handa
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Jill M Goldstein
- Division of Women's Health, Department of Medicine, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110050. [PMID: 32738352 DOI: 10.1016/j.pnpbp.2020.110050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
About 20-30% of patients with major depressive disorder (MDD) develop treatment-resistant depression (TRD) and finding new effective treatments for TRD has been a challenge. This study aimed to identify new possible pharmacological options for TRD. Genes in pathways included in predictive models of TRD in a previous whole exome sequence study were compared with those coding for targets of drugs in any phase of development, nutraceuticals, proteins and peptides from Drug repurposing Hub, Drug-Gene Interaction database and DrugBank database. We tested if known gene targets were enriched in TRD-associated genes by a hypergeometric test. Compounds enriched in TRD-associated genes after false-discovery rate (FDR) correction were annotated and compared with those showing enrichment in genes associated with MDD in the last Psychiatric Genomics Consortium genome-wide association study. Among a total of 15,475 compounds, 542 were enriched in TRD-associated genes (FDR p < .05). Significant results included drugs which are currently used in TRD (e.g. lithium and ketamine), confirming the rationale of this approach. Interesting molecules included modulators of inflammation, renin-angiotensin system, proliferator-activated receptor agonists, glycogen synthase kinase 3 beta inhibitors and the rho associated kinase inhibitor fasudil. Nutraceuticals, mostly antioxidant polyphenols, were also identified. Drugs showing enrichment for TRD-associated genes had a higher probability of enrichment for MDD-associated genes compared to those having no TRD-genes enrichment (p = 6.21e-55). This study suggested new potential treatments for TRD using a in silico approach. These analyses are exploratory only but can contribute to the identification of drugs to study in future clinical trials.
Collapse
|
23
|
Estrada-Camarena EM, López-Rubalcava C, Ramírez-Rodríguez GB, Pulido D, Cervantes-Anaya N, Azpilcueta-Morales G, Granados-Juárez A, Vega-Rivera NM, Islas-Preciado D, Treviño S, de Gortari P, González-Trujano ME, García-Viguera C. Aqueous extract of pomegranate enriched in ellagitannins prevents anxiety-like behavior and metabolic changes induced by cafeteria diet in an animal model of menopause. Neurochem Int 2020; 141:104876. [PMID: 33049337 DOI: 10.1016/j.neuint.2020.104876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023]
Abstract
Women around menopause are vulnerable to present psychiatric and metabolic disorders; thus, therapies that contribute to treat both pathologies are required. Previous reports showed that an aqueous extract of pomegranate (Punica granatum), enriched in ellagitannins, exerts an antidepressant-like effect in ovariectomized rats. We analyze whether this aqueous extract of P. granatum (AE-PG) prevents the anxiety-like behavior induced by a cafeteria diet (CAF) in middle-aged ovariectomized rats at the same time that it prevents an increase in body weight, glucose, lipids, and the changes on mRNA expression of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) in the liver. Also, the effects of AE-PG on the protein levels of PPAR-γphospho-PPAR-γ, extracellular signal-regulated protein kinase (ERK1/2) and phospho-ERK1/2 were measured in the hippocampus and amygdala. CAF induced anxiety-like behavior, augmented lipids and glucose blood levels, body weight, visceral fat, insulin resistance, and decreased mRNA expression of PPAR-γ in the liver. In rats fed with the CAF, AE-PG prevented the anxiety-like behavior, reduced body weight, lowered lipid levels, reduced insulin resistance, and increased PPAR-γ mRNA expression in the liver. In the hippocampus, ERK1/2 but not PPAR-γ protein levels were decreased by CAF, while AE-PG prevented these effects. In the amygdala, CAF increased the phosphorylation of PPARγ, and AE-PG prevented it. In contrast, AE-PG rescued the decreased ERK1/2 protein level in the hippocampus caused by CAF. In conclusion, AE-PG treatment prevented anxiogenic and metabolic effects induced by CAF, and its effects appear to be mediated by ERK1/2 and PPARγ depending on the brain area studied.
Collapse
Affiliation(s)
- E M Estrada-Camarena
- Laboratorio de Neuropsicofarmacología. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico.
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados (Sede Sur-Coapa), Mexico City, Mexico
| | - G B Ramírez-Rodríguez
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente". Mexico City, Mexico
| | - D Pulido
- Laboratorio de Neuropsicofarmacología. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | - N Cervantes-Anaya
- Laboratorio de Neuropsicofarmacología. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | - G Azpilcueta-Morales
- Laboratorio de Neuropsicofarmacología. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | - A Granados-Juárez
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente". Mexico City, Mexico
| | - N M Vega-Rivera
- Laboratorio de Neuropsicofarmacología. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | - D Islas-Preciado
- Laboratorio de Neuropsicofarmacología. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | - S Treviño
- Facultad de Ciencias Químicas. Benemérita Universidad de Puebla. Puebla, Mexico
| | - P de Gortari
- Laboratorio de Neurofisiología Molecular. Dirección de Neurociencias. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | - M E González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Neurociencias. Instituto Nacional de Psiquiatría "Ramón de la Fuente". Mexico City, Mexico
| | - C García-Viguera
- Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
24
|
Clinical Evidence of Antidepressant Effects of Insulin and Anti-Hyperglycemic Agents and Implications for the Pathophysiology of Depression-A Literature Review. Int J Mol Sci 2020; 21:ijms21186969. [PMID: 32971941 PMCID: PMC7554794 DOI: 10.3390/ijms21186969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Close connections between depression and type 2 diabetes (T2DM) have been suggested by many epidemiological and experimental studies. Disturbances in insulin sensitivity due to the disruption of various molecular pathways cause insulin resistance, which underpins many metabolic disorders, including diabetes, as well as depression. Several anti-hyperglycemic agents have demonstrated antidepressant properties in clinical trials, probably due to their action on brain targets based on the shared pathophysiology of depression and T2DM. In this article, we review reports of clinical trials examining the antidepressant effect of these medications, including insulin, metformin, glucagon like peptide-1 receptor agonists (GLP-1RA), and peroxisome proliferator-activated receptor (PPAR)-γ agonists, and briefly consider possible molecular mechanisms underlying the associations between amelioration of insulin resistance and improvement of depressive symptoms. In doing so, we intend to suggest an integrative perspective for understanding the pathophysiology of depression.
