1
|
Wang Y, Li Q. Integrative bioinformatics analysis reveals STAT1, ORC2, and GTF2B as critical biomarkers in lupus nephritis with Monkeypox virus infection. Sci Rep 2025; 15:13589. [PMID: 40253531 PMCID: PMC12009413 DOI: 10.1038/s41598-025-97791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
The monkeypox virus (MPXV) is currently spreading rapidly around the world, but the mechanisms by which it interacts with lupus nephritis (LN) are unknown. The aim of this study was to investigate the role and mechanism of lupus nephritis combined with monkeypox virus infection. The data comes from GEO and GeneCards.Through Limma and Weighted Gene Co-expression Network Analysis (WGCNA) analysis, differential expression genes (DEGs) and module genes were identified, and KEGG and GO enrichment analysis was carried out.In addition, a protein-protein interaction (PPI) network was constructed and LASSO regression was used to screen genes related to senescence. The diagnostic effectiveness was evaluated using a Nomogram and the receiver operating characteristic (ROC) curve and verified using GSE99967.Immune infiltration and gene set enrichment analysis (GSEA) Were also included in the study.In the end, miRNet was used to construct a miRNA-mRNA-TF network and screen targeted drugs through DGIdb. 5707 DEGs were identified in the lupus nephritis and 737 in the monkeypox data. WGCNA and Lasso regression analyses screened for three important targets (STAT1, ORC2, and GTF2B) .Predictive modeling and ROC of STAT1, ORC2 and GTF2B by Nomogram showed good diagnostic value .Immune infiltration analysis showed immune cell disorders and related pathway activation.The miRNA-mRNA-TF network covers 516 miRNAs and 15 transcription factors, and enrichment analysis shows that it plays an important role in senescence and inflammation.Potential Target Drugs Screened Include Guttiferone K And Silicon Phthalocyanine 4. This study identifies STAT1, ORC2, and GTF2B as key factors in cellular senescence and immune dysregulation associated with lupus nephritis and monkeypox infection, suggesting they may serve as important predictive targets.
Collapse
Affiliation(s)
- Yaojun Wang
- Clinical Medical College, Affiliated Hospital, Hebei University, Baoding, 071000, Hebei, China.
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| |
Collapse
|
2
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Ahmed S, Hossain MA, Bristy SA, Ali MS, Rahman MH. Adopting Integrated Bioinformatics and Systems Biology Approaches to Pinpoint the COVID-19 Patients' Risk Factors That Uplift the Onset of Posttraumatic Stress Disorder. Bioinform Biol Insights 2024; 18:11779322241274958. [PMID: 39281421 PMCID: PMC11402063 DOI: 10.1177/11779322241274958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/23/2024] [Indexed: 09/18/2024] Open
Abstract
Owing to the recent emergence of COVID-19, there is a lack of published research and clinical recommendations for posttraumatic stress disorder (PTSD) risk factors in patients who contracted or received treatment for the virus. This research aims to identify potential molecular targets to inform therapeutic strategies for this patient population. RNA sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and PTSD (from the National Center for Biotechnology Information [NCBI]) were processed using the GREIN database. Protein-protein interaction (PPI) networks, pathway enrichment analyses, miRNA interactions, gene regulatory network (GRN) studies, and identification of linked drugs, chemicals, and diseases were conducted using STRING, DAVID, Enrichr, Metascape, ShinyGO, and NetworkAnalyst v3.0. Our analysis identified 15 potentially unique hub proteins within significantly enriched pathways, including PSMB9, MX1, HLA-DOB, HLA-DRA, IFIT3, OASL, RSAD2, and so on, filtered from a pool of 201 common differentially expressed genes (DEGs). Gene ontology (GO) terms and metabolic pathway analyses revealed the significance of the extracellular region, extracellular space, extracellular exosome, adaptive immune system, and interleukin (IL)-18 signaling pathways. In addition, we discovered several miRNAs (hsa-mir-124-3p, hsa-mir-146a-5p, hsa-mir-148b-3p, and hsa-mir-21-3p), transcription factors (TF) (WRNIP1, FOXC1, GATA2, CREB1, and RELA), a potentially repurposable drug carfilzomib and chemicals (tetrachlorodibenzodioxin, estradiol, arsenic trioxide, and valproic acid) that could regulate the expression levels of hub proteins at both the transcription and posttranscription stages. Our investigations have identified several potential therapeutic targets that elucidate the probability that victims of COVID-19 experience PTSD. However, they require further exploration through clinical and pharmacological studies to explain their efficacy in preventing PTSD in COVID-19 patients.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Sadia Afrin Bristy