Collapse
|
25
|
Pioglitazone Metformin Complex Improves Polycystic Ovary Syndrome Comorbid Psychological Distress via Inhibiting NLRP3 Inflammasome Activation: A Prospective Clinical Study. Mediators Inflamm 2020; 2020:3050487. [PMID: 32410849 PMCID: PMC7204303 DOI: 10.1155/2020/3050487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Objective This study aimed at investigating the therapeutic effect and mechanism of pioglitazone metformin complex preparation (PM) in polycystic ovary syndrome (PCOS) comorbid psychological distress. Methods Seventy-five patients with PCOS comorbid psychological distress were randomly allocated into the PM, metformin, and placebo groups. The primary efficacy measure was the change from baseline to week 12 on the Symptom Checklist 90-R (SCL-90-R) scores. NLRP3 inflammasome, IL-1β, IL-6, TNF-α, and biochemical parameters were determined at baseline and at week 12. The participants were required to meet the criteria for PCOS (Rotterdam, NIH) and psychological distress (any factor scores of SCL − 90 − R > 2). Results The participants had significantly high scores on the SCL-90-R scales of anxiety and depression. PM significantly decreased anxiety and depression symptom severity (from 2.31 ± 0.75 to 1.65 ± 0.38, p < 0.001, and from 2.08 ± 0.74 to 1.61 ± 0.46, p = 0.010, at week 12, respectively). PM significantly decreased the expression of NRPL3 and caspase-1. Patients in the PM group experienced a significant reduction in IL-1β (from 98.42 ± 14.38 to 71.76 ± 13.66, p = 0.02), IL-6 (from 87.51 ± 8.74 to 71.98 ± 15.87, p = 0.02), and TNF-α (from 395.33 ± 88.55 to 281.98 ± 85.69, p = 0.04). PM was superior to metformin in reducing total testosterone (2.24 ± 0.74 versus 3.06 ± 0.83, p = 0.024, at week 12). Conclusions This study is the first to reveal that PM alleviates psychological distress via inhibiting NLRP3 inflammasome and improves several markers, including total testosterone.
Collapse
|
26
|
Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer's Disease and Other Neurodegenerative Disorders. Neurochem Res 2020; 45:972-988. [PMID: 32170673 PMCID: PMC7162839 DOI: 10.1007/s11064-020-02993-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator activated receptor alpha (PPAR-α) belongs to the family of ligand-regulated nuclear receptors (PPARs). These receptors after heterodimerization with retinoid X receptor (RXR) bind in promotor of target genes to PPAR response elements (PPREs) and act as a potent transcription factors. PPAR-α and other receptors from this family, such as PPAR-β/δ and PPAR-γ are expressed in the brain and other organs and play a significant role in oxidative stress, energy homeostasis, mitochondrial fatty acids metabolism and inflammation. PPAR-α takes part in regulation of genes coding proteins that are involved in glutamate homeostasis and cholinergic/dopaminergic signaling in the brain. Moreover, PPAR-α regulates expression of genes coding enzymes engaged in amyloid precursor protein (APP) metabolism. It activates gene coding of α secretase, which is responsible for non-amyloidogenic pathway of APP degradation. It also down regulates β secretase (BACE-1), the main enzyme responsible for amyloid beta (Aβ) peptide release in Alzheimer Diseases (AD). In AD brain expression of genes of PPAR-α and PPAR-γ coactivator-1 alpha (PGC-1α) is significantly decreased. PPARs are altered not only in AD but in other neurodegenerative/neurodevelopmental and psychiatric disorder. PPAR-α downregulation may decrease anti-oxidative and anti-inflammatory processes and could be responsible for the alteration of fatty acid transport, lipid metabolism and disturbances of mitochondria function in the brain of AD patients. Specific activators of PPAR-α may be important for improvement of brain cells metabolism and cognitive function in neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sylwia Wójtowicz
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| | - Anna K Strosznajder
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Mieszko Jeżyna
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Joanna B Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| |
Collapse
|
27
|
Jiang B, Wang H, Xu H. Steroid receptor RNA activator affects the development of poststroke depression by regulating the peroxisome proliferator-activated receptor γ signaling pathway. Neuroreport 2020; 31:48-56. [PMID: 31714481 PMCID: PMC6903361 DOI: 10.1097/wnr.0000000000001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 11/06/2022]
Abstract
The long noncoding RNA, steroid receptor RNA activator (SRA), has been reported to be involved in the development of many types of disease in humans. The aim of this study was to evaluate whether SRA was associated with poststroke depression (PSD). A PSD rat model was established, and depression-like behaviors and sucrose consumption in rats with PSD were analyzed. Reverse transcription-quantitative PCR (RT-PCR), western blot and luciferase dual reporter assay analyses were performed to detect the expression of peroxisome proliferator-activated receptor γ (PPARγ) expression following SRA small interfering RNA (siRNA) treatment. Compared with the control, the horizontal and vertical movement scores and consumption of sucrose solution were decreased in the PSD, PSD + LV-SRA and PSD + pioglitazone groups at 7 days post-SRA-siRNA treatment, while they were increased in the PSD + LV-SRA and PSD + pioglitazone groups. Furthermore, SRA expression in the PSD, PSD + LV-SRA and PSD + pioglitazone groups was lowered compared with the control group at 7 days postinjection. SRA increased the reported luciferase activity, but pioglitazone had no effect on the luciferase activity induced by SRA. SRA upregulated PPARγ mRNA and protein expression, whereas SRA siRNA significantly downregulated its expression. No significant differences in characteristics were identified between rats with and without PSD. SRA was more highly expressed in rats with PSD than rats without PSD. Collectively, this study suggests that SRA is associated with PSD through PPARγ signaling, indicating a potential therapeutic target of SRA for controlling PSD.
Collapse
Affiliation(s)
| | | | - Houchi Xu
- Neurosurgery, Rizhao People’s Hospital, Rizhao, Shandong, China
| |
Collapse
|
28
|
Chávez-Castillo M, Nava M, Ortega Á, Rojas M, Núñez V, Salazar J, Bermúdez V, Rojas-Quintero J. Depression as an Immunometabolic Disorder: Exploring Shared Pharmacotherapeutics with Cardiovascular Disease. Curr Neuropharmacol 2020; 18:1138-1153. [PMID: 32282306 PMCID: PMC7709154 DOI: 10.2174/1570159x18666200413144401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Modern times have seen depression and cardiovascular disease (CVD) become notorious public health concerns, corresponding to alarming proportions of morbidity, mortality, decreased quality of life, and economic costs. Expanding comprehension of the pathogenesis of depression as an immunometabolic disorder has identified numerous pathophysiologic phenomena in common with CVD, including chronic inflammation, insulin resistance, and oxidative stress. These shared components could be exploited to offer improved alternatives in the joint management of these conditions. Abundant preclinical and clinical data on the impact of established treatments for CVD in the management of depression have allowed for potential candidates to be proposed for the joint management of depression and CVD as immunometabolic disorders. However, a large proportion of the clinical investigation currently available exhibits marked methodological flaws which preclude the formulation of concrete recommendations in many cases. This situation may be a reflection of pervasive problems present in clinical research in psychiatry, especially pertaining to study homogeneity. Therefore, further high-quality research is essential in the future in this regard.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Salazar
- Address correspondence to this author at the Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 20th Avenue 4004, Venezuela; Tel/Fax: ++582617597279; E-mail:
| | | | | |
Collapse
|
29
|
Activation of PPARγ Attenuates the Expression of Physical and Affective Nicotine Withdrawal Symptoms through Mechanisms Involving Amygdala and Hippocampus Neurotransmission. J Neurosci 2019; 39:9864-9875. [PMID: 31685649 DOI: 10.1523/jneurosci.1922-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
An isoform of peroxisome proliferator-activated receptors (PPARs), PPARγ, is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. Neuroanatomical data indicate PPARγ localization in brain areas involved in drug addiction. Preclinical and clinical data have shown that pioglitazone reduces alcohol and opioid self-administration, relapse to drug seeking, and plays a role in emotional responses. Here, we investigated the behavioral effect of PPARγ manipulation on nicotine withdrawal in male Wistar rats and in male mice with neuron-specific PPARγ deletion (PPARγ(-/-)) and their littermate wild-type (PPARγ(+/+)) controls. Real-time quantitative RT-PCR and RNAscope in situ hybridization assays were used for assessing the levels of expression and cell-type localization of PPARγ during nicotine withdrawal. Brain site-specific microinjections of the PPARγ agonist pioglitazone were performed to explore the role of this system on nicotine withdrawal at a neurocircuitry level. Results showed that activation of PPARγ by pioglitazone abolished the expression of somatic and affective nicotine withdrawal signs in rats and in (PPARγ(+/+)) mice. This effect was blocked by the PPARγ antagonist GW9662. During early withdrawal and protracted abstinence, the expression of PPARγ increased in GABAergic and glutamatergic cells of the amygdala and hippocampus, respectively. Hippocampal microinjections of pioglitazone reduced the expression of the physical signs of withdrawal, whereas excessive anxiety associated with protracted abstinence was prevented by pioglitazone microinjection into the amygdala. Our results demonstrate the implication of the neuronal PPARγ in nicotine withdrawal and indicates that activation of PPARγ may offer an interesting strategy for smoking cessation.SIGNIFICANCE STATEMENT Smoking cessation leads the occurrence of physical and affective withdrawal symptoms representing a major burden to quit tobacco use. Here, we show that activation of PPARγ prevents the expression of both somatic and affective signs of nicotine withdrawal. At molecular levels results show that PPARγ expression increases in GABAergic cells in the hippocampus and in GABA- and glutamate-positive cells in the basolateral amygdala. Hippocampal microinjections of pioglitazone reduce the insurgence of the physical withdrawal signs, whereas anxiety linked to protracted abstinence is attenuated by pioglitazone injected into the amygdala. Our results demonstrate the implication of neuronal PPARγ in nicotine withdrawal and suggest that PPARγ agonism may represent a promising treatment to aid smoking cessation.
Collapse
|
30
|
Rosenblat JD. Targeting the immune system in the treatment of bipolar disorder. Psychopharmacology (Berl) 2019; 236:2909-2921. [PMID: 30756134 DOI: 10.1007/s00213-019-5175-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE Immune dysfunction has been strongly implicated in the pathophysiology of bipolar disorder (BD). As such, numerous clinical trials have investigated the effects of anti-inflammatory agents in the treatment of BD. OBJECTIVES Review clinical studies evaluating the effects of anti-inflammatory agents in the treatment of BD during all illness phases (e.g., depression, mania, and euthymia). METHODS Relevant databases were searched from inception to August 27, 2018 for clinical studies evaluating the effects of anti-inflammatory agents in BD. RESULTS The majority of identified clinical trials evaluated adjunctive anti-inflammatory agents in the acute treatment of bipolar depression, demonstrating antidepressant effects with N-acetylcysteine (NAC), pioglitazone, minocycline, and coenzyme Q10, along with mixed evidence for omega-3s, and non-steroidal anti-inflammatory drugs (NSAIDs). The anti-manic effects of adjunctive anti-inflammatory agents have been minimally studied, with some promising preliminary results supporting potential anti-manic effects of adjunctive celecoxib and NAC. Maintenance studies are also limited, with inadequate evidence to support mood stabilizing effects of anti-inflammatories while euthymic. Regardless of illness phase, early results suggest that anti-inflammatory agents are likely most beneficial in the subgroup of BD with immune dysregulation. CONCLUSIONS Several proof-of-concept clinical trials have shown promising results for anti-inflammatory agents in the treatment of bipolar depression with moderate effect sizes and good tolerability. The effects of anti-inflammatory agents during manic and euthymic periods remains uncertain. Future larger studies, using stratified samples, enriched for participants with immune dysfunction, are required to determine the role of immune modulating agents in the treatment of BD.