- Bioinformatics and Biomedical Research Network of Bangladesh, Dhaka, Bangladesh
| | - Md Shahjahan Ali
- Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
4
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Yang JC, Zhao J, Chen YH, Wang R, Rong Z, Wang SY, Wu YM, Wang HN, Yang L, Liu R. miR-29a-5p rescues depressive-like behaviors in a CUMS-induced mouse model by facilitating microglia M2-polarization in the prefrontal cortex via TMEM33 suppression. J Affect Disord 2024; 360:188-197. [PMID: 38821373 DOI: 10.1016/j.jad.2024.05.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Depression accounts for a high proportion of neuropsychiatric disorders and is associated with abnormal states of neurons in specific brain regions. Microglia play a pivotal role in the inflammatory state during depression development; however, the exact mechanism underlying chronic mood states remains unknown. Thus, the present study aimed to determine whether microRNAs (miRNAs) alleviate stress-induced depression-like behavior in mice by regulating the expression levels of their target genes, explore the role of neuroinflammation induced by microglial activation in the pathogenesis and progression of depression, and determine whether the role of the miR-29a-5p/transmembrane protein 33 (TMEM33) axis. METHODS In this study, chronic unpredictable mild stress (CUMS) mouse depression model, various behavioral tests, western blotting, dual-luciferase reporter assay, enzyme-linked immunosorbent assay, real-time quantitative reverse transcription PCR, immunofluorescence and lentivirus-mediated gene transfer were used. RESULTS After exposure to the CUMS paradigm, miR-29a-5p was significantly down-regulated. This downregulation subsequently promoted the polarization of microglia M1 by upregulating the expression of TMEM33, resulting in enhanced inflammatory chemokines affecting neurons. Conversely, the upregulation of miR-29a-5p within the prefrontal cortex (PFC) suppressed TMEM33 expression, facilitated microglia M2-polarization, and ameliorated depressive-like behavior. LIMITATIONS Only rodent models of depression were used, and human samples were not included. CONCLUSIONS The results of this study suggest that miR-29a-5p deficits within the PFC mediate microglial anomalies and contribute to depressive-like behaviors. miR-29a-5p and TMEM33 may, therefore, serve as potential therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Jing-Cheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Jun Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Rui Wang
- Department of Military Medical Center, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Zheng Rong
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Sai-Ying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yu-Mei Wu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China.
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China.
| |
Collapse
|
6
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
7
|
Salvetat N, Checa-Robles FJ, Delacrétaz A, Cayzac C, Dubuc B, Vetter D, Dainat J, Lang JP, Gamma F, Weissmann D. AI algorithm combined with RNA editing-based blood biomarkers to discriminate bipolar from major depressive disorders in an external validation multicentric cohort. J Affect Disord 2024; 356:385-393. [PMID: 38615844 DOI: 10.1016/j.jad.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Bipolar disorder (BD) is a leading cause of disability worldwide, as it can lead to cognitive and functional impairment and premature mortality. The first episode of BD is usually a depressive episode and is often misdiagnosed as major depressive disorder (MDD). Growing evidence indicates that peripheral immune activation and inflammation are involved in the pathophysiology of BD and MDD. Recently, by developing a panel of RNA editing-based blood biomarkers able to discriminate MDD from depressive BD, we have provided clinicians a new tool to reduce the misdiagnosis delay observed in patients suffering from BD. The present study aimed at validating the diagnostic value of this panel in an external independent multicentric Switzerland-based cohort of 143 patients suffering from moderate to major depression. The RNA-editing based blood biomarker (BMK) algorithm developped allowed to accurately discriminate MDD from depressive BD in an external cohort, with high accuracy, sensitivity and specificity values (82.5 %, 86.4 % and 80.8 %, respectively). These findings further confirm the important role of RNA editing in the physiopathology of mental disorders and emphasize the possible clinical usefulness of the biomarker panel for optimization treatment delay in patients suffering from BD.