Collapse
Affiliation(s)
- Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, Department of Psychiatry and Pharmacology, University Health Network, University of Toronto, 399 Bathurst Street, MP 9-325, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
31
|
Zhao Q, Wang Q, Wang J, Tang M, Huang S, Peng K, Han Y, Zhang J, Liu G, Fang Q, You Z. Maternal immune activation-induced PPARγ-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiol Dis 2019; 125:1-13. [PMID: 30659984 DOI: 10.1016/j.nbd.2019.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 01/29/2023] Open
Abstract
Maternal infection during pregnancy is an important factor involved in the pathogenesis of brain disorders in the offspring. Mounting evidence from maternal immune activation (MIA) animals indicates that microglial priming may contribute to neurodevelopmental abnormalities in the offspring. Because peroxisome proliferator-activated receptor gamma (PPARγ) activation exerts neuroprotective effects by regulating neuroinflammatory response, it is a pharmacological target for treating neurogenic disorders. We investigated the effect of PPARγ-dependent microglial activation on neurogenesis and consequent behavioral outcomes in male MIA-offspring. Pregnant dams on gestation day 18 received Poly(I:C) (1, 5, or 10 mg/kg; i.p.) or the vehicle. The MIA model that received 10 mg/kg Poly(I:C) showed significantly increased inflammatory responses in the maternal serum and fetal hippocampus, followed by cognitive deficits, which were highly correlated with hippocampal neurogenesis impairment in prepubertal male offspring. The microglial population in hippocampus increased, displayed decreased processes and larger soma, and had a higher expression of the CD11b, which is indicative of the M1 phenotype (classical activation). Activation of the PPARγ pathway by pioglitazone in the MIA offspring rescued the imbalance of the microglial activation and ameliorated the MIA-induced suppressed neurogenesis and cognitive impairments and anxiety behaviors. In an in vitro experiment, PPARγ-induced M2 microglia (alternative activation) promoted the proliferation and differentiation of neural precursor cells. These results indicated that the MIA-induced long-term changes in microglia phenotypes were associated with hippocampal neurogenesis and neurobehavioral abnormalities in offspring. Modulation of the microglial phenotypes was associated with a PPARγ-mediated neuroprotective mechanism in the MIA offspring and may serve as a potential therapeutic approach for prenatal immune activation-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qiuying Zhao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qiaozhi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiutai Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Minmin Tang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shugui Huang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ke Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jinqiang Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Guangyi Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qi Fang
- Graduate Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
32
|
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol 2019; 315:1-8. [DOI: 10.1016/j.expneurol.2019.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
|
33
|
Hari Dass SA, McCracken K, Pokhvisneva I, Chen LM, Garg E, Nguyen TTT, Wang Z, Barth B, Yaqubi M, McEwen LM, MacIsaac JL, Diorio J, Kobor MS, O'Donnell KJ, Meaney MJ, Silveira PP. A biologically-informed polygenic score identifies endophenotypes and clinical conditions associated with the insulin receptor function on specific brain regions. EBioMedicine 2019; 42:188-202. [PMID: 30922963 PMCID: PMC6491717 DOI: 10.1016/j.ebiom.2019.03.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Activation of brain insulin receptors modulates reward sensitivity, inhibitory control and memory. Variations in the functioning of this mechanism likely associate with individual differences in the risk for related mental disorders (attention deficit hyperactivity disorder or ADHD, addiction, dementia), in agreement with the high co-morbidity between insulin resistance and psychopathology. These neurobiological mechanisms can be explored using genetic studies. We propose a novel, biologically informed genetic score reflecting the mesocorticolimbic and hippocampal insulin receptor-related gene networks, and investigate if it predicts endophenotypes (impulsivity, cognitive ability) in community samples of children, and psychopathology (addiction, dementia) in adults. METHODS Lists of genes co-expressed with the insulin receptor in the mesocorticolimbic system or hippocampus were created. SNPs from these genes (post-clumping) were compiled in a polygenic score using the association betas described in a conventional GWAS (ADHD in the mesocorticolimbic score and Alzheimer in the hippocampal score). Across multiple samples (n = 4502), the biologically informed, mesocorticolimbic or hippocampal specific insulin receptor polygenic scores were calculated, and their ability to predict impulsivity, risk for addiction, cognitive performance and presence of Alzheimer's disease was investigated. FINDINGS The biologically-informed ePRS-IR score showed better prediction of child impulsivity and cognitive performance, as well as risk for addiction and Alzheimer's disease in comparison to conventional polygenic scores for ADHD, addiction and dementia. INTERPRETATION This novel, biologically-informed approach enables the use of genomic datasets to probe relevant biological processes involved in neural function and disorders. FUND: Toxic Stress Research network of the JPB Foundation, Jacobs Foundation (Switzerland), Sackler Foundation.
Collapse
Affiliation(s)
- Shantala A Hari Dass
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Kathryn McCracken
- John Abbott College, Sainte-Anne-de-Bellevue, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Irina Pokhvisneva
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Lawrence M Chen
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Elika Garg
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Thao T T Nguyen
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Zihan Wang
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Barbara Barth
- McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Moein Yaqubi
- McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Julie L MacIsaac
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Josie Diorio
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Kieran J O'Donnell
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, 117609, Singapore
| | - Patricia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada.