Collapse
Affiliation(s)
- Nicolas Salvetat
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | | | - Aurélie Delacrétaz
- Les Toises. Center for psychiatry and psychotherapy, Lausanne, Switzerland
| | - Christopher Cayzac
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Benjamin Dubuc
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Diana Vetter
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Jacques Dainat
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Jean-Philippe Lang
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France; Les Toises. Center for psychiatry and psychotherapy, Lausanne, Switzerland
| | - Franziska Gamma
- Les Toises. Center for psychiatry and psychotherapy, Lausanne, Switzerland
| | - Dinah Weissmann
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France.
| |
Collapse
|
8
|
Osman ME, Abo-Elnasr AA, Mohamed ET. Therapeutic potential activity of quercetin complexes against Streptococcus pneumoniae. Sci Rep 2024; 14:12876. [PMID: 38834612 DOI: 10.1038/s41598-024-62782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.
Collapse
Affiliation(s)
- Mohamed E Osman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Amany A Abo-Elnasr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
9
|
You Y, Chen Z, Hu WW. The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets? Pharmacol Ther 2024; 255:108606. [PMID: 38346477 DOI: 10.1016/j.pharmthera.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Microglia play a crucial role in interacting with neuronal synapses and modulating synaptic plasticity. This function is particularly significant during postnatal development, as microglia are responsible for removing excessive synapses to prevent neurodevelopmental deficits. Dysregulation of microglial synaptic function has been well-documented in various pathological conditions, notably Alzheimer's disease and multiple sclerosis. The recent application of RNA sequencing has provided a powerful and unbiased means to decipher spatial and temporal microglial heterogeneity. By identifying microglia with varying gene expression profiles, researchers have defined multiple subgroups of microglia associated with specific pathological states, including disease-associated microglia, interferon-responsive microglia, proliferating microglia, and inflamed microglia in multiple sclerosis, among others. However, the functional roles of these distinct subgroups remain inadequately characterized. This review aims to refine our current understanding of the potential roles of heterogeneous microglia in regulating synaptic plasticity and their implications for various brain disorders, drawing from recent sequencing research and functional studies. This knowledge may aid in the identification of pathogenetic biomarkers and potential factors contributing to pathogenesis, shedding new light on the discovery of novel drug targets. The field of sequencing-based data mining is evolving toward a multi-omics approach. With advances in viral tools for precise microglial regulation and the development of brain organoid models, we are poised to elucidate the functional roles of microglial subgroups detected through sequencing analysis, ultimately identifying valuable therapeutic targets.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
10
|
Sirasangi MI, Roohi TF, Krishna KL, Kinattingal N, Wani SUD, Mehdi S. Dietary Co-supplements attenuate the chronic unpredictable mild stress-induced depression in mice. Behav Brain Res 2024; 459:114788. [PMID: 38036263 DOI: 10.1016/j.bbr.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Does it make a difference what we eat when it comes to our mental health? Food and nutrients are essential not only for human biology and physical appearance but also for mental and emotional well-being. There has been a significant increase in the favourable effects of dietary supplements in the treatment of depressive state in the latest days. Co-supplements which can be a great contribution in the management of depression from the future perspective and might help to reduce standard anti-depressant drug doses, which can be a strategic way to reduce the side effect of standard anti-depressants drugs. This study was designed to evaluate and compare the anti-depressant effects of cholecalciferol-D3 (V.D3), n-3 polyunsaturated fatty acid (PUFA), and a combination of V.D3 + n-3 PUFA with fluoxetine treatment in chronic unpredictable mild stress (CUMS) induced depression in the mice model. We established CUMS depressant mice model and treated CUMS mice with V.D3, n-3 PUFA, and a combination of V.D3 + n-3 PUFA with fluoxetine. Behavioral changes were measured by the forced swim and tail suspension test. Oxidative stress markers and anti-depressant activity were assessed through parameters such as superoxide dismutase, reduced glutathione, lipid peroxidation, and serum corticosterone levels. Additionally, we measured the levels of neurotransmitters dopamine and serotonin. CUMS induced mice displayed depressive-like behaviours. Moreover, cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine treatment attenuated the depressive-like behaviour in CUMS mice accompanied with suppression of oxidative stress markers by up-regulated the expression of an antioxidant signalling pathway. The results suggested that treatment of cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine significantly ameliorated depressive-like behaviours in CUMS induced depression in mice. To delve further into the implications of these findings, future studies could explore the specific molecular mechanisms underlying the observed effects on oxidative stress markers and the antioxidant signaling pathway. This could provide valuable insights into the potential of dietary supplements in the management of depression and help in reducing the reliance on conventional antidepressant medications, thus improving the overall quality of treatment for this prevalent mental health condition.
Collapse
Affiliation(s)
- Mahesh I Sirasangi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190 006, India.
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India.
| |
Collapse
|
11
|
Zhen C, Wang C, Ma Y, Pang Y, Cai F, Meng J, He Y, Xiao P, Liu J, Mei X, Li S, Wu G, Jin G, Zheng B, Liang R, Tan Z. Mechanism of Antidepressant Action of (2R,6R)-6-Hydroxynorketamine (HNK) and Its Compounds: Insights from Proteomic Analysis. Mol Neurobiol 2024; 61:465-475. [PMID: 37632679 DOI: 10.1007/s12035-023-03555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
The effects of HNK, I5, and I6 on the expression of protein in hippocampus of depressed mice were studied by isobaric tags for relative and absolute quantitation (iTRAQ) to explore the mechanism of their antidepressant action. HNK, I5, and I6 were administered intragastric administration once a day in the morning for 7 days. The drug was subsequently discontinued for 7 days (without any treatment). On the 15th day, mice in each group were given the drug (1.0, 10.0, 30.0 mg/kg) intragastric stimulation and mouse hippocampal tissues were taken to perform iTRAQ to identify differentially expressed proteins, and bioinformatics was used to analyze the functional enrichment of the differentially expressed proteins. Compared with Ctr group, the number of differentially expressed proteins in HNK, I5, and I6 treatment groups was 158, 88, and 105, respectively. The three groups shared 29 differentially expressed proteins. In addition, compared with HNK group, the number of differentially expressed proteins in I5 and I6 groups was 201 and 203, respectively. A total of 47 and 56 differentially expressed proteins were co-expressed in I5 and I6 groups. Bioinformatics analysis showed that these differentially expressed proteins mainly had the functions of binding, biocatalysis, and transport, and mainly participated in cellular process, biological regulation process, biological metabolism process, and stress reaction process. GO and KEGG pathway analysis found that these differentially expressed proteins were involved long-term potentiation, G13 pathway, platelet activation pathway, and MAPK signaling pathway. HNK, I5, and I6 antidepressants are closely related to sudden stress sensitivity, stress resistance, neurotransmitter, and metabolic pathways. This study provides a scientific basis to further elucidate the mechanism and clinical application of HNK, I5, and I6 antidepressants.