| |
Collapse
|
34
|
Aftab A, Kemp DE, Ganocy SJ, Schinagle M, Conroy C, Brownrigg B, D'Arcangelo N, Goto T, Woods N, Serrano MB, Han H, Calabrese JR, Gao K. Double-blind, placebo-controlled trial of pioglitazone for bipolar depression. J Affect Disord 2019; 245:957-964. [PMID: 30699881 DOI: 10.1016/j.jad.2018.11.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Objective of the present study was to conduct an 8-week double-blind, randomized, placebo-controlled trial to test the efficacy of pioglitazone in the treatment of bipolar depression. METHODS 38 outpatients with bipolar disorder and current major depressive episode were randomized to pioglitazone (15-45 mg/day) or placebo. The use of concomitant mood stabilizers, antipsychotics, and antidepressants was permitted. The primary outcome measure was the 30-item Inventory of Depressive Symptomatology, Clinician Rated (IDS-C30) total score change from baseline to endpoint. Laboratory evaluations, including serum level of inflammatory and metabolic biomarkers, were conducted. RESULTS 37 subjects were analyzed for efficacy (1 subject had no follow-up data). Mean reduction from baseline to week 8 in IDS-C30 score was-6.59 for pioglitazone and -11.63 for placebo. Mixed effects modeling indicated borderline statistically significant difference between the two groups (p = 0.056) in favor of placebo. On analysis of inflammatory and metabolic markers, a statistically significant negative correlation was noted between change in leptin levels and change in depression scores in the pioglitazone group (r = -0.61, p = 0.047) but not in the placebo group, the significance of which is unclear as the study failed to demonstrate antidepressant efficacy of pioglitazone over placebo. No serious adverse effects were reported, and pioglitazone was well-tolerated. LIMITATIONS small sample size with inadequate power, concomitant use of other psychotropic medications, and lack of statistical adjustment for multiple testing. CONCLUSION Current study does not support the antidepressant efficacy of pioglitazone in the treatment of bipolar depression. (240 words).
Collapse
Affiliation(s)
- Awais Aftab
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC0664, La Jolla, CA, 92093, United States.
| | - David E Kemp
- Advocate Health Care, 4440W 95th Street, Oak Lawn, IL 60453, United States.
| | - Stephen J Ganocy
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Martha Schinagle
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Carla Conroy
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Brittany Brownrigg
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Nicole D'Arcangelo
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States. Nicole.D'
| | - Toyomi Goto
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Nicole Woods
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Mary Beth Serrano
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Huiqin Han
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Joseph R Calabrese
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| | - Keming Gao
- Department of Psychiatry, Mood Disorders Program, University Hospitals Cleveland Medical Center/Case Western Reserve University, 10524 Euclid Avenue, 12th Floor, Cleveland, OH, 44106, United States.
| |
Collapse
|
35
|
Singh V, Garg B. Insulin resistance and depression: Relationship and treatment implications. JOURNAL OF MENTAL HEALTH AND HUMAN BEHAVIOUR 2019. [DOI: 10.4103/jmhhb.jmhhb_55_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Robakis TK, Watson-Lin K, Wroolie TE, Myoraku A, Nasca C, Bigio B, McEwen B, Rasgon NL. Early life adversity blunts responses to pioglitazone in depressed, overweight adults. Eur Psychiatry 2018; 55:4-9. [PMID: 30384111 DOI: 10.1016/j.eurpsy.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Early life adversity is associated with both metabolic impairment and depression in adulthood, as well as with poorer responses to antidepressant medications. It is not yet known whether individual differences in sensitivity to antidiabetic medications could also be related to early life adversity. We examined whether a history of early life adversity affected the observed changes in metabolic function and depressive symptoms in a randomized trial of pioglitazone for augmentation of standard treatments for depression. PURPOSE Early life adversity is associated with both metabolic impairment and depression in adulthood, as well as with poorer responses to antidepressant medications. It is not yet known whether individual differences in sensitivity to antidiabetic medications could also be related to early life adversity. We examined whether a history of early life adversity affected the observed changes in metabolic function and depressive symptoms in a randomized trial of pioglitazone for augmentation of standard treatments for depression. FINDINGS We found that early life adversity significantly impaired the metabolic response to pioglitazone. Effects on depressive symptoms did not reach significance, but nonetheless suggested that pioglitazone could mitigate the depressant effects of childhood adversity, only among those insulin resistant at baseline. CONCLUSIONS We conclude that a history of early life adversity may impair the body's ability to respond to insulin sensitizing pharmacotherapy, and furthermore that its contribution to resistant depression may function in part via the generation of an insulin resistant phenotype.
Collapse
Affiliation(s)
- Thalia K Robakis
- Stanford University, Department of Psychiatry and Behavioral Sciences, United States.
| | - Kathleen Watson-Lin
- Stanford University, Department of Psychiatry and Behavioral Sciences, United States
| | - Tonita E Wroolie
- Stanford University, Department of Psychiatry and Behavioral Sciences, United States
| | - Alison Myoraku
- Stanford University, Department of Psychiatry and Behavioral Sciences, United States
| | - Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, NY, NY, 10065, United States
| | - Benedetta Bigio
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, NY, NY, 10065, United States
| | - Bruce McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, NY, NY, 10065, United States
| | - Natalie L Rasgon
- Stanford University, Department of Psychiatry and Behavioral Sciences, United States
| |
Collapse
|
37
|
Gamble JM, Chibrikov E, Midodzi WK, Twells LK, Majumdar SR. Examining the risk of depression or self-harm associated with incretin-based therapies used to manage hyperglycaemia in patients with type 2 diabetes: a cohort study using the UK Clinical Practice Research Datalink. BMJ Open 2018; 8:e023830. [PMID: 30297350 PMCID: PMC6194463 DOI: 10.1136/bmjopen-2018-023830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To compare population-based incidence rates of new-onset depression or self-harm in patients initiating incretin-based therapies with that of sulfonylureas (SU) and other glucose-lowering agents. DESIGN Population-based cohort study. SETTING Patients attending primary care practices registered with the UK-based Clinical Practice Research Datalink (CPRD). PARTICIPANTS Using the UK-based CPRD, we identified two incretin-based therapies cohorts: (1) dipeptidyl peptidase-4 inhibitor (DPP-4i)-cohort, consisting of new users of DPP-4i and SU and (2) glucagon-like peptide-1 receptor agonists (GLP-1RA)-cohort, consisting of new users of GLP-1RA and SU, between January 2007 and January 2016. Patients with a prior history of depression, self-harm and other serious psychiatric conditions were excluded. MAIN OUTCOME MEASURES The primary study outcome comprised a composite of new-onset depression or self-harm. Unadjusted and adjusted Cox proportional hazards regression was used to quantify the association between incretin-based therapies and depression or self-harm. Deciles of High-Dimensional Propensity Scores and concurrent number of glucose-lowering agents were used to adjust for potential confounding. RESULTS We identified new users of 6206 DPP-4i and 22 128 SU in the DPP-4i-cohort, and 501 GLP-1RA and 16 409 SU new users in the GLP-1RA-cohort. The incidence of depression or self-harm was 8.2 vs 11.7 events/1000 person-years in the DPP-4i-cohort and 18.2 vs 13.6 events/1000 person-years in the GLP-1RA-cohort for incretin-based therapies versus SU, respectively. Incretin-based therapies were not associated with an increased or decreased incidence of depression or self-harm compared with SU (DPP-4i-cohort: unadjusted HR 0.70, 95% CI 0.51 to 0.96; adjusted HR 0.80, 95% CI 0.57 to 1.13; GLP-1RA-cohort: unadjusted HR 1.36, 95% CI 0.72 to 2.58; adjusted HR 1.25, 95% CI 0.63 to 2.50). Consistent results were observed for other glucose-lowering comparators including insulin and thiazolidinediones. CONCLUSIONS Our findings suggest that the two incretin-based therapies are not associated with an increased or decreased risk of depression or self-harm.