Collapse
Affiliation(s)
- Chaohui Zhen
- Department of Surgery, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan City, 523000, Guangdong Province, China
| | - Chong Wang
- Department of Neurosurgery, Shenzhen Children's Hospital, Shenzhen City, 518026, Guangdong Province, China
| | - Yanjun Ma
- Shenzhen Ruijian Biotechnology Co., Ltd, Shenzhen City, 518057, Guangdong Province, China
| | - Yuli Pang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen City, 518055, Guangdong Province, China
| | - Feiyue Cai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen City, 518055, Guangdong Province, China
- General Practice Alliance, Shenzhen City, Guangdong Province, China
| | - Jiali Meng
- General Practice Alliance, Shenzhen City, Guangdong Province, China
- Department of General Practice, Shenzhen University General Hospital, Shenzhen University, Shenzhen City, 518055, Guangdong Province, China
| | - Yuefei He
- General Practice Alliance, Shenzhen City, Guangdong Province, China
- Department of General Practice, Shenzhen University General Hospital, Shenzhen University, Shenzhen City, 518055, Guangdong Province, China
| | - Ping Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Children's Hospital, Shenzhen City, 518026, Guangdong Province, China
| | - Jianxi Liu
- Shenzhen Ruijian Biotechnology Co., Ltd, Shenzhen City, 518057, Guangdong Province, China
| | - Xi Mei
- Zhuhai Pengkun Biomedicine Technology Co. Ltd, Zhuhai City, 519000, Guangdong Province, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen City, 518055, Guangdong Province, China
| | - Guanzheng Wu
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng City, 224051, Jiangsu Province, China
| | - Guangzhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Korea
| | - Biao Zheng
- Department of Surgery, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan City, 523000, Guangdong Province, China.
| | - Rui Liang
- Department of Surgery, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan City, 523000, Guangdong Province, China.
| | - Zhen Tan
- Department of Surgery, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan City, 523000, Guangdong Province, China.
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen City, 518055, Guangdong Province, China.
- General Practice Alliance, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
12
|
El-Gohary RM, Ghalwash AA, Awad MM, El-Shaer RAA, Ibrahim S, Eltantawy AF, Elmansy A, Okasha AH. Novel insights into the augmented effect of curcumin and liraglutide in ameliorating cisplatin-induced nephrotoxicity in rats: Effects on oxidative stress, inflammation, apoptosis and pyroptosis via GSK-3β. Arch Biochem Biophys 2023; 749:109801. [PMID: 37884117 DOI: 10.1016/j.abb.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin dose-dependent nephrotoxicity is a major issue limiting its proper use in cancer treatment. Inflammation, redox imbalance, and dysregulated cell death are the most plausible underlying pathomechanics. Curcumin and the glucagon-like peptide-1 receptor agonist, liraglutide, have been investigated in various experimental models for their antioxidant, anti-inflammatory, and cell death modulatory effects. Hence, this work was designed to investigate curcumin and liraglutide nephroprotective effects and how they behave together against cisplatin-induced acute kidney injury (AKI) in an experimental Wistar rat model. The study comprised 61 rats divided randomly into 6 unequal groups: control I and II, cisplatin-induced nephrotoxicity, curcumin-treated, liraglutide-treated, and co-treated groups. Renal index, serum nephrotoxicity markers (Cr, BUN, NGAL), renal glycogen synthase kinase-3 β (GSK-3β), oxidant/antioxidant parameters (MDA, MPO, GSH, NQO1, HO-1), and inflammatory biomolecules (TNF-α, IL-1β) were assayed. Moreover, renal cleaved-caspase3 and the pyroptotic biomolecules (nod-like receptor family pyrin domain containing 3, gasdermin D N-terminal fragment) were immunoassayed. Furthermore, relative renal expression of both nuclear factor erythroid 2-related factor 2 (Nr-F2) and caspase1 was evaluated by qRT-PCR. Histopathological examination of renal tissue was carried out along with detection of Bcl-2 and Bax immunoreactivity. Cisplatin induced acute renal damage, augmented inflammation, dysregulated redox balance and induced apoptosis and pyroptosis. On the other hand, curcumin and liraglutide corrected the dysregulated mechanisms and normalized results to a great extent. Mutual use of curcumin and liraglutide exerted the greatest effect in the co-treatment group. Nr-F2/HO-1 axis and GSK-3β play a master role in their nephroprotective effect. In conclusion, curcumin and liraglutide have an ameliorative effect against cisplatin-induced nephrotoxicity and can be used alone or better in combination owing to their augmented effect launching promising avenues for cancer patients under cisplatin treatment, retarding AKI and enabling them to gain the best protocol effectiveness.
Collapse
Affiliation(s)
- Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | | | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Alshaimma Elmansy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, 31527, Tanta, Egypt.
| | - Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|