Collapse
Affiliation(s)
- John-Michael Gamble
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Eugene Chibrikov
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - William K Midodzi
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Laurie K Twells
- School of Pharmacy, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Sumit R Majumdar
- Division of General Internal Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Silveira PP, Pokhvisneva I, Gaudreau H, Rifkin-Graboi A, Broekman BFP, Steiner M, Levitan R, Parent C, Diorio J, Meaney MJ. Birth weight and catch up growth are associated with childhood impulsivity in two independent cohorts. Sci Rep 2018; 8:13705. [PMID: 30209275 PMCID: PMC6135839 DOI: 10.1038/s41598-018-31816-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Individuals born after intrauterine growth restriction (IUGR) are more impulsive towards palatable foods, but it is not clear 1) if IUGR-related impulsivity is specific for foods and solely based on response inhibition and 2) if the development of impulsivity is due to being born IUGR per se or to growing up fast in the first few years of life (catch up growth). Children were classified in the IUGR group if the birth weight ratio was below 0.85. Delta z score for BMI was used as a measure of catch up growth. In MAVAN (N = 274), impulsivity was measured by the Information Sampling Task from the Cambridge Neuropsychological Test Automated Battery (IST - CANTAB), and in GUSTO using the Sticker Delay Task (N = 327). There is a significant effect of interaction between being born IUGR and the magnitude of catch up growth on the reflection impulsivity from IST-CANTAB at 60 months, in which greater catch up growth associates with greater impulsivity in the IST fixed condition in IUGR children. The finding was reproduced in children from the GUSTO cohort using the Sticker Delay Task. We confirmed that catch up growth interacts with IUGR, having a major role in the development of impulsivity in the first years of life and influencing inhibitory control and decision making processes.
Collapse
Affiliation(s)
- Patrícia P Silveira
- Department of Psychiatry, McGill University & Sackler Institute for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada.
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Hélène Gaudreau
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, L8N 3K7, Canada
| | - Robert Levitan
- Department of Psychiatry, University of Toronto and Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Carine Parent
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Josie Diorio
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Michael J Meaney
- Department of Psychiatry, McGill University & Sackler Institute for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
39
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
40
|
Carboni L, Marchetti L, Lauria M, Gass P, Vollmayr B, Redfern A, Jones L, Razzoli M, Malki K, Begni V, Riva MA, Domenici E, Caberlotto L, Mathé AA. Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology 2018; 43:2134-2145. [PMID: 29950584 PMCID: PMC6098161 DOI: 10.1038/s41386-018-0117-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/10/2023]
Abstract
An enhanced understanding of the pathophysiology of depression would facilitate the discovery of new efficacious medications. To this end, we examined hippocampal transcriptional changes in rat models of disease and in humans to identify common disease signatures by using a new algorithm for signature-based clustering of expression profiles. The tool identified a transcriptomic signature comprising 70 probesets able to discriminate depression models from controls in both Flinders Sensitive Line and Learned Helplessness animals. To identify disease-relevant pathways, we constructed an expanded protein network based on signature gene products and performed functional annotation analysis. We applied the same workflow to transcriptomic profiles of depressed patients. Remarkably, a 171-probesets transcriptional signature which discriminated depressed from healthy subjects was identified. Rat and human signatures shared the SCARA5 gene, while the respective networks derived from protein-based significant interactions with signature genes contained 25 overlapping genes. The comparison between the most enriched pathways in the rat and human signature networks identified a highly significant overlap (p-value: 3.85 × 10-6) of 67 terms including ErbB, neurotrophin, FGF, IGF, and VEGF signaling, immune responses and insulin and leptin signaling. In conclusion, this study allowed the identification of a hippocampal transcriptional signature of resilient or susceptible responses in rat MDD models which overlapped with gene expression alterations observed in depressed patients. These findings are consistent with a loss of hippocampal neural plasticity mediated by altered levels of growth factors and increased inflammatory responses causing metabolic impairments as crucial factors in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
| | - Mario Lauria
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Vollmayr
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amanda Redfern
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Maria Razzoli
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, USA
| | - Karim Malki
- King's College London, at the Institute of Psychiatry, Psychology and Neuroscience (IOPPN), London, UK
| | - Veronica Begni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Enrico Domenici
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Laura Caberlotto
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- The Aptuit Center for Drug Discovery & Development, Via Fleming, 4, 37135, Verona, Italy
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
41
|
Moulton CD, Hopkins CWP, Ismail K, Stahl D. Repositioning of diabetes treatments for depressive symptoms: A systematic review and meta-analysis of clinical trials. Psychoneuroendocrinology 2018; 94:91-103. [PMID: 29775878 DOI: 10.1016/j.psyneuen.2018.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/12/2023]
Abstract
Depression is a common comorbidity in diabetes but conventional antidepressant treatments do not consistently improve outcomes. We tested whether established diabetes treatments can also improve depressive symptoms and examined biological correlates of response. We performed a multi-database systematic search of all clinical trials, which measured the effect of licensed diabetes treatments on depressive symptoms using a validated questionnaire. Results of randomised controlled trials (RCT's) were pooled for meta-analysis. Data were also collected on insulin resistance (HOMA-IR), C-reactive protein (CRP) and fasting blood glucose (FBG) as correlates of response. Nineteen studies (n = 3369 patients) were included in the qualitative synthesis, 9 testing thiazolidenediones, 5 metformin, 2 thiazolidenediones against metformin, 2 incretin-based therapies and 1 insulin. Most studies were of good quality. In random-effects meta-analysis of RCT's, pioglitazone improved depressive symptoms compared to controls (pooled effect size = -0.68 (95% C.I. -1.12 to -0.24), p = .003, Nstudies = 8, I2 = 83.2%). Conversely, metformin was comparable to controls overall (pooled effect size = +0.32 (95% C.I. -0.23 to 0.88), p = .25, Nstudies = 6, I2 = 94.2%), although inferior to active controls (pooled effect size = +1.32 (95% C.I. 0.31-2.34), p < 0.001, Nstudies = 3, I2 = 90.1%). In random-effects meta-regression, female sex (β = -0.023, (95% C.I.-0.041 to -0.0041), p = .016, Nstudies = 8) predicted reduction in depressive symptoms with pioglitazone, but baseline HOMA-IR, FBG and severity of depressive symptoms did not. In conclusion, pioglitazone was associated with improvement in depressive symptoms, an effect more marked in women and poorly explained by effects on glycaemia and insulin resistance. Metformin had no consistent benefit on depressive symptoms. Further mechanistc trials of diabetes treatments as potential antidepressants are needed, stratified by sex and including serial measures of innate inflammation.
Collapse
Affiliation(s)
- Calum D Moulton
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RJ, UK.
| | | | - Khalida Ismail
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RJ, UK; Institute of Diabetes, Obesity and Endocrinology, King's Health Partners Academic Health Sciences Centre, London, UK
| | - Daniel Stahl
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RJ, UK
| |
Collapse
|
42
|
Old age depression: worse clinical course, brighter treatment prospects? Lancet Psychiatry 2018; 5:533-534. [PMID: 29887520 DOI: 10.1016/s2215-0366(18)30186-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023]
|
43
|
Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha as a Novel Target for Bipolar Disorder and Other Neuropsychiatric Disorders. Biol Psychiatry 2018; 83:761-769. [PMID: 29502862 DOI: 10.1016/j.biopsych.2017.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) is a protein that regulates metabolism and inflammation by activating nuclear receptors, especially the family of peroxisome proliferator-activated receptors (PPARs). PGC-1 alpha and PPARs also regulate mitochondrial biogenesis, cellular energy production, thermogenesis, and lipid metabolism. Brain energy metabolism may also be regulated in part by the interaction between PGC-1 alpha and PPARs. Because neurodegenerative diseases (Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis) and bipolar disorder have been associated with dysregulated mitochondrial and brain energy metabolism, PGC-1 alpha may represent a potential drug target for these conditions. The purpose of this article is to review the physiology of PGC-1 alpha, PPARs, and the role of PPAR agonists to target PGC-1 alpha to treat neurodegenerative diseases and bipolar disorder. We also review clinical trials of repurposed antidiabetic thiazolidines and anti-triglyceride fibrates (PPAR agonists) for neurodegenerative diseases and bipolar disorder. PGC-1 alpha and PPARs are innovative potential targets for bipolar disorder and warrant future clinical trials.
Collapse
Affiliation(s)
- Andrew A Nierenberg
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Sharmin A Ghaznavi
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Isadora Sande Mathias
- Acadêmica da Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Kristen K Ellard
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | | | - Louisa G Sylvia
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Effects of 3-Hydroxypyridine and Succinic Acid Derivatives on Monoamine Oxidase Activity In Vitro. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1760-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Adzic M, Brkic Z, Mitic M, Francija E, Jovicic MJ, Radulovic J, Maric NP. Therapeutic Strategies for Treatment of Inflammation-related Depression. Curr Neuropharmacol 2018; 16:176-209. [PMID: 28847294 PMCID: PMC5883379 DOI: 10.2174/1570159x15666170828163048] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mounting evidence demonstrates enhanced systemic levels of inflammatory mediators in depression, indicating that inflammation may play a role in the etiology and course of mood disorders. Indeed, proinflammatory cytokines induce a behavioral state of conservation- withdrawal resembling human depression, characterized by negative mood, fatigue, anhedonia, psychomotor retardation, loss of appetite, and cognitive deficits. Neuroinflammation also contributes to non-responsiveness to current antidepressant (AD) therapies. Namely, response to conventional AD medications is associated with a decrease in inflammatory biomarkers, whereas resistance to treatment is accompanied by increased inflammation. METHODS In this review, we will discuss the utility and shortcomings of pharmacologic AD treatment strategies focused on inflammatory pathways, applied alone or as an adjuvant component to current AD therapies. RESULTS Mechanisms of cytokine actions on behavior involve activation of inflammatory pathways in the brain, resulting in changes of neurotransmitter metabolism, neuroendocrine function, and neuronal plasticity. Selective serotonin reuptake inhibitors exhibit the most beneficial effects in restraining the inflammation markers in depression. Different anti-inflammatory agents exhibit AD effects via modulating neurotransmitter systems, neuroplasticity markers and glucocorticoid receptor signaling. Anti-inflammatory add-on therapy in depression highlights such treatment as a candidate for enhancement strategy in patients with moderate-to-severe depression. CONCLUSION The interactions between the immune system and CNS are not only involved in shaping behavior, but also in responding to therapeutics. Even though, substantial evidence from animal and human research support a beneficial effect of anti-inflammatory add-on therapy in depression, further research with special attention on safety, particularly during prolonged periods of antiinflammatory co-treatments, is required.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Zeljka Brkic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Ester Francija
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Milica J. Jovicic
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, 11000, Belgrade, Serbia
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nadja P. Maric
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, 11000, Belgrade, Serbia
- School of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
| |
Collapse
|
46
|
Misiak B, Beszłej JA, Kotowicz K, Szewczuk-Bogusławska M, Samochowiec J, Kucharska-Mazur J, Frydecka D. Cytokine alterations and cognitive impairment in major depressive disorder: From putative mechanisms to novel treatment targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:177-188. [PMID: 28433456 DOI: 10.1016/j.pnpbp.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/01/2017] [Indexed: 12/15/2022]
Abstract
Overwhelming evidence indicates the involvement of immune-inflammatory processes in the pathophysiology of major depressive disorder (MDD). Peripheral cytokine alterations serve as one of most consistently reported indices of subthreshold inflammatory state observed in MDD. Although cytokines cannot pass directly through the blood-brain barrier, a number of transport mechanisms have been reported. In addition, peripheral cytokines may impact central nervous system via downstream effectors of their biological activity. Animal model studies have provided evidence that cytokines might impact cognitive performance through direct and indirect effects on long-term potentiation, neurogenesis and synaptic plasticity. Therefore, it has been hypothesized that cytokine alterations might contribute to cognitive impairment that is widely observed in MDD and persists beyond episodes of acute relapse in the majority of patients. Although several studies have provided that peripheral cytokine alterations might be related to cognitive deficits in patients with MDD, the quality of evidence still leaves much to be desired due to methodological heterogeneity and limitations. In this article, we provide an overview of studies investigating the association between peripheral cytokine alterations and cognitive performance in MDD, discuss underlying mechanisms and neural substrates. Finally, we propose possible treatment targets related to cytokine alterations taking into account existing evidence for antidepressant efficacy of anti-inflammatory pharmacological treatment modalities.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
47
|
Woo YS, Bahk WM. The Link Between Obesity and Depression: Exploring Shared Mechanisms. UNDERSTANDING DEPRESSION 2018:203-220. [DOI: 10.1007/978-981-10-6577-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Ebada ME. Drug repurposing may generate novel approaches to treating depression. J Pharm Pharmacol 2017; 69:1428-1436. [DOI: 10.1111/jphp.12815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
The breakthrough advancements in scientific medical research have greatly improved our understanding of the pathogenesis of depression, encouraging drug discoverers to take a shorter path than ever through drug repurposing to generate new antidepressant medications. In addition to reduced noradrenergic and serotonergic neurotransmission in the brain, other coincidence features such as glutamate neurotoxicity, inflammation and/or cerebrovascular insufficiency are implicated in the pathogenesis of major depressive disorder and late-life depression. This short review discusses the progress made in repurposing drugs for antidepressant actions.
Key findings
Drugs being repurposed as antidepressants act on novel drug targets, thereby treating resistant depression and improving remission rate. Drugs such as ketamine, dextromethorphan/quinidine and scopolamine are rapidly acting antidepressants targeting glutamate receptors. Nimodipine and quetiapine are efficient add-on therapy for late-life depression. Anti-inflammatory drugs, statins, insulin sensitizers, minocycline could remarkably contribute to treating refractory depression.
Summary
Drug repurposing represents an alternative approach to cope with major obstacles, including financial insufficiency and unavoidable long lag evaluation time, undermining the classical pathway of developing new hit compounds into clinically approved antidepressants.
Collapse
Affiliation(s)
- Mohamed Elsaed Ebada
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
49
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
50
|
Colle R, de Larminat D, Rotenberg S, Hozer F, Hardy P, Verstuyft C, Fève B, Corruble E. Pioglitazone could induce remission in major depression: a meta-analysis. Neuropsychiatr Dis Treat 2017; 13:9-16. [PMID: 28031713 PMCID: PMC5182046 DOI: 10.2147/ndt.s121149] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pioglitazone, a selective agonist of the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-γ), prescribed for the treatment of type 2 diabetes, could have antidepressant properties. However, its potential to induce remission of major depressive episodes, the optimal clinical target for an antidepressant drug, is a matter of concern. Indeed, only one out of four double-blind randomized controlled trials show higher remission rates with pioglitazone than with control treatments. Hence, the main aim of this study was to perform a meta-analysis of the efficacy of pioglitazone for the treatment of MDE, focusing on remission rates. METHODS Four double-blind randomized controlled trials, comprising 161 patients with an MDE, were included in this meta-analysis. Pioglitazone was studied either alone (one study) or as add-on therapy to conventional treatments (antidepressant drugs or lithium salts). It was compared either to placebo (three studies) or to metformin (one study). Remission was defined by a Hamilton Depression Rating Scale score <8 after treatment. RESULTS Pioglitazone could induce higher remission rates than control treatments (27% versus 10%, I2=17.3%, fixed-effect model: odds ratio [OR] =3.3, 95% confidence interval [95% CI; 1.4; 7.8], P=0.008). The OR was even higher in the subgroup of patients with major depressive disorder (n=80; 23% versus 8%, I2=0.0%; fixed-effect model: OR =5.9, 95% CI [1.6; 22.4], P=0.009) and in the subgroup of patients without metabolic comorbidities (n=84; 33% versus 10%, I2=0.0%; fixed-effect model: OR =5.1, 95% CI [1.5; 17.9], P=0.01). As compared to control treatments, results suggest six patients would need to be treated with pioglitazone in order to achieve the possibility of one more remission. CONCLUSION Pioglitazone, either alone or as add-on therapy to conventional treatments, could induce remission of MDE, suggesting that drugs with PPAR-γ agonist properties may be true and clinically relevant antidepressants, even in patients without metabolic comorbidities.
Collapse
Affiliation(s)
- Romain Colle
- Psychiatry Department, Hôpital Bicêtre, INSERM, UMR S1178, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Delphine de Larminat
- Psychiatry Department, Hôpital Bicêtre, INSERM, UMR S1178, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Samuel Rotenberg
- Psychiatry Department, Hôpital Bicêtre, INSERM, UMR S1178, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Franz Hozer
- Psychiatry Department, Hôpital Bicêtre, INSERM, UMR S1178, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Patrick Hardy
- Psychiatry Department, Hôpital Bicêtre, INSERM, UMR S1178, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Molecular Genetic, Pharmacogenetics and Hormonology Department, Hôpital Bicêtre, INSERM UMR_S1184, Centre IMVA, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Bruno Fève
- Endocrinology Department, INSERM UMR_S938, Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Sorbonne Universités, Université Pierre et Marie Curie, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Emmanuelle Corruble
- Psychiatry Department, Hôpital Bicêtre, INSERM, UMR S1178, University Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